JPH0475253B2 - - Google Patents

Info

Publication number
JPH0475253B2
JPH0475253B2 JP7528583A JP7528583A JPH0475253B2 JP H0475253 B2 JPH0475253 B2 JP H0475253B2 JP 7528583 A JP7528583 A JP 7528583A JP 7528583 A JP7528583 A JP 7528583A JP H0475253 B2 JPH0475253 B2 JP H0475253B2
Authority
JP
Japan
Prior art keywords
rubber
styrene
weight
butadiene copolymer
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7528583A
Other languages
Japanese (ja)
Other versions
JPS59199735A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7528583A priority Critical patent/JPS59199735A/en
Publication of JPS59199735A publication Critical patent/JPS59199735A/en
Publication of JPH0475253B2 publication Critical patent/JPH0475253B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は改善された反ぱつ弾性率を有するゴム
組成物に関するものである。詳しくは分子鎖中に
特定のベンゾフエノン類又はチオベンゾフエノン
類を導入したスチレン−ブタジエン共重合ゴムを
ゴム成分として含有するタイヤトレツド用ゴム組
成物に関するものである。 最近、自動車の低燃費指向と安全性の両観点よ
り、特にタイヤの転動抵抗の低減と湿潤路面での
すぐれた制動性すなわちウエツトスキツド抵抗の
向上が強く要望されている。 一般にこれらのタイヤの特性をトレツドゴム材
料の動的粘弾性特性と対応させて考えられ、互に
相反する特性であることが知られている〔例え
ば、Transaction of I.R.I.,第40巻、第239〜256
頁、1964年を参照〕。 タイヤの転動抵抗を低減するにはトレツドゴム
材料の反ぱつ弾性率が高いことが必要であり、車
の走行状態を考慮すると、この反ぱつ弾性率は50
℃から70℃付近までの温度で評価する必要があ
る。一方、車の安全性の点で重要な性能である湿
潤路面での制動性能の向上にはブリテイツシユ・
ポータブル・スキツドテスターで測定されるウエ
ツトスキツド抵抗が大きいことが必要であり、ト
レツドゴム材料としてはタイヤに制動をかけて路
面をすべらせた場合に生ずる摩擦抵抗としてのエ
ネルギー損失が大きいことが必要である。 従来、これら2つの相反する特性を満足させる
ために、原料ゴムとしては、乳化重合スチレン−
ブタジエン共重合ゴム、高シス−ポリブタジエン
ゴム、低シスーポリブタジエンゴム、有機リチウ
ム化合合触媒を用いて得られるスチレン−ブタジ
エンゴム、天然ゴム、高シス−シソプレンゴム等
を単独で、あるいは組合せて用いられてきたが、
十分満足の行くものではなかつた。すなわち、高
反ぱつ弾性を得ようとすると、低シス−ポリブタ
ジエンゴムや天然ゴム等のエウツトスキツド抵抗
が劣るゴムの配合割合を増加させるか、カーボン
ブラツク等の充てん剤を減量するか、硫黄等の加
硫剤を増加させるかしなければならなかつた。し
かしながらこのような方法ではウエツトスキツド
抵抗が低下したり、機械的性質が低下したりする
という欠点があつた。逆に、高ウエツトスキツド
抵抗を得ようとすると、結合スチレン量が比較的
多い(例えば結合スチレン含有量30重量%以上
の)スチレン−ブタジエン共重合ゴムや1,2−
結合含有量が比較的高い(例えば1,2−結合含
有量60%以上の)ポリブタジエンゴム等のウエツ
トスキツド抵抗に優れたゴムの配合割合を増加さ
せるか、カーボンブラツク等の充てん剤やプロセ
スオイルを増量させるかしなければならなかつ
た。このような方法では反ぱつ弾性が低下すると
いう欠点があつた。 したがつて、機械的性質が実用上差し支えない
範囲でかつ、ウエツトスキツド抵抗と反ぱつ弾性
とが実用上許容される範囲で最も良く調和するよ
う原料ゴムの組成が決められているのが実情であ
つた。このため、従来のゴムを組合せてウエツト
スキツド抵抗と反ぱつ弾性との調和を図ることは
限界に達したと考えられていた。 本発明者等は前記欠点を解決すべく鋭意研究の
結果、驚くべきことにゴム分子鎖に特定のベンゾ
フエノン類又はチオベンゾフエノン類が導入され
たスチレン−ブタジエン共重合ゴムをゴム成分と
して含むゴム組成物は該化合が導入されていない
同一のスチレン−ブタジエン共重合ゴムを含むゴ
ム組成物と比較してウエツトスキツド抵抗を低下
させることなく反ぱつ弾性を著しく向上させ、な
おかつ高反ぱつ弾性の特徴を生かし、必要ならば
カーボンブラツク等の充てん剤の増量によつて耐
摩耗性等の機械的性質を改善しつつ、反ぱつ弾性
とウエツトスキツド抵抗との調和を図れることを
見出し、本発明に到つたものである。 すなわち本発明は、スチレン−ブタジエン共重
合ゴム分子鎖に、少なくとも1個のアミノ基、ア
ルキルアミノ基あるいはジアルキルアミノ基を有
するベンゾフエノン類又はチオベンゾフエノン類
を該ゴム分子鎖1モル当り少なくとも0.1モル導
した結合スチレン含有量が10〜40重量%、ブタジ
エン部分の1,2−結合含有量10〜50%で、ムー
ニー粘度(ML1+4,100℃)が20〜150のスチレン
−ブタジエン共重合ゴム(I)が3〜20重量%結
合含有量20〜95重量%と結合スチレン含有量40〜
80%のスチレン−ブタジエン共重合ゴム()60
〜5重量%と、1,2−結合含有量が20%以下
で、ムーニー粘度(ML1+4,100℃)が20〜100の
ポリブタジエンゴム()40〜0重量%をゴム成
分として含んで成るウエツトスキツド抵抗を損う
ことなく、転動抵抗を低減したタイヤトレツド用
ゴム組成物を提供するものである。 本発明のタイヤトレツド用ゴム組成物を使用す
ることにより、前述したタイヤ性能として重要な
転動抵抗と湿潤路面での制動性、すなわちウエツ
トスキツド抵抗とを高い水準で調和させたタイヤ
が得られるが、ウエツトスキツド抵抗値は特に要
求されず、反ぱつ弾性率のみが高いことが必要な
タイヤを製造することができる。 本発明で使用するゴム分子鎖に該ベンゾフエノ
ン類又はチオベンゾフエノン類を導入したスチレ
ン−ブタジエン共重合ゴムは溶液重合で通常使用
されるアルカリ金属基材触媒を用いて得られる分
子鎖の末端にアルカリ金属が結合しているスチレ
ン−ブタジエン共重合ゴムあるいは、該触媒を用
いて得た該ゴムに後反応でアルカリ金属を付加さ
せたものと該ベンゾフエノン類又はチオベンゾフ
エノン類とを反応させて得られるスチレン−ブタ
ジエン共重合ゴム分子鎖の末端あるいは末端及び
これ以外の分子鎖中に該化合物が炭素−炭素結合
で一般式
The present invention relates to rubber compositions having improved rebound modulus. More specifically, the present invention relates to a rubber composition for tire treads containing as a rubber component a styrene-butadiene copolymer rubber in which specific benzophenones or thiobenzophenones have been introduced into the molecular chain. Recently, from the viewpoints of both fuel efficiency and safety of automobiles, there has been a strong demand for a reduction in the rolling resistance of tires and an improvement in braking performance on wet road surfaces, that is, improvement in wet skid resistance. Generally, these tire properties are considered to correspond to the dynamic viscoelastic properties of the tread rubber material, and it is known that these properties are contradictory to each other [for example, Transaction of IRI, Vol. 40, Nos. 239-256]
1964]. In order to reduce the rolling resistance of a tire, the tread rubber material must have a high rebound elastic modulus, and considering the driving conditions of the car, this rebound elastic modulus is 50
It is necessary to evaluate at temperatures from ℃ to around 70℃. On the other hand, British technology is used to improve braking performance on wet roads, which is an important performance in terms of vehicle safety.
It is necessary that the wet skid resistance measured by a portable skid tester is high, and the tread rubber material must have a high energy loss as frictional resistance that occurs when the tire is braked and slides on the road surface. . Conventionally, in order to satisfy these two contradictory properties, emulsion polymerized styrene has been used as raw rubber.
