JPH04102B2 - - Google Patents

Info

Publication number
JPH04102B2
JPH04102B2 JP7218683A JP7218683A JPH04102B2 JP H04102 B2 JPH04102 B2 JP H04102B2 JP 7218683 A JP7218683 A JP 7218683A JP 7218683 A JP7218683 A JP 7218683A JP H04102 B2 JPH04102 B2 JP H04102B2
Authority
JP
Japan
Prior art keywords
rubber
styrene
weight
butadiene copolymer
bond content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7218683A
Other languages
Japanese (ja)
Other versions
JPS59197443A (en
Inventor
Akio Ueda
Shuichi Akita
Takeshi Senda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP7218683A priority Critical patent/JPS59197443A/en
Publication of JPS59197443A publication Critical patent/JPS59197443A/en
Publication of JPH04102B2 publication Critical patent/JPH04102B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は改善された反ぱ぀匟性率を有するゎム
組成物に関するものである。詳しくは分子鎖に特
定のベンゟプノン類又はチオベンゟプノン類
を導入したスチレン−ブタゞ゚ン共重合ゎムをゎ
ム成分ずしお含有するゎム組成物に関するもので
ある。 最近、自動車の䜎燃費指向ず安党性の䞡芳点よ
り、特にタむダの転動抵抗の䜎枛ず湿最路面での
すぐれた制動性すなわちり゚ツトスキツド抵抗の
向䞊が匷く芁望されおいる。 䞀般にこれらのタむダの特性はトレツドゎム材
料の動的粘匟性特性ず察応させお考えられ、互に
盞反する特性であるこずが知られおいる〔䟋え
ば、Transaction of I.R.I.、第40巻、第239〜256
頁、1964幎を参照〕。 タむダの転動抵抗を䜎枛するにはトレツドゎム
材料の反ぱ぀匟性率が高いこずが必芁であり、車
の走行状態を考慮するず、この反ぱ぀匟性率は50
℃から70℃付近たでの枩床で評䟡する必芁があ
る。䞀方、車の安党性の点で重芁な性胜である湿
最路面での制動性胜の向䞊にはブリテむツシナ・
ポヌタブル・スキツドテスタヌで枬定されるり゚
ツトスキツド抵抗が倧きいこずが必芁であり、ト
レツドゎム材料ずしおはタむダに制動をかけお路
面をすべらせた堎合に生ずる摩擊抵抗ずしおの゚
ネルギヌ損倱が倧きいこずが必芁である。 埓来、これら぀の盞反する特性を満足させる
ために、原料ゎムずしおは、乳化重合スチレン−
ブタゞ゚ン共重合ゎム、高シス−ポリブタゞ゚ン
ゎム、䜎シス−ポリブタゞ゚ンゎム、有機リチり
ム化合物觊媒を甚いお埗られるスチレン−ブタゞ
゚ンゎム、倩然ゎム、高シス−む゜プレンゎム等
を単独で、あるいは組合せお甚いられおきたが、
十分満足の行くものではなか぀た。すなわち、高
反ぱ぀匟性を埗ようずするず、䜎シス−ポリブタ
ゞ゚ンゎムや倩然ゎム等のり゚ツトスキツド抵抗
性が劣るゎムの配合割合を増加させるか、カヌボ
ンブラツク等の充おん剀を枛量するか、硫黄等の
加硫剀を増量させるかしなければならなか぀た。
しかしながら、このような方法では、り゚ツトス
キツド抵抗が䜎䞋したり、機械的性質が䜎䞋した
りするずいう欠点があ぀た。逆に、高り゚ツトス
キツド抵抗を埗ようずするず、結合スチレン量が
比范的倚い䟋えば結合スチレン含有量30重量
以䞊のスチレン−ブタゞ゚ン共重合ゎムや、
−結合含有量が比范的高い䟋えば
−結合含有量60以䞊のポリブタゞ゚ンゎム等
のり゚ツトスキツド抵抗性に優れたゎムの配合割
合を増加させるか、カヌボンブラツク等の充おん
剀やプロセスオむルを増量させるかしなければな
らなか぀た。これらのこのような方法では、反ぱ
぀匟性が䜎䞋するずいう欠点があ぀た。 したが぀お、機械的性質が実甚䞊差し支えない
範囲でか぀、り゚ツトスキツド抵抗ず反ぱ぀匟性
ずが実甚䞊蚱容される範囲で最も良く調和するよ
う原料ゎムの組成が決められおいるのが実情であ
぀た。このため、埓来のゎムを組合せおり゚ツト
スキツド抵抗ず反ぱ぀匟性ずの調和を図るこずは
限界に達したず考えられおいた。 本発明者等は前蚘欠点を解決すべく鋭意研究の
結果、驚くべきこずに、分子鎖に特定のベンゟフ
゚ノン類又はチオベンゟプノン類が導入された
スチレン−ブタゞ゚ン共重合ゎムをゎム成分ずし
お含むゎム組成物は該化合物が導入されおいない
同䞀のスチレン−ブタゞ゚ン共重合ゎムを含むゎ
ム組成物ず比范しおり゚ツトスキツド抵抗を䜎䞋
させるこずなく反ぱ぀匟性を著しく向䞊させ、な
おか぀高反ぱ぀匟性の特城を生かし、必芁ならば
カヌボンブラツク等の充おん剀の増量によ぀お耐
摩耗性等の機械的性質を改善し぀぀、反ぱ぀匟性
ずり゚ツトスキツド抵抗性ずの調和を図れるこず
を芋出し、本発明に到぀たものである。 すなわち、本発明は機械的特性およびり゚ツト
スキツド抵抗性を損うこずなく、転動抵抗を䜎枛
したタむダトレツド甚ゎム組成物の提䟛を目的ず
するものであり、この目的はスチレン−ブタゞ゚
ン共重合ゎム分子鎖に少なくずも個のアミノ
基、アルキルアミノ基あるいはゞアルキルアミノ
基を有するベンゟプノン類又はチオベンゟプ
ノン類を該ゎム分子鎖モル圓り少なくずも0.1
モル導入した結合スチレン含有量が10〜40重量
、ブタゞ゚ン単䜍郚分の−結合含有量が
10〜50で、ムヌニヌ粘床ML1+4、100℃が
20〜150のスチレン−ブタゞ゚ン共重合ゎム
20〜95重量ず倩然ゎムおよびたたはシス−
結合含有量が少くずも90のポリむ゜プレ
ンゎム60〜重量および結合含有
量が20以䞋でムヌニヌ粘床ML1+4、100℃
が20〜100のポリブタゞ゚ンゎム50〜重
量をゎム成分ずしお含んで成るタむダトレツド
甚ゎム組成物を䜿甚するこずによ぀お達せられ
る。 本発明のタむダ甚ゎム組成物を甚いるず前述し
たタむダ性胜ずしお重芁な転動抵抗ず湿最路面で
の制動性、すなわちり゚ツトスキツド抵抗ずが高
い氎準で調和した優れたタむダが埗られるが、り
゚ツトスキツド抵抗倀は特に芁求されず、高反ぱ
぀匟性率が芁求されるタむダの補造にも本発明の
組成物を䜿甚するこずができる。 本発明で䜿甚する分子鎖に該ベンゟプノン類
