JPH047549Y2 - - Google Patents

Info

Publication number
JPH047549Y2
JPH047549Y2 JP1981017021U JP1702181U JPH047549Y2 JP H047549 Y2 JPH047549 Y2 JP H047549Y2 JP 1981017021 U JP1981017021 U JP 1981017021U JP 1702181 U JP1702181 U JP 1702181U JP H047549 Y2 JPH047549 Y2 JP H047549Y2
Authority
JP
Japan
Prior art keywords
row
line
column
drive line
guard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981017021U
Other languages
Japanese (ja)
Other versions
JPS57131743U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981017021U priority Critical patent/JPH047549Y2/ja
Publication of JPS57131743U publication Critical patent/JPS57131743U/ja
Application granted granted Critical
Publication of JPH047549Y2 publication Critical patent/JPH047549Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Input From Keyboards Or The Like (AREA)

Description

【考案の詳細な説明】 本考案はマトリクス・スイツチにおける配線構
造に関する。
[Detailed Description of the Invention] The present invention relates to a wiring structure in a matrix switch.

IC製造におけるプロセスの評価等では、多く
の供試端子を順次切換えてウエハ上の多数の受動
素子や能動素子の電気的諸特性が測定される。こ
の場合、供試端子の数だけ測定器を用意すること
は多大の費用を要し、且つ測定系の構成も増大し
て実用に供することが困難である。この点よりマ
トリクス・スイツチを使用し、このマトリクス・
スイツチを通じて測定器と選択された供試端子と
の電気的接続を達成していた。しかして、かかる
マトリクス・スイツチとしては通信関係で用いら
れているクロスバ・スイツチ又は電子交換機に用
いられる半導体スイツチ素子等があるが、前者は
機械的寿命の点から漸次廃止の傾向にあり、又後
者はスイツチ素子におけるオン(閉成時)の接触
抵抗が高く、そしてオフ(開放時)の絶縁抵抗が
低いので、一般に高絶縁形のリード・リレーが用
いられていた。
In the evaluation of processes in IC manufacturing, various electrical characteristics of a large number of passive elements and active elements on a wafer are measured by sequentially switching over many test terminals. In this case, preparing as many measuring instruments as the number of test terminals requires a great deal of expense, and the configuration of the measuring system also increases, making it difficult to put it to practical use. From this point on, use the matrix switch to
Electrical connection between the measuring instrument and the selected test terminal was achieved through the switch. Such matrix switches include crossbar switches used in communications and semiconductor switch elements used in electronic exchanges, but the former tends to be phased out gradually due to mechanical lifespan, and the latter Since the contact resistance of the switch element is high when it is on (when closed) and the insulation resistance when it is off (when it is open) is low, highly insulated reed relays were generally used.

しかしながら、ウエハ上の供試端子間における
微少容量や微小電流を測定する場合に、マトリク
ス・スイツチ素子のオフ時における接点間の漏洩
抵抗(前記の絶縁抵抗と同意義)や漂遊容量(以
下これらを不要成分という)により洩れ電流が生
ずる。ましてや供試端子、測定器の数が多くてマ
トリクス・スイツチの規模が増大すると、前記の
不要成分はいずれも測定器端子間に並列的に挿入
されたと同じ結果になり、微少容量、微小電流の
測定に際してはその誤差が増大する。
However, when measuring minute capacitances and minute currents between terminals under test on a wafer, leakage resistance (same meaning as insulation resistance above) and stray capacitance (hereinafter referred to as insulation resistance) and stray capacitance (hereinafter referred to as insulation resistance) between contacts when the matrix switch element is turned off are (referred to as unnecessary components) causes leakage current. Furthermore, if the number of test terminals and measuring devices increases and the scale of the matrix switch increases, the result will be the same as if all of the unnecessary components mentioned above were inserted in parallel between the measuring device terminals, and the minute capacitance and minute current The error increases during measurement.