Butadiene copolymer rubber, high cis-polybutadiene rubber, low cis-polybutadiene rubber, styrene-butadiene rubber obtained using an organolithium compound catalyst, natural rubber, high cis-cisoprene rubber, etc. have been used singly or in combination. but,
It wasn't completely satisfying. In other words, in order to obtain high rebound elasticity, one must increase the blending ratio of rubbers with poor efflux resistance such as low cis-polybutadiene rubber and natural rubber, reduce the amount of fillers such as carbon black, or add additives such as sulfur. I had to increase the sulfurizing agent. However, this method has disadvantages in that wet skid resistance and mechanical properties are reduced. Conversely, when trying to obtain high wet skid resistance, styrene-butadiene copolymer rubber with a relatively large amount of bound styrene (for example, 30% by weight or more of bound styrene) or 1,2-
Increase the blending ratio of rubber with excellent wet skid resistance such as polybutadiene rubber with a relatively high bond content (for example, 1,2-bond content of 60% or more), or increase the amount of filler such as carbon black or process oil. I had to let it happen. This method has the disadvantage that the rebound elasticity is reduced. Therefore, the actual situation is that the composition of the raw rubber is determined so that the mechanical properties are within a practically acceptable range and the wet skid resistance and rebound elasticity are in the best balance within a practically acceptable range. Ta. For this reason, it was thought that the ability to achieve a balance between wet skid resistance and rebound elasticity by combining conventional rubbers had been reached. As a result of intensive research to solve the above-mentioned drawbacks, the inventors of the present invention surprisingly found that a rubber containing as a rubber component a styrene-butadiene copolymer rubber in which specific benzophenones or thiobenzophenones have been introduced into the rubber molecular chain. Compared to a rubber composition containing the same styrene-butadiene copolymer rubber in which the compound is not introduced, the composition significantly improves rebound resilience without reducing wet skid resistance, and has the characteristics of high rebound resilience. We have discovered that it is possible to achieve a balance between rebound elasticity and wet skid resistance while improving mechanical properties such as abrasion resistance by increasing the amount of filler such as carbon black if necessary, and have arrived at the present invention. It is. That is, the present invention provides at least 0.1 mole of benzophenones or thiobenzophenones having at least one amino group, alkylamino group, or dialkylamino group in the styrene-butadiene copolymer rubber molecular chain per mole of the rubber molecular chain. Styrene-butadiene copolymerization with a bound styrene content of 10 to 40% by weight, a 1,2-bond content of the butadiene moiety of 10 to 50%, and a Mooney viscosity (ML 1+4 , 100°C) of 20 to 150. Rubber (I) has a bound content of 3-20% by weight, a bound content of 20-95% and a bound styrene content of 40-95% by weight.
80% styrene-butadiene copolymer rubber ()60
5% by weight, and 40% to 0% by weight of polybutadiene rubber () with a 1,2-bond content of 20% or less and a Mooney viscosity (ML 1+4 , 100°C) of 20 to 100. The object of the present invention is to provide a rubber composition for tire tread that reduces rolling resistance without impairing wet skid resistance. By using the rubber composition for tire tread of the present invention, it is possible to obtain a tire that has a high level of balance between rolling resistance, which is important for tire performance, and braking performance on wet road surfaces, that is, wet skid resistance. It is possible to manufacture a tire that does not require a particular resistance value and only requires a high rebound modulus. The styrene-butadiene copolymer rubber in which benzophenones or thiobenzophenones are introduced into the rubber molecular chain used in the present invention is obtained by using an alkali metal-based catalyst commonly used in solution polymerization. The benzophenones or thiobenzophenones are reacted with a styrene-butadiene copolymer rubber to which an alkali metal is bonded, or a rubber obtained by using the catalyst and to which an alkali metal is added in a post-reaction. The compound has a general formula with a carbon-carbon bond at the end of the resulting styrene-butadiene copolymer rubber molecular chain or at the other end of the molecular chain.