又はチオベンゟプノン類を導入したスチレン−
ブタゞ゚ン共重合ゎムは、溶液重合においお通垞
䜿甚されるアルカリ金属基材觊媒を甚いお重合し
た分子鎖の末端にアルカリ金属が結合しおいるス
チレン−ブタゞ゚ン共重合ゎムあるいは、該觊媒
を甚いお埗たスチレン−ブタゞ゚ン共重合ゎムに
埌反応でアルカリ金属を付加させたスチレン−ブ
タゞ゚ン共重合ゎムず該ベンゟプノン類又はチ
オベンゟプノン類ずを反応させお埗られる該ゎ
ム分子鎖の末端あるいは未端及びこれ以倖の分子
鎖䞭に該化合物が炭玠−炭玠結合で、䞀般匏
The present invention relates to rubber compositions having improved rebound modulus. Specifically, the present invention relates to a rubber composition containing, as a rubber component, a styrene-butadiene copolymer rubber in which specific benzophenones or thiobenzophenones have been introduced into the molecular chain. Recently, from the viewpoints of both fuel efficiency and safety of automobiles, there has been a strong demand for a reduction in the rolling resistance of tires and an improvement in braking performance on wet road surfaces, that is, improvement in wet skid resistance. In general, these tire properties are considered to correspond to the dynamic viscoelastic properties of the tread rubber material, and are known to be contradictory properties [for example, Transaction of IRI, Vol. 40, Nos. 239-256]
1964]. In order to reduce the rolling resistance of a tire, the tread rubber material must have a high rebound elastic modulus, and considering the driving conditions of the car, this rebound elastic modulus is 50
It is necessary to evaluate at temperatures from ℃ to around 70℃. On the other hand, British technology is used to improve braking performance on wet roads, which is an important performance in terms of vehicle safety.
It is necessary that the wet skid resistance measured by a portable skid tester is high, and the tread rubber material must have a high energy loss as frictional resistance that occurs when the tire is braked and slides on the road surface. . Conventionally, in order to satisfy these two contradictory properties, emulsion polymerized styrene has been used as raw rubber.
Butadiene copolymer rubber, high cis polybutadiene rubber, low cis polybutadiene rubber, styrene-butadiene rubber obtained using an organolithium compound catalyst, natural rubber, high cis isoprene rubber, etc. are used singly or in combination. However,
It wasn't completely satisfying. In other words, in order to obtain high rebound elasticity, one must increase the blending ratio of rubber with poor wet skid resistance such as low cis-polybutadiene rubber or natural rubber, reduce the amount of filler such as carbon black, or increase the amount of filler such as sulfur. I had to increase the amount of vulcanizing agent.
However, this method has disadvantages in that wet skid resistance and mechanical properties deteriorate. Conversely, when trying to obtain high wet skid resistance, the amount of bound styrene is relatively large (e.g., 30% by weight of bound styrene).
(above) styrene-butadiene copolymer rubber,
1,2-bond content is relatively high (e.g. 1,2