したがつて本考案の目的は、上記マトリクス・
スイツチにおける不要成分の影響を極力減少させ
て、測定器本来の性能が十分発揮できるような配
線構造を提供するにある。本考案によれば測定器
駆動線と供試端子駆動線との交差点に接続された
スイツチ素子に新たにトランスフア形スイツチを
直列に接続する。そして例えば供試端子駆動線側
に生ずる洩れ電流は上記トランスフア形スイツチ
を介して駆動線のガード線に側路されて測定器駆
動線側には全く影響を与えない。
Therefore, the purpose of this invention is to solve the above matrix.
To provide a wiring structure that can sufficiently exhibit the original performance of a measuring device by reducing the influence of unnecessary components on a switch as much as possible. According to the present invention, a new transfer type switch is connected in series to the switch element connected to the intersection of the measuring instrument drive line and the test terminal drive line. For example, a leakage current generated on the test terminal drive line side is bypassed to the guard line of the drive line via the transfer type switch, and has no effect on the measuring device drive line side.

次に図面を参照して説明する。 Next, a description will be given with reference to the drawings.

第1図は本考案の説明に供するためのマトリク
ス・スイツチの接続図で、複数のスイツチ素子が
行・列に配されている。すなわち、一対のスイツ
チ素子K11,K11′,K12,K12′,K13,K13′が第1
行に、第2行にはK21,K21′,K22,K22′,K23
K23′がそして第3行にはK31,K31′,K32,K32′,
K33,K33′がそれぞれ配列される。第1行目のス
イツチ素子K11,K11′,K12,K12′,K13,K13′は
測定器端子21の駆動線201に接続され、2行
目のK21,K21′,K22,K22′,K23,K23′は測定器
端子22の駆動線202に、3行目のK31
K31′,K32,K32′,K33,K33′は電圧源端子23
の駆動線203にそれぞれ接続される。同様にし
て第1列目のスイツチ素子K11,K11′,K21
K21′,K31,K31′は供試端子11の駆動線101
に、第2列目のK12,K12′,K22,K22′,K32
K32′は供試端子12の駆動線102に、第3列
目のK13,K13′,K23,K23′,K33,K33′は供試端
子13の駆動線103にそれぞれ接続される。な
お、上記の各交差点に接続されたスイツチ素子の
表記において、ダツシユ記号′がつけられている
スイツチ素子はガード線用スイツチ素子を、また
ダツシユ記号が付けられていないスイツチ素子は
芯線用スイツチ素子を表す。
FIG. 1 is a connection diagram of a matrix switch for explaining the present invention, in which a plurality of switch elements are arranged in rows and columns. That is, the pair of switch elements K 11 , K 11 ′, K 12 , K 12 ′, K 13 , K 13
In the second row, K 21 , K 21 ′, K 22 , K 22 ′, K 23 ,
K 23 ′ and in the third row K 31 , K 31 ′, K 32 , K 32 ′,
K 33 and K 33 ′ are arranged respectively. The switch elements K 11 , K 11 ′, K 12 , K 12 ′, K 13 , K 13 ′ in the first row are connected to the drive line 201 of the measuring instrument terminal 21, and the switch elements K 21 , K 21 ′ in the second row are connected to the drive line 201 of the measuring instrument terminal 21. , K 22 , K 22 ′, K 23 , K 23 ′ are connected to the drive line 202 of the measuring device terminal 22, and K 31 ,
K 31 ′, K 32 , K 32 ′, K 33 , K 33 ′ are voltage source terminals 23
are connected to drive lines 203, respectively. Similarly, the first row switch elements K 11 , K 11 ′, K 21 ,
K 21 ′, K 31 , K 31 ′ are the drive lines 101 of the test terminal 11
In the second column, K 12 , K 12 ′, K 22 , K 22 ′, K 32 ,
K 32 ′ is connected to the drive line 102 of the terminal under test 12, and K 13 , K 13 ′, K 23 , K 23 ′, K 33 , K 33 ′ in the third column is connected to the drive line 103 of the terminal under test 13. Connected. In addition, in the notation of switch elements connected to each intersection above, switch elements with a dart symbol ' are used as guard wire switch elements, and switch elements without a dart symbol are used as core wire switch elements. represent.