【式】(式中R1及び R2は水素又は前記の置換基を、MはO又はSを、
m及びnは整数をそれぞれ表わす。)で示される
原子団として導入されたスチレン−ブタジエン共
重合ゴムである。特に望ましいのは分子鎖の末端
に該原子団が導入されたスチレン−ブタジエン共
重合ゴムである。 特に好ましいのはゴム分子鎖の末端に該化合物
が導入されたスチレン−ブタジエン共重合ゴムで
ある。 本発明で使用される該ベンゾフエノン類又はチ
オベンゾフエノン類は例えば4,4′−ビス(ジメ
チルアミノ)−ベンゾフエノン、4,4′−ビス
(ジエチルアミノ)−ベンゾフエノン、4,4′−ビ
ス(ジブチルアミノ)−ベンゾフエノン、4,
4′−ジアミノベンゾフエノン、4−ジメチルアミ
ノベンゾフエノン等及びこれらの対応するチオベ
ンゾフエノンの如き一方あるいは両方のベンゼン
環に少なくとも1つのアミノ基、アルキルアミノ
基あるいはジアルキルアミノ基を有するベンゾフ
エノンである。 該ベンゾフエノン類及びチオベンゾフエノン類
は一般式
[Formula] (wherein R 1 and R 2 are hydrogen or the above-mentioned substituents, M is O or S,
m and n each represent an integer. ) is a styrene-butadiene copolymer rubber introduced as an atomic group. Particularly desirable is a styrene-butadiene copolymer rubber in which the atomic group is introduced at the end of the molecular chain. Particularly preferred is a styrene-butadiene copolymer rubber in which the compound is introduced at the end of the rubber molecular chain. The benzophenones or thiobenzophenones used in the present invention are, for example, 4,4'-bis(dimethylamino)-benzophenone, 4,4'-bis(diethylamino)-benzophenone, 4,4'-bis(dibutyl amino)-benzophenone, 4,
Benzophenones having at least one amino group, alkylamino group or dialkylamino group in one or both benzene rings, such as 4'-diaminobenzophenone, 4-dimethylaminobenzophenone, etc., and their corresponding thiobenzophenones; It is. The benzophenones and thiobenzophenones have the general formula