- It was necessary to increase the blending ratio of rubber with excellent wet skid resistance such as polybutadiene rubber (with a bond content of 60% or more), or to increase the amount of filler such as carbon black or process oil. These methods have a disadvantage in that the rebound resilience is reduced. Therefore, the actual situation is that the composition of the raw rubber is determined so that the mechanical properties are within a practically acceptable range and the wet skid resistance and rebound elasticity are in the best balance within a practically acceptable range. Ta. For this reason, it was thought that the ability to achieve a balance between wet skid resistance and rebound elasticity by combining conventional rubbers had been reached. As a result of intensive research to solve the above-mentioned drawbacks, the present inventors surprisingly found that a rubber containing as a rubber component a styrene-butadiene copolymer rubber into which specific benzophenones or thiobenzophenones have been introduced into the molecular chain. Compared to a rubber composition containing the same styrene-butadiene copolymer rubber in which the compound has not been introduced, the composition significantly improves the rebound resilience without reducing wet skid resistance, and has the characteristics of high rebound resilience. We have discovered that it is possible to achieve a balance between rebound elasticity and wet skid resistance while improving mechanical properties such as abrasion resistance by increasing the amount of filler such as carbon black if necessary, and have arrived at the present invention. It is something. That is, an object of the present invention is to provide a rubber composition for tire treads that has reduced rolling resistance without impairing mechanical properties and wet skid resistance. benzophenones or thiobenzophenones having at least one amino group, alkylamino group or dialkylamino group per mole of the rubber molecular chain;
The mole-introduced bound styrene content is 10 to 40% by weight, and the 1,2-bond content of the butadiene unit is
10-50%, Mooney viscosity (ML 1+4 , 100℃)
20~150 styrene-butadiene copolymer rubber ()
20-95% by weight and natural rubber and/or cis-
Polyisoprene rubber () 60-5% by weight with a 1,4 bond content of at least 90% and a Mooney viscosity (ML 1+4 , 100°C) with a 1,2 bond content of not more than 20%
is achieved by using a tire tread rubber composition comprising 50 to 0% by weight of polybutadiene rubber (20 to 100) as a rubber component. When the rubber composition for tires of the present invention is used, it is possible to obtain an excellent tire that has a high level of balance between rolling resistance, which is important for tire performance, and braking performance on wet road surfaces, that is, wet skid resistance. is not particularly required, and the composition of the present invention can also be used for manufacturing tires that require a high rebound modulus. Styrene in which the benzophenones or thiobenzophenones have been introduced into the molecular chain used in the present invention.