この例においては、行駆動線201には電圧測
定器Vが、202には電流測定器A、203には
電圧源Eがそれぞれ接続されている。そしてスイ
ツチ素子K13,K13′,K21,K21′,K32,K32′をオ
ンにし、他のスイツチ素子をすべてオフにした場
合、列駆動線101と102の間に接続された被
測定端子Yには電圧源Eの出力電圧E203が印加さ
れ、そして該素子Yに流れる電流は電流測定器A
にて測定され、また、素子Yの端子間電圧(これ
を等価的に供試端子13と接地点との電位E103
示す)は電圧測定器Vで測定される。この場合、
各駆動線は第2図に示す如く芯線a又はbとガー
ド線a′又はb′より成り、各一対のスイツチ素子の
うち、例えばK11は行、列の各芯線a,b間に、
そしてK11′は前記芯線と同電位にある行、列の
各ガード線a′,b′間に挿入されている。しかし
て、各芯線a,bは芯線用スイツチ素子K11の接
続部分を除いてガード線a′,b′により被覆されて
いるので、該スイツチ部分を除いては外部よりの
雑音誘導や洩れ電流を考慮する必要がない。しか
しながら、スイツチ素子のオフ時においてはその
接点間に生ずる漏洩抵抗や漂遊容量により例えば
芯線bよりa側に洩れ電流が流れる。そしてマト
リクスの構成が大きくなつてオフ時のスイツチ素
子の数が増加すれば、それにつれて単一スイツチ
素子におけるそれぞれの漏洩抵抗、漂遊容量が並
列的に合成されることになる。
In this example, a voltage measuring device V is connected to the row driving line 201, a current measuring device A is connected to the row driving line 202, and a voltage source E is connected to the row driving line 203. When switch elements K 13 , K 13 ′, K 21 , K 21 ′, K 32 , and K 32 ′ are turned on and all other switch elements are turned off, the The output voltage E 203 of the voltage source E is applied to the terminal Y to be measured, and the current flowing through the element Y is measured by the current measuring device A.
Furthermore, the voltage between the terminals of the element Y (which is equivalently represented by the potential E 103 between the terminal under test 13 and the ground point) is measured by the voltage measuring device V. in this case,
Each drive line consists of a core wire a or b and a guard wire a' or b' as shown in FIG .
K 11 ′ is inserted between each of the guard lines a′ and b′ in the row and column, which are at the same potential as the core wire. Since each core wire a, b is covered with guard wires a', b' except for the connection part of the core wire switch element K11 , noise induction from the outside and leakage current can occur except for the switch part. There is no need to consider. However, when the switch element is turned off, a leakage current flows from the core wire B to the side A due to the leakage resistance and stray capacitance generated between the contacts. As the matrix structure becomes larger and the number of switch elements in the OFF state increases, the leakage resistance and stray capacitance of each single switch element will be combined in parallel.

たとえば、測定器等が接続される行駆動線を10
本そして供試端子に接続される列駆動線を60本と
してマトリクスを構成すれば、各交差点(但し芯
線のみを考える)に挿入される芯線用スイツチ素
子は600個となる。
For example, 10 row drive lines are connected to measuring instruments, etc.
If a matrix is constructed with 60 column drive lines connected to the main and test terminals, the number of core wire switch elements inserted at each intersection (considering only the core wires) will be 600.

そこで、2個のスイツチ素子のみをオンにして
行、列各駆動線の2本づつを活性化し、そして他
の598個をすべてオフにした場合を仮定する。い
まスイツチ素子の単体におけるオフ時の接点間漂
遊容量を1PFとし、その絶縁抵抗が1×1012Ωと
すれば、前記活性化された行駆動線間の漂遊容量
は約35PFと増大する。又、その絶縁抵抗値は約
1.4×1010Ωと大幅に低下し、したがつて行駆動
線間に100Vの電圧を印加すれば、それだけでそ
の線間には約7×10-9Aの漏洩電流が流れる。
Therefore, assume that only two switch elements are turned on to activate two drive lines for each row and column, and all the other 598 switch elements are turned off. Now, if the stray capacitance between the contacts of a single switch element when it is off is 1 PF, and its insulation resistance is 1×10 12 Ω, the stray capacitance between the activated row drive lines increases to about 35 PF. Also, its insulation resistance value is approximately
The leakage current is significantly reduced to 1.4×10 10 Ω, and therefore, if a voltage of 100 V is applied between the row drive lines, a leakage current of about 7×10 −9 A will flow between the lines.