【式】(式中R1及び R2は水素、又はアミノ基、アルキルアミノ基、
ジアルキルアミノ基から選択される置換基を、M
はO又はSをm及びnはmとnの合計が1〜10と
なる整数をそれぞれ表わす)で表わされるベンゾ
フエノン類である。 該ベンゾフエノン類を分子鎖中に導入したベン
ゼゾフエノン類又はチオベンゾフエノン類を添加
する方法、スチレン−ブタジエン共重合ゴムの溶
液中で該触媒を用い該ゴムにアルカリ金属を付加
させた後該ベンゾフエノン類又はチオベンゾフエ
ノン類を添加する方法等が例示できる。 重合反応および付加反応に使用されるアルカリ
金属基材触媒は通常の溶液重合で使用されるリチ
ウム、ナトリウム、ルビジウム、セシウムの各金
属元素またはこれらの炭化水素化合物あるいは極
性化合物との錯体(例えばn−ブチルリチウム、
2−ナフチルリチウム、カリウム−テトラヒドロ
フラン錯体、カリウム−ジエトキシエタン錯体
等)である。 スチレン−ブタジエン共重合ゴム中に導入され
る該ベンゾフエノン類は平均してゴム分子類1モ
ル当り0.1モル以上である。0.1モル未満では反ぱ
つ弾性の向上は得られない。好ましくは0.3モル
以上、さらに好ましくは0.5モル以上、特に好ま
しくは0.7モル以上であるが、5モル以上になる
とゴム弾性が失われるので好ましくない。 本発明で用いる該ベンゾフエノン類を主鎖中に
導入したスチレン−ブタジエン共重合ゴム()
の結合スチレン含有量は10〜40重量%であること
が好ましい。結合スチレン含有量が10重量%未満
ではウエツトスキツド抵抗が低下し、本発明の目
的を達せられないので好ましくなく、40重量%を
超えると反ぱつ弾性の低下が著しく好ましくな
い。ブタジエン部分の1,2−結合含有量は10〜
50%が好ましい。1,2−結合含有量が10%未満
ではウエツトスキツド抵抗が低下するので好まし
くなく、50%を超えると耐摩耗性が低下するので
好ましくない。ムーニー粘度(ML1+4,100℃)
は20〜150が好ましく、20未満では反ぱつ弾性が
低下し、150を超えると混練加工性が悪く、引張
強さ等の機械的性質が低下するので好ましくな
い。より好ましくは30〜130である。()は全ゴ
ム成分中の20〜95重量%が好ましい。20重量%未
満では反ぱつ弾性の向上効果が小さく本発明の目
的を達せられず、95重量%を超えると()単独
を用いて得た組成物とほとんど同じ性質になり、
ウエツトスキツド抵抗あるいは耐摩耗性が劣好ま
しくない。 ()と組合せて用いられる該ベンゾフエノン
類を主鎖中に含まないスチレン−ブタジエン共重
合ゴム()の結合スチレン含有量は3〜20重量
%が好ましい。()の結合スチレン含有量が3
重量%未満では機械的性質が低下するので好まし
くなく、20重量%を超えると反ぱつ弾性が低下す
るので好ましくない。ブタジエン部分の1,2−
結合含有量は40〜80%が好ましい。1,2−結合
含有量は40%未満ではウエツトスキツド抵抗が低
下するので好ましくなく、80%を超えると耐摩耗
性が低下するので好ましくない。ムーニー粘度は
20〜150が好ましく、20未満では反ぱつ弾性が低
下し、150を超えると混練加工性が悪く機械的性
質が低下するので、好ましくない。より好ましく
は30〜130である。()はゴム成分中の60〜5重
量%が好ましく、60重量%を超えると反ぱつ弾性
が低下し、5重量%未満ではウエツトスキツド抵
抗あるいは耐摩耗性が劣る組成物になるので好ま
しくない。 本発明では1,2−結合含有量が20%以下のポ
リブタジエンゴム()は実用上耐摩耗性の改善
に必要に応じ用いられるが、1,2−結合含有量
が20%を超えるとその目的が達せられないので好
ましくない。ムーニー粘度は20〜100が好ましく、
20未満では反ぱつ弾性の低下が著しく本発明の目
的を達せられず、100を超えると混練加工性が悪
く機械的な性質が低下するので、好ましくない。
より好ましくは30〜80である。()は全ゴム成
分中の40重量%以下が好ましく、より好ましく30
重量%以下である。()が40重量%を超えると
ウエツトスキツド抵抗が著しく低下するので好ま
しくない。 本発明で使用するゴム成分のすべて、あるいは
一部を油展ゴムとして使用することができる。 本発明のタイヤトレツド用ゴム組成物は目的、
用途に応じてゴム工業で汎用される各種配合剤−
例えば硫黄、ステアリン酸、亜鉛華、各種加硫促
進剤(チアゾール系、チウラム系、スルフエンア
ミド系など)、HAF、ISAF等の種々のグレード
のカーポンブラツク、シリカ、炭酸カルシウム等
の補強剤、充てん剤、プロセス油等から適宜選択
することができるが−とロール、バンバリ−等の
混合酸を用いて混練混合されてゴム配合物とさ
れ、成形、加硫工程を経て目的とするタイヤが製
造される。 本発明のゴム組成物は、高い水準で反ぱつ弾性
率とウエツトスキツド抵抗とを調和させることが
できるから、特に安全性、燃料消費性の改善され
た自動車タイヤトレツド用ゴム材料に適している
が、自転車タイヤ用にも使用することができる。 以下、実施例により本発明を具体的に説明す
る。 製造例 (1) 以下の実施例で使用する該ベンゾフエノン類
及びチオベンゾフエノン類を主鎖中に導入した
スチレン−ブタジエン共重合ゴム(以下SBR
と略することがある)の製造方法を示す。 内容積2のステンレス製反応器を洗浄、乾
燥し、乾燥窒素で置換したのち、スチレン55〜
90g、1,3−ブタジエン145〜110g、n−ヘ
キサン600g、n−ブチルリチウム1.2mmを
添加し、内容物を攪拌しながら温度45〜60℃で
1〜2時間重合を行つた。重合反応終了後4,
4′−ビス(ジエチルアミノ)ベンゾフエノンを
触媒量の1.5倍モル加え、5分間攪拌した後に、
重合反応器中の重合体溶液を2,6−ジ−t−
ブチル−p−クレゾール(BHT)1.5重量%の
メタノール溶液中に取り出し、生成重合体を凝
固した。60℃で24時間減圧乾燥し、ムーニー粘
度を測定した〔SBR2,4,6〕。又、同様に
して該ベンゾフエノンを対応のチオベンゾフエ
ノンに換えたSBRも調製した〔SBR2′,4′,
6′〕。 また重合終了後、該ベンゾフエノンあるいは
該チオベンゾフエノンを添加せずに重合体溶液
をBHT含有メタノール溶液中に取り出し生成
重合体を凝固した後、前記と同様にして乾燥重
合体を得た〔SBR1,3,5〕。 (2) (1)で得たSBR3をベンゼンに溶解し、(1)と
同じ操作でSBRを凝固させた。この操作を3
回繰返してSBR中の触媒残渣を取り除いた。
(1)と同じ条件で乾燥を行ない、精製、乾燥
SBRを得た。 このSBR100gを乾燥ベンゼン1000gに溶解
した溶液にn−ブチルリチウム3.5mmolおよび
テトラメチルエチレンジアミン3.5mmolを添加
し、70℃で1時間反応させた。 次いで(1)で使用したベンゾフエノン化合物を
2.7mmol添加し5分間反応させた後、上記と同
様にして凝固、乾燥させた〔SBR9〕。 (3) 前記と同様に、内容積2のスチレンス製重
合反応器を用いて、スチレン15〜40g、1,3
−ブタジエン185〜160g、n−ヘキサン600g、
n−ブチルリチウム1.2mmolを添加し、内容物
を攪拌しながら温度45℃で30分〜60分間重合を
行つた。重合終了後、重合体溶液をBHT含有
メタノール溶液中に取り出し生成重合体を凝固
した後、前記と同様にして乾燥重合体を得た
〔SBR7,8〕。 以上の方法で調製したゴムのミクロ構造、ムー
ニー粘度及びEAB導入量を第1表に示す。 ミクロ構造の測定は常法の赤外分光法により行
つた。ベンゾフエノン類及びチオベンゾフエノン
類の導入量は13C−NMRを用いて求めた。
[Formula] (wherein R 1 and R 2 are hydrogen, amino group, alkylamino group,
a substituent selected from dialkylamino groups, M
is a benzophenone represented by O or S, m and n each represent an integer in which the sum of m and n is 1 to 10. A method of adding benzophenones or thiobenzophenones in which the benzophenones have been introduced into the molecular chain, and a method of adding an alkali metal to the rubber using the catalyst in a solution of styrene-butadiene copolymer rubber, and then adding the benzophenones. Alternatively, a method of adding thiobenzophenones can be exemplified. The alkali metal-based catalysts used in the polymerization reaction and addition reaction include the metal elements lithium, sodium, rubidium, and cesium used in ordinary solution polymerization, or their complexes with hydrocarbon compounds or polar compounds (for example, n- butyl lithium,