Butadiene copolymer rubber is a styrene-butadiene copolymer rubber in which an alkali metal is bonded to the end of the molecular chain, which is polymerized using an alkali metal-based catalyst commonly used in solution polymerization, or a styrene-butadiene copolymer rubber obtained using the catalyst. The ends or ends of the rubber molecular chain obtained by reacting the styrene-butadiene copolymer rubber obtained by adding an alkali metal to the styrene-butadiene copolymer rubber by post-reaction with the benzophenones or thiobenzophenones, and the ends thereof. The compound has a carbon-carbon bond in the molecular chain other than the general formula

【匏】匏䞭R1及びR2は氎玠 又は眮換基を、は又は前蚘のを、及び
は敎数をそれぞれ衚わすで瀺される原子団ずし
お導入されたスチレン−ブタゞ゚ン共重合ゎムで
ある。特に奜たしいのは、分子鎖の末端に該化合
物が䞀導入されたスチレン−ブタゞ゚ン共重合ゎ
ムである。 本発明で䜿甚される該ベンゟプノン類及びチ
オベンゟプノン類は、䟋えば4′−ビスゞ
メチルアミノ−ベンゟプノン、4′−ビス
ゞ゚チルアミノ−ベンゟプノン、4′−ビ
スゞプチルアミノ−ベンゟプノン、
4′−ゞアミノベンゟプノン、−ゞメチルアミ
ノベンゟプノン等及びこれらの察応のチオベン
ゟプノン類の劂き、䞀方あるいは䞡方のベンれ
ン環に少なくずも぀のアミノ基、アルキルアミ
ノ基あるいはゞアルキルアミノ基を有するベンゟ
プノン及びチオベンゟプノンである。 該ベンゟプノン類及びチオベンゟプノン類
は䞀般匏
[Formula] (In the formula, R 1 and R 2 are hydrogen or a substituent, M is O or the above S, m and n
is a styrene-butadiene copolymer rubber introduced as an atomic group represented by (representing an integer). Particularly preferred is a styrene-butadiene copolymer rubber in which the compound is introduced at the end of the molecular chain. The benzophenones and thiobenzophenones used in the present invention are, for example, 4,4'-bis(dimethylamino)-benzophenone, 4,4'-bis(diethylamino)-benzophenone, 4,4'-bis( diptylamino)-benzophenone, 4,
At least one amino group, alkylamino group or dialkylamino group is present in one or both benzene rings, such as 4'-diaminobenzophenone, 4-dimethylaminobenzophenone, etc., and their corresponding thiobenzophenones. benzophenone and thiobenzophenone. The benzophenones and thiobenzophenones have the general formula

【匏】匏䞭は 又はをR1、R2は氎玠又はアミノ基、アルキル
アミノ基、ゞアルキルアミノ基から遞択される眮
換基を、及びはずの合蚈が〜10ずなる
敎数をそれぞれ衚わすで衚わされる化合物であ
る。 該チオベンゟプノン類を分子鎖䞭に導入
したスチレン−ブタゞ゚ン共重合ゎムは䟋えば、
アルカリ金属基材觊媒を甚いおスチレン−ブタゞ
゚ン共重合ゎムを重合し、重合反応を完了させた
該ゎム溶液䞭に該チオベンゟプノン類を添
加する方法、スチレン−ブタゞ゚ン共重合ゎム等
の溶液䞭で該ゎムにアルカリ金属を付加させた埌
該チオベンゟプノン類を添加する方法等が
䟋瀺できる。 重合反応および付加反応に䜿甚されるアルカリ
金属基材觊媒は、通垞の溶液重合で䜿甚されるリ
チりム、ナトリりム、ルビゞりム、セシりムの各
金属元玠たたはこれらの炭化氎玠化合物あるいは
極性化合物ずの錯䜓䟋えば−ブチルリチり
ム、−ナフチルリチりム、カリりム−テトラヒ
ドロフラン錯䜓、カリりム−ゞ゚トキシ゚タン錯
䜓等である。 スチレン−ブタゞ゚ン共重合ゎム䞭に導入され
る該チオベンゟプノン類は平均しおゎム分
子鎖モル圓り0.1モル以䞊である。0.1モル未満
では反ぱ぀匟性の向䞊は埗られない。奜たしくは
0.3モル以䞊、さらに奜たしくは0.5モル以䞊、特
に奜たしくは0.7モル以䞊であるが、モル以䞊
になるずゎム匟性が倱われるので奜たしくない。 該ベンゟプノン類又はチオベンゟプノン類
を重合䜓鎖䞭に導入した、結合スチレン含有量20
〜40重量、ブタゞ゚ン単䜍郚分の−結合