本考案は上記の欠点を除去するためになされた
もので、スイツチ素子のオフ時に生ずる漏洩電流
はすべてガード線に側路させたもので、本考案を
前述の例に適用した場合にその漂遊容量値は
2PF、そして漏洩電流はほぼ1/35にそれぞれ減少
させることができる。すなわち、第3図Aに示す
如く、行駆動線の芯線aと列駆動線bとの交差点
に接続されているスイツチ素子例えばK11に直列
にトランスフア形スイツチ素子K10を付加し、そ
して芯線用スイツチ素子K11とガード線用スイツ
チ素子K11′がオフのときにK10のリードはガード
線a′に接続される構造に配置される。かかる構成
によるマトリクス・スイツチによれば、漂遊容量
は零となり、又、芯線用スイツチ素子K11を介し
て列駆動線b側からの漏洩電流iが芯線用スイツ
チ素子K11とトランスフア形スイツチK10との間
の導体(第3図A中ではこれらのスイツチ素子の
間の太線で示されている部分)に矢印で示すよう
に流れ込んでも、前記トランスフア形スイツチ素
子K10によりすべてガード線a′に側路されるので、
行駆動線a側にはその影響がまったく現れない。
The present invention was devised to eliminate the above-mentioned drawbacks, and all the leakage current that occurs when the switch element is turned off is bypassed to the guard wire. value is
2PF, and the leakage current can be reduced to almost 1/35 respectively. That is, as shown in FIG. 3A, a transfer type switch element K10 is added in series with a switch element, for example K11 , connected to the intersection of the core line a of the row drive line and the column drive line b, and The lead of K10 is arranged in such a structure that when the switch element K11 for guard line and the switch element K11 ' for guard line are off, the lead of K10 is connected to guard line a'. According to the matrix switch with such a configuration, the stray capacitance becomes zero, and the leakage current i from the column drive line b side via the core wire switch element K11 is transferred to the core wire switch element K11 and the transfer type switch K. Even if the flow flows into the conductor between K10 (the part shown by the thick line between these switch elements in FIG. 3A) as shown by the arrow, all of the guard wire a is ’, so
This effect does not appear on the row drive line a side at all.