2-naphthyllithium, potassium-tetrahydrofuran complex, potassium-diethoxyethane complex, etc.). The benzophenone introduced into the styrene-butadiene copolymer rubber is on average 0.1 mole or more per mole of rubber molecules. If the amount is less than 0.1 mol, no improvement in rebound elasticity can be obtained. The amount is preferably 0.3 mol or more, more preferably 0.5 mol or more, particularly preferably 0.7 mol or more, but if it is 5 mol or more, rubber elasticity is lost, which is not preferable. Styrene-butadiene copolymer rubber () in which the benzophenones used in the present invention are introduced into the main chain
The bound styrene content of is preferably 10 to 40% by weight. If the bound styrene content is less than 10% by weight, the wet skid resistance will decrease, making it impossible to achieve the object of the present invention, which is undesirable, and if it exceeds 40% by weight, the rebound elasticity will be significantly decreased, which is undesirable. The 1,2-bond content of the butadiene moiety is 10~
50% is preferred. If the 1,2-bond content is less than 10%, the wet skid resistance will decrease, which is undesirable, and if it exceeds 50%, the wear resistance will decrease, which is undesirable. Mooney viscosity (ML 1+4 , 100℃)
is preferably from 20 to 150; if it is less than 20, the rebound elasticity decreases, and if it exceeds 150, kneading processability is poor and mechanical properties such as tensile strength are decreased, which is not preferred. More preferably it is 30-130. () is preferably 20 to 95% by weight of the total rubber component. If it is less than 20% by weight, the effect of improving rebound elasticity is small and the object of the present invention cannot be achieved, and if it exceeds 95% by weight, the properties will be almost the same as those obtained by using () alone.
Wet skid resistance or abrasion resistance is poor and undesirable. The bound styrene content of the styrene-butadiene copolymer rubber () which does not contain benzophenones in the main chain and is used in combination with () is preferably 3 to 20% by weight. The bound styrene content in () is 3
If it is less than 20% by weight, the mechanical properties will deteriorate, which is undesirable, and if it exceeds 20% by weight, the rebound elasticity will decrease, which is not preferable. 1,2- of the butadiene moiety
The binding content is preferably 40-80%. If the 1,2-bond content is less than 40%, wet skid resistance decreases, which is undesirable, and if it exceeds 80%, wear resistance decreases, which is undesirable. Mooney viscosity is
The number is preferably from 20 to 150, and if it is less than 20, the rebound elasticity decreases, and if it exceeds 150, the kneading processability is poor and the mechanical properties are deteriorated, which is not preferred. More preferably it is 30-130. The content of () in the rubber component is preferably from 60 to 5% by weight; if it exceeds 60% by weight, the rebound elasticity will decrease, and if it is less than 5% by weight, the composition will have poor wet skid resistance or abrasion resistance, which is not preferable. In the present invention, polybutadiene rubber () with a 1,2-bond content of 20% or less is used as necessary to improve wear resistance in practice, but if the 1,2-bond content exceeds 20%, the This is not desirable because it cannot be achieved. Mooney viscosity is preferably 20 to 100,
If it is less than 20, the recoil elasticity will drop significantly and the object of the present invention cannot be achieved, and if it exceeds 100, kneading processability will be poor and mechanical properties will deteriorate, which is not preferable.
More preferably it is 30-80. () is preferably 40% by weight or less in the total rubber component, more preferably 30% by weight or less.