含有量10〜50のスチレン−ブタゞ゚ン共重合ゎ
ムは、本ゎム組成物䞭の党ゎム成分䞭少く
ずも20重量以䞊含たれおいるこずが必芁であ
る。20重量未満では反発匟性率の向䞊効果が小
さく、本発明の目的は達成されない。又95重量
を越えるず耐摩耗性が䜎䞋するので奜たしくな
い。倩然ゎムおよびたたはシス−−結合
含有量が少なくずも90のポリむ゜プレンゎム
を党ゎム成分䞭60〜重量および
−結合含有量が20以䞋のポリブタゞ゚ンゎム
を50〜重量含有させるこずにより、匷
床特性や耐摩耗性を損うこずなく、反発匟性率
55℃ずり゚ツトスキツド抵抗性の調和のより
優れたタむダトレツド甚ゎム組成物ずするこずが
できる。即ち、倩然ゎムおよびたたはシス
−結合含有量が少くずも90のポリむ゜プレン
ゎムずの䜵甚は、反発匟性率を䜎䞋
させるこずなく匷床特性を向䞊させうる。しかし
が60重量を越えるずり゚ツトスキツド抵
抗の䜎䞋が倧ずなるので奜たしくない。 䞀方−結合含有量が20以䞋のポリブタ
ゞ゚ンゎムのずぞのブレンド
は、耐摩耗性を向䞊させるこずができるが、50重
量を越えるず匷床特性およびり゚ツトスキツド
抵抗性の䜎䞋が倧きくなるので奜たしくない。し
たが぀お、タむダトレツド材料ずしお重芁な特性
である、匷床特性耐摩耗性及びり゚ツトスキツド
抵抗をある䞀定レベル以䞊に保ち、か぀反発匟性
率を著しく向䞊させるためには、本発明のゎム組
成が最も奜たしいこずを芋出したものである。 本発明で䜿甚するゎム成分のすべお、あるいは
䞀郚を油展ゎムずしお䜿甚するこずができる。 本発明のゎム組成物は目的、甚途に応じおゎム
工業で汎甚される各皮配合剀−䟋えば硫黄、ステ
アリン酞、亜鉛華、各皮加硫促進剀チアゟヌル
系、チりラム系、スルプンアミド系など、
HAF、ISAF等の皮々のグレヌドのカヌボンブラ
ツク、シリカ、炭酞カルシりム等の補匷剀、充お
ん剀、プロセス油等から適宜遞択するこずができ
るが−ずロヌル、バンバリヌ等の混合機を甚いお
混緎混合されおゎム配合物ずされ、成圢、加硫工
皋を経お目的ずするタむダが補造される。 本発明のゎム組成物は、高い氎準で反ば぀匟性
率ずり゚ツトスキツド抵抗ずを調和させるこずが
できるから、特に安党性、燃料消費性の改善され
た自動車タむダトレツド甚ゎム材料に適しおいる
が、自動車タむダ甚にも䜿甚するこずができる。 以䞋、実斜䟋により本発明を具䜓的に説明す
る。 補造䟋 以䞋の実斜䟋で䜿甚する該ベンゟプノン類を
導入したスチレン−ブタゞ゚ン共重合ゎム以䞋
SBRず略蚘するの調補方法を瀺す。 (1) 内容積のステンレス補重合反応噚を掗
浄、也燥し、也燥窒玠で眮換したのち、1.3−
ブタゞ゚ン110〜145、スチレン55〜90、
−ヘキサン600、ゞ゚チレングリコヌルゞメ
チル゚ヌテルゞグラむム0.24及び1.60−
mol、−ブチルリチりム1.2ml1.55mol
、−ヘキサン溶液を添加し、内容物を撹
拌しながら45〜60℃で、30分〜120分重合反応
させた。重合転換率玄80に達したずころで、
4.4′−ビスゞ゚チルアミノベンゟプノン
を重合觊媒量の1.5倍mol加え、分間撹拌し
たのちに、重合反応噚䞭の重合䜓溶液を、2.6
−ゞ−−ブチル−−クレゟヌルBHT
1.5重量のメタノヌル溶液䞭に取り出し、生
成重合䜓を凝固した。これを60℃で24時間枛圧
也燥し、埗られたゎムのムヌニヌ粘床を枬定し
た。〔SBR(2)、(4)、(6)〕又該ベンゟプノンを
察応のチオベンゟプノンに倉えたSBRも調
補した〔SBR2′、4′、6′〕。たた重合反
応
終了埌、4.4′−ビスゞ゚チルアミノチオ
ベンゟプノンを添加せずに重合䜓溶液を
BTR含量メタノヌル䞭に取り出し、生成重合
䜓を凝固したのち、前蚘ず同様にしお也燥ゎム
重合䜓を埗たSBR(1)、(3)、(5)。 (2) ゞグラむムを0.24ミリモル甚いる以倖は(1)ず
同様にしお−ブタゞ゚ンずスチレンを共
重合させた。重合反応終了埌、BHT含有メタ
ノヌル溶液䞭に重合反応噚䞭の重合䜓溶液を泚
ぎ、生成SBRを凝固させた。分離したクラム
をベンれンに溶解し、前蚘ず同じ操䜜でSBR
を凝固させた。この操䜜を回繰返しお、
SBR䞭の觊媒残枣を取り陀いた。(1)ず同じ条
件で也燥を行ない、粟補、也燥SBRを埗た。 也燥ベンれン1000に䞊蚘のSBR100を溶
解させ、−ブチルリチりム3.5ミリモルおよ
びテトラメチル゚チレンゞアミン3.5ミリモル
を添加し、70℃で時間反応させた。 次いで4′−ビスゞ゚チルアミノベン
ゟプノンを2.7ミリモル添加し、分間反応
させた埌、䞊蚘ず同様にしお凝固、也燥させた
〔SBR(7)〕。 以䞊の方法で粟補したスチレン−ブタゞ゚ン共
重合ゎムのスチレン含有量、ブタゞ゚ン郚分の
−結合含量、ムヌニヌ粘床、及び4′−
ビスゞ゚チルアミノチオベンゟプノン
導入量を第衚に瀺す。スチレン含有量、ブタゞ
゚ン郚分の−結合含有量は垞法の赀倖分光
法によ぀お枬定した。4′−ビスゞ゚チルア
ミノチオベンゟプノン導入量は 13C−
NMRを甚いお求めた。
[Formula] (In the formula, M is O or S as R 1 , R 2 is hydrogen or a substituent selected from an amino group, an alkylamino group, and a dialkylamino group, and m and n are the sum of m and n of 1 to (each representing an integer equal to 10). The styrene-butadiene copolymer rubber in which the (thio)benzophenones are introduced into the molecular chain is, for example,