また、第3図Bは前記トランスフア形スイツチ
素子K10の他に更に同種のスイツチ素子K10′を直
列に付加したものであり、この場合にはオフ時に
おけるスイツチ素子K11による漏洩電流は行及び
列のいずれの駆動線にも影響を与えない。すなわ
ち第3図Bにおいては、芯線用素子K11及びガー
ド線用スイツチ素子K11′の対と行駆動線a,a′と
の間に行側トランスフア形スイツチ素子K10を設
けることに加えて、ここでは更にK11及びK11′の
対と列駆動線b,b′との間に列側トランスフア形
スイツチ素子K10′を設けている。これにより、
スイツチ素子K11,K11′の対が開いている、つま
りオフになつている場合には、芯線用スイツチ素
子K11と行側トランスフア形スイツチ素子K10
の間の行側導体及び芯線用スイツチ素子K11と列
側トランスフア形スイツチ素子K10′との間の列
側導体は、第3図Bからわかるように、夫々行側
のガード線a′及び列側のガード線b′の一部となる
ように接続される。このような接続により、行側
の芯線aの先端部及び列側の芯線bの先端部は、
夫々行側導体及び列側導体によつてガードされ、
反対側の駆動線から芯線用スイツチ素子K11を介
して漏洩電流が流れ込んできたとしても、これら
導体によつて夫々のガード線a′,b′に側路され
る。
In addition, FIG. 3B shows a switch element K 10 ' of the same type added in series in addition to the transfer type switch element K 10. In this case, the leakage current due to the switch element K 11 when turned off is It does not affect either row or column drive lines. That is, in FIG. 3B, in addition to providing a row side transfer type switch element K 10 between the pair of core wire element K 11 and guard wire switch element K 11 ′ and the row drive lines a, a′. Here, a column-side transfer type switch element K 10 ' is further provided between the pair of K 11 and K 11 ' and the column drive lines b, b'. This results in
When the pair of switch elements K 11 and K 11 ′ is open, that is, turned off, the row conductor and core wire between the core switch switch K 11 and the row transfer type switch element K 10 As can be seen from FIG. 3B, the column side conductors between the transfer type switch element K 11 and the column side transfer type switch element K 10 ′ are connected to the guard line a′ on the row side and the guard line b′ on the column side, respectively. connected to become part of the With such a connection, the tip of the core wire a on the row side and the tip of the core wire b on the column side are
guarded by a row-side conductor and a column-side conductor, respectively;
Even if a leakage current flows from the opposite drive line through the core wire switch element K11 , it is diverted to the respective guard wires a' and b' by these conductors.

したがつて、本考案によればマトリクス・スイ
ツチを用いて多数の供試端子からある選択された
素子の電気的な特性、特に微少電流や微少容量を
測定する場合に顕著な効果を発揮する。
Therefore, the present invention exhibits remarkable effects when using a matrix switch to measure the electrical characteristics of a selected element from a large number of test terminals, particularly minute currents and minute capacitances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の説明に供するためのマトリク
ス・スイツチの接続図、第2図は行、列駆動線の
交差点に挿入されたスイツチ素子の模形的説明
図、第3図A,Bは本考案の一実施例によるマト
リクス・スイツチの一部接続構造図である。 201,202,203……行駆動線、10
1,102,103……列駆動線、E……電圧
源、A……電流測定器、V……電圧測定器、Y…
…供試素子、K11,K11′……K33,K33′……スイ
ツチ素子、K10,K10′……トランスフア形スイツ
チ素子、a,b……芯線、a′,b′……ガード線。
Fig. 1 is a connection diagram of a matrix switch for explaining the present invention, Fig. 2 is a schematic illustration of a switch element inserted at the intersection of row and column drive lines, and Figs. 3A and B are 1 is a partial connection structure diagram of a matrix switch according to an embodiment of the present invention; FIG. 201, 202, 203...Row drive line, 10
1, 102, 103... Column drive line, E... Voltage source, A... Current measuring device, V... Voltage measuring device, Y...
... Test element, K 11 , K 11 ′ ... K 33 , K 33 ′ ... Switch element, K 10 , K 10 ′ ... Transfer type switch element, a, b ... Core wire, a', b' ...Guard line.

Claims (1)