% by weight or less. If () exceeds 40% by weight, the wet skid resistance will drop significantly, which is not preferable. All or part of the rubber components used in the present invention can be used as oil-extended rubber. The rubber composition for tire tread of the present invention has the following objectives:
Various compounding agents commonly used in the rubber industry depending on the application.
For example, sulfur, stearic acid, zinc white, various vulcanization accelerators (thiazole type, thiuram type, sulfenamide type, etc.), various grades of carbon black such as HAF and ISAF, reinforcing agents such as silica and calcium carbonate, fillers, A rubber compound, which can be appropriately selected from process oils, rolls, Banbury, etc., is kneaded and mixed to form a rubber compound, which is then subjected to molding and vulcanization steps to produce the desired tire. The rubber composition of the present invention is capable of harmonizing recoil modulus and wet skid resistance at a high level, and is therefore particularly suitable as a rubber material for automobile tire treads with improved safety and fuel consumption. It can also be used for tires. Hereinafter, the present invention will be specifically explained with reference to Examples. Production Example (1) Styrene-butadiene copolymer rubber (hereinafter referred to as SBR) in which the benzophenones and thiobenzophenones used in the following examples are introduced into the main chain.
(sometimes abbreviated as ) is shown below. A stainless steel reactor with an internal volume of 2 was washed, dried, and replaced with dry nitrogen, then styrene 55~
90 g of 1,3-butadiene, 145-110 g of n-hexane, and 1.2 mm of n-butyllithium were added thereto, and the contents were polymerized at a temperature of 45-60°C for 1-2 hours while stirring. After the completion of the polymerization reaction 4,
After adding 1.5 times the catalytic amount of 4'-bis(diethylamino)benzophenone in moles and stirring for 5 minutes,
The polymer solution in the polymerization reactor was converted into 2,6-di-t-
The resulting polymer was taken out into a methanol solution containing 1.5% by weight of butyl-p-cresol (BHT), and the resulting polymer was coagulated. It was dried under reduced pressure at 60°C for 24 hours and its Mooney viscosity was measured [SBR2, 4, 6]. In addition, SBR in which the benzophenone was replaced with the corresponding thiobenzophenone was also prepared in the same manner [SBR2', 4',
6′]. After completion of the polymerization, the polymer solution was taken out into a BHT-containing methanol solution without adding the benzophenone or the thiobenzophenone, and the resulting polymer was coagulated, and then a dried polymer was obtained in the same manner as above [SBR1 , 3, 5]. (2) SBR3 obtained in (1) was dissolved in benzene, and SBR was coagulated using the same procedure as in (1). Perform this operation 3
The catalyst residue in the SBR was removed several times.
Dry under the same conditions as (1), purify and dry
Got SBR. 3.5 mmol of n-butyllithium and 3.5 mmol of tetramethylethylenediamine were added to a solution of 100 g of this SBR dissolved in 1000 g of dry benzene, and the mixture was reacted at 70° C. for 1 hour. Next, the benzophenone compound used in (1) was
After adding 2.7 mmol and reacting for 5 minutes, it was coagulated and dried in the same manner as above [SBR9]. (3) In the same manner as above, using a styrene polymerization reactor with an internal volume of 2, 15 to 40 g of styrene, 1,3
-butadiene 185-160g, n-hexane 600g,
1.2 mmol of n-butyllithium was added, and polymerization was carried out at a temperature of 45° C. for 30 to 60 minutes while stirring the contents. After the polymerization was completed, the polymer solution was taken out into a BHT-containing methanol solution to coagulate the resulting polymer, and then dried polymers were obtained in the same manner as above [SBR7, 8]. Table 1 shows the microstructure, Mooney viscosity, and amount of EAB introduced for the rubber prepared by the above method. The microstructure was measured by conventional infrared spectroscopy. The amounts of benzophenones and thiobenzophenones introduced were determined using 13 C-NMR.