A method of polymerizing styrene-butadiene copolymer rubber using an alkali metal-based catalyst and adding the (thio)benzophenones to the rubber solution after the polymerization reaction has been completed, in a solution of styrene-butadiene copolymer rubber, etc. Examples include a method in which an alkali metal is added to the rubber and then the (thio)benzophenones are added. The alkali metal-based catalysts used in polymerization reactions and addition reactions are metal elements such as lithium, sodium, rubidium, and cesium used in ordinary solution polymerization, or their complexes with hydrocarbon compounds or polar compounds (for example, n -butyllithium, 2-naphthyllithium, potassium-tetrahydrofuran complex, potassium-diethoxyethane complex, etc.). The (thio)benzophenone introduced into the styrene-butadiene copolymer rubber is on average 0.1 mole or more per mole of rubber molecular chain. If the amount is less than 0.1 mol, no improvement in rebound elasticity can be obtained. Preferably
The amount is 0.3 mol or more, more preferably 0.5 mol or more, particularly preferably 0.7 mol or more, but if it is 5 mol or more, rubber elasticity is lost, which is not preferable. The benzophenones or thiobenzophenones have been introduced into the polymer chain, and the bound styrene content is 20
The styrene-butadiene copolymer rubber () having a content of ~40% by weight and a 1,2-bond content of the butadiene unit portion of 10% to 50% is contained at least 20% by weight of the total rubber components in the rubber composition. It is necessary to be present. If it is less than 20% by weight, the effect of improving the rebound modulus will be small and the object of the present invention will not be achieved. Also 95% by weight
Exceeding this is not preferable because the wear resistance decreases. Natural rubber and/or polyisoprene rubber () with a cis-1,4-bond content of at least 90% from 60 to 5% by weight of the total rubber component and 1,2
- By containing 50 to 0% by weight of polybutadiene rubber () with a bond content of 20% or less, it is possible to harmonize impact modulus (55℃) and wet skid resistance without impairing strength properties or abrasion resistance. A more excellent rubber composition for tire tread can be obtained. i.e. natural rubber and/or cis 1,