【実用新案登録請求の範囲】 複数の行駆動線及び列駆動線のそれぞれはガー
ド線で被覆された芯線から成り、行、列の各駆動
線の交差点に接続されて前記駆動線の芯線同士の
接続及びガード線同士の接続のオンオフを行なう
スイツチを備えたマトリクス・スイツチにおい
て、 前記交差点に接続されたスイツチの各々は 接続すべき前記行駆動線と前記列駆動線の間に
行側導体及び列側導体を有すると共に、 前記行側導体を、前記行駆動線及び前記列駆動
線の接続のオン時には前記行駆動線の芯線に接続
し、前記列駆動線と前記行駆動線の接続のオフ時
には前記行駆動線のガード線に接続する行側トラ
ンスフア形スイツチ素子と、 前記行側導体と前記列側導体を、前記オン時に
は接続し、前記オフ時には切離す芯線用スイツチ
素子と、 前記行駆動線と前記列駆動線のガード線同士
を、前記オン時には接続し、前記オフ時には切離
すガード線用スイツチ素子と、 前記列側導体を、前記オン時には前記列駆動線
の芯線に接続し、前記オフ時には前記列駆動線の
ガード線に接続する列側トランスフア形スイツチ
素子と を有することにより、 前記オン時には、前記行駆動線と前記列駆動線
の芯線を前記行側導体と前記列側導体を介して接
続すると共に、前記行駆動線と前記列駆動線のガ
ード線を接続し、 前記オフ時には、前記行側導体を前記行駆動線
のガード線の一部とし、前記列側導体を前記列駆
動線のガード線の一部とする ことを特徴とするマトリクス・スイツチ。
[Claims for Utility Model Registration] Each of the plurality of row drive lines and column drive lines consists of a core wire covered with a guard wire, and is connected to the intersection of each of the row and column drive lines so that the core wires of the drive lines are connected to each other. In a matrix switch equipped with a switch for connecting and connecting guard wires to each other, each of the switches connected to the intersection has a row conductor and a column conductor between the row drive line and the column drive line to be connected. The row side conductor is connected to the core wire of the row drive line when the connection between the row drive line and the column drive line is on, and when the connection between the column drive line and the row drive line is off. a row side transfer type switch element connected to a guard line of the row drive line; a core wire switch element that connects the row side conductor and the column side conductor when the line is on and disconnects it when the line is off; and the line drive line. a guard wire switch element that connects the line and the guard wires of the column drive line when on and disconnects them when off, and connects the column side conductor to the core wire of the column drive line when on; By having a column side transfer type switch element connected to the guard line of the column drive line when off, the core wires of the row drive line and the column drive line are connected to the row side conductor and the column side conductor when on. and connect the row drive line and the guard line of the column drive line, and in the off state, the row side conductor is a part of the guard line of the row drive line, and the column side conductor is connected to the column drive line. A matrix switch characterized in that it is a part of a guard line of a column drive line.
JP1981017021U 1981-02-09 1981-02-09 Expired JPH047549Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981017021U JPH047549Y2 (en) 1981-02-09 1981-02-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981017021U JPH047549Y2 (en) 1981-02-09 1981-02-09

Publications (2)

Publication Number Publication Date
JPS57131743U JPS57131743U (en) 1982-08-17
JPH047549Y2 true JPH047549Y2 (en) 1992-02-27

Family

ID=29814992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981017021U Expired JPH047549Y2 (en) 1981-02-09 1981-02-09

Country Status (1)

Country Link
JP (1) JPH047549Y2 (en)

Also Published As

Publication number Publication date
JPS57131743U (en) 1982-08-17

Similar Documents

Publication Publication Date Title
JP3704040B2 (en) A composite switching matrix that investigates the device under test and interconnects it to the measuring device
US4764723A (en) Wafer probe
JPH07218544A (en) Probe device
US4587481A (en) Arrangement for testing micro interconnections and a method for operating the same
JPH06334121A (en) Integrated semiconductor circuit
JPH047549Y2 (en)
US2120391A (en) Measuring device
GB709737A (en) Improvements in and relating to test-apparatus for identifying wires
US1807852A (en) Shunt
JP2544121Y2 (en) Reed relay and switch matrix device using the same
KR20220072262A (en) Break out box
JPS61288436A (en) Switching matrix structure
JPS6216009B2 (en)
JPS5968127A (en) Porcelain-type breaker
JPH0524666B2 (en)
GB1178231A (en) Improvements in or relating to methods and apparatus for locating faults in the conductors of cables.
JP3156397B2 (en) Semiconductor device
CN218546797U (en) Kelvin four-wire test system realized through internal circuit of switch matrix
SU901922A1 (en) Single four-arm dc bridge
CN108447845B (en) Power semiconductor module substrate and power semiconductor module
US1784898A (en) Circuit switch
US3383636A (en) High value electrical resistance transfer standard
JPS6230971A (en) Semiconductor integrated circuit device
SU1734054A1 (en) Device for checking connections of multilayer printed circuit boards
JP2710357B2 (en) Integrated circuit device