【表】 実施例 タイヤトレツド用基礎配合として第2表に示す
配合処方の各種配合剤と原料ゴムとを容量250ml
のブラベンダ−タイプミキサー中で混練混合し
て、各ゴム配合組成物を得た。硫黄および加硫促
進剤は、各ゴム配合組成物を加硫して最適状態と
なる量を使用した。これらのゴム配合組成物を
160℃で15〜30分プレス加硫して、試験片を作成
した。 第2表 原料ゴム(第3表参照) 100重量部 HAFカーボンブラツク 50〃 芳香族系プロセス油 5〃 ZnONo.3 3〃 ステアリン酸 2〃 硫黄 加硫促進剤(N−シクロ ヘキシル−2−ベンゾチア ジルスルフエンアミド) 変量 (第3表参照) それぞれのゴム配合組成物の加硫物について、
強度特性をJISK−6301に従つて、また反ぱつ弾
性はダンロツプトリブソメーターを用いて温度55
℃にて測定した。ウエツトスキツド抵抗はポータ
ブルスキツドテスター(英国スタンレー社製)を
用い23℃でASTME−303−74の路面(3M社製屋
外用タイプB、黒のセーフテイーウオーク)で測
定し、 各配合加硫物のウエツトスキツド抵抗値/E
−SBR−1502の配合加硫物のウエツトスキツド抵抗値×1
00 で計算し、指数で表示した。 ピコ摩耗量は、ASTMD−2228に従い、グツ
ドリツチ式ピコ摩耗試験機で測定し、 SBR−1502配合加硫物の摩耗量/各配合加硫物の摩耗
量×100 で計算し、指数表示した。以上に結果を第3表に
示す。 第3表に示す結果から、比較例2〜7に対応し
た本発明例8〜17の反ぱつ弾性率はいずれも、ウ
エツトスキツド抵抗やピコ摩耗性を損うことな
く、3〜5ポイント高いことがわかる。
[Table] Example: As a basic composition for tire tread, various compounding agents and raw rubber of the compounding prescription shown in Table 2 were mixed in a volume of 250 ml.
Each rubber compound composition was obtained by kneading and mixing in a Brabender type mixer. Sulfur and vulcanization accelerator were used in amounts that would achieve the optimum state when vulcanizing each rubber compound composition. These rubber compound compositions
A test piece was prepared by press vulcanization at 160°C for 15 to 30 minutes. Table 2 Raw rubber (see Table 3) 100 parts by weight HAF carbon black 50 Aromatic process oil 5 ZnONo.3 3 Stearic acid 2 Sulfur vulcanization accelerator (N-cyclohexyl-2-benzothiazyl Sulfenamide) Variable (see Table 3) Regarding the vulcanizate of each rubber compound composition,
The strength properties were determined according to JISK-6301, and the rebound elasticity was determined using a Dunlop tribometer at a temperature of 55%.
Measured at ℃. Wet skid resistance was measured using a portable skid tester (manufactured by Stanley, UK) at 23°C on an ASTME-303-74 road surface (outdoor type B, black safety walk manufactured by 3M). Wet skid resistance value/E
- Wet skid resistance value of compound vulcanizate of SBR-1502 x 1
00 and expressed as an index. The amount of pico wear was measured using a Gutdrich Pico abrasion tester in accordance with ASTMD-2228, and was calculated as: wear amount of SBR-1502 blended vulcanizate/wear amount of each blended vulcanizate x 100, and expressed as an index. The results are shown in Table 3. From the results shown in Table 3, the rebound elastic modulus of Inventive Examples 8 to 17, which correspond to Comparative Examples 2 to 7, is 3 to 5 points higher without impairing wet skid resistance or pico abrasion resistance. Recognize.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 スチレン−ブタジエン共重合ゴム分子鎖に、
少なくとも1個のアミノ基、アルキルアミノ基あ
るいはジアルキルアミノ基を有するベンゾフエノ
ン類又はチオベンゾフエノン類を、該ゴム分子鎖
1モル当り少なくとも0.1モルを導入した結合ス
チレン含有量が10〜40重量%、ブタジエン部分の
1,2−結合含有量が10〜50%、ムーニー粘度
(ML1+4,100℃)が20〜150のスチレン−ブタジ
エン共重合ゴム()20〜95重量%と、結合スチ
レン含有量が3〜20重量%、ブタジエン部分の
1,2−結合含有量が40〜80%のスチレン−ブタ
ジエン共重合ゴム()60〜5重量%と、1,2
−結合含有量が20%以下で、ムーニー粘度
(ML1+4,100℃)が20〜100のポリブタジエンゴ
ム()40〜0重量%をゴム成分として含んで成
ることを特徴とするタイヤトレツド用ゴム組成
物。
1 In the styrene-butadiene copolymer rubber molecular chain,
A bound styrene content of 10 to 40% by weight, in which at least 0.1 mole of benzophenones or thiobenzophenones having at least one amino group, alkylamino group or dialkylamino group is introduced per mole of the rubber molecular chain; Styrene-butadiene copolymer rubber (20-95% by weight) with a 1,2-bond content of the butadiene moiety of 10-50% and a Mooney viscosity (ML 1+4 , 100℃) of 20-150, and a bonded styrene content. styrene-butadiene copolymer rubber () having a content of 3 to 20% by weight and a 1,2-bond content of the butadiene moiety of 40 to 80%;
- A rubber for tire treads, characterized in that it comprises as a rubber component 40 to 0% by weight of polybutadiene rubber () having a bond content of 20% or less and a Mooney viscosity (ML 1+4 , 100°C) of 20 to 100. Composition.
JP7528583A 1983-04-28 1983-04-28 Rubber composition for tire tread Granted JPS59199735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7528583A JPS59199735A (en) 1983-04-28 1983-04-28 Rubber composition for tire tread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7528583A JPS59199735A (en) 1983-04-28 1983-04-28 Rubber composition for tire tread