4- The combined use of polyisoprene rubber () with a bond content of at least 90% and () can improve strength properties without reducing impact modulus. However, if () exceeds 60% by weight, the wet skid resistance will decrease significantly, which is not preferable. On the other hand, blending polybutadiene rubber () with () and () with a 1,2-bond content of less than 20% can improve the wear resistance, but when it exceeds 50% by weight, the strength properties and wet skid resistance This is not preferable because it causes a significant decrease in performance. Therefore, in order to maintain the strength, abrasion resistance and wet skid resistance, which are important properties for a tire tread material, above a certain level, and to significantly improve the impact modulus, the rubber composition of the present invention is most preferable. This is what we discovered. All or part of the rubber components used in the present invention can be used as oil-extended rubber. The rubber composition of the present invention is prepared with various compounding agents commonly used in the rubber industry depending on the purpose and use, such as sulfur, stearic acid, zinc white, various vulcanization accelerators (thiazole type, thiuram type, sulfenamide type, etc.),
Various grades of carbon black such as HAF and ISAF, reinforcing agents such as silica and calcium carbonate, fillers, process oils, etc. can be selected as appropriate, and are kneaded and mixed using a mixer such as a roll or Banbury mixer. The rubber compound is made into a rubber compound, and the target tire is manufactured through a molding and vulcanization process. The rubber composition of the present invention is capable of harmonizing recoil modulus and wet skid resistance at a high level, and is therefore particularly suitable as a rubber material for automobile tire treads with improved safety and fuel consumption. It can also be used for tires. Hereinafter, the present invention will be specifically explained with reference to Examples. Production Example Styrene-butadiene copolymer rubber (hereinafter referred to as
The method for preparing SBR (abbreviated as SBR) is shown below. (1) After cleaning and drying a stainless steel polymerization reactor with an internal volume of 2, and purging it with dry nitrogen,
Butadiene 110-145g, styrene 55-90g, n
-Hexane 600g, diethylene glycol dimethyl ether (diglyme) 0.24 and 1.60m-
mol, n-butyllithium 1.2ml (1.55mol/
, n-hexane solution) was added, and the contents were subjected to a polymerization reaction at 45 to 60°C for 30 to 120 minutes while stirring. When the polymerization conversion rate reached approximately 80%,
4.4′-Bis(diethylamino)benzophenone was added to 1.5 mol of the polymerization catalyst amount, and after stirring for 5 minutes, the polymer solution in the polymerization reactor was reduced to 2.6 mol.
-di-t-butyl-p-cresol (BHT)
The resulting polymer was taken out into a 1.5% by weight methanol solution and coagulated. This was dried under reduced pressure at 60°C for 24 hours, and the Mooney viscosity of the obtained rubber was measured. [SBR(2), (4), (6)] SBRs in which the benzophenone was replaced with the corresponding thiobenzophenone were also prepared [SBR(2'), (4'), (6')]. In addition, after the polymerization reaction, 4.4′-bis(diethylamino)(thio)
Polymer solution without adding benzophenone
The resulting polymer was taken out into BTR-containing methanol and coagulated, and dried rubber polymers were obtained in the same manner as above (SBR(1), (3), (5)). (2) 1,3-butadiene and styrene were copolymerized in the same manner as in (1) except that 0.24 mmol of diglyme was used. After the polymerization reaction was completed, the polymer solution in the polymerization reactor was poured into a BHT-containing methanol solution to solidify the produced SBR. Dissolve the separated crumb in benzene and perform SBR using the same procedure as above.
was solidified. Repeat this operation three times,
Catalyst residue in SBR was removed. Drying was performed under the same conditions as in (1) to obtain purified and dried SBR. 100 g of the above SBR was dissolved in 1000 g of dry benzene, 3.5 mmol of n-butyllithium and 3.5 mmol of tetramethylethylenediamine were added, and the mixture was reacted at 70° C. for 1 hour. Next, 2.7 mmol of 4,4'-bis(diethylamino)benzophenone was added, reacted for 5 minutes, and then coagulated and dried in the same manner as above [SBR(7)]. The styrene content of the styrene-butadiene copolymer rubber purified by the above method, the 1,2-bond content of the butadiene moiety, the Mooney viscosity, and the 4,4'-
Table 1 shows the amount of bis(diethylamino)(thio)benzophenone introduced. The styrene content and the 1,2-bond content of the butadiene moiety were measured by conventional infrared spectroscopy. The amount of 4,4'-bis(diethylamino)(thio)benzophenone introduced is 13 C-
It was determined using NMR.

【衚】【table】

【衚】 実斜䟋  ゎム詊料を、タむダトレツド甚基瀎配合ずしお
第衚に瀺す配合凊方の各皮配合剀ず、容量250
mlのブラベンダヌタむプミキサヌ䞭で混緎混合し
お、各ゎム配合組成物を埗た。硫黄および加硫促
進剀は各ゎム配合組成物を加硫しお最適状態ずな
る量を䜿甚した。これらのゎム配合組成物を160
℃×15〜30分、プレス加硫しお、詊隓片を䜜成し
た。
[Table] Example 1 A rubber sample was mixed with various compounding ingredients shown in Table 2 as a basic compound for tire tread, and a capacity of 250
Each rubber compound composition was obtained by kneading and mixing in a ml Brabender type mixer. Sulfur