Publications (2)

Publication Number Publication Date
JPS59199735A JPS59199735A (en) 1984-11-12
JPH0475253B2 true JPH0475253B2 (en) 1992-11-30

Family

ID=13571795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7528583A Granted JPS59199735A (en) 1983-04-28 1983-04-28 Rubber composition for tire tread

Country Status (1)

Country Link
JP (1) JPS59199735A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2109202A1 (en) * 1991-05-10 1992-11-11 Sung Whee Hong Tire tread compositions
JP5504549B2 (en) * 2006-05-23 2014-05-28 宇部興産株式会社 Rubber composition for tire tread

Also Published As

Publication number Publication date
JPS59199735A (en) 1984-11-12

Similar Documents

Publication Publication Date Title
JPH0121178B2 (en)
JPH0693134A (en) Rubber composition excellent in grip and rolling resistance and its production
JPS5937014B2 (en) Rubber composition for tires and treads
WO2013118496A1 (en) Process for producing modified polymer, diene polymer, rubber composition, and pneumatic tire
US4555548A (en) Rubber composition for tire treads
JP5014536B2 (en) End-modified diene copolymer and rubber composition for tire tread containing the same
JPS6335668B2 (en)
JP2013032497A (en) Tire rubber composition and pneumatic tire
US4555547A (en) Rubber composition for tire treads
JPH0372537A (en) Rubber composition
JP6575236B2 (en) Rubber composition and pneumatic tire
JP6575237B2 (en) Rubber composition and pneumatic tire
EP0053763B1 (en) Composition for tread rubber of tires
JPH04102B2 (en)
JPH0475253B2 (en)
JP2005213380A (en) Rubber composition for tire, and pneumatic tire
JPH04104B2 (en)
JPH04105B2 (en)
JPS59196338A (en) Tire tread rubber composition
JPH04103B2 (en)
JP3918692B2 (en) Modified diene polymer rubber, method for producing the same, and rubber composition
JP6026269B2 (en) Rubber composition and pneumatic tire
JPH08183883A (en) Tire tread rubber composition and its production
JPS59197442A (en) Tire tread rubber composition
JPS59196336A (en) Tire tread rubber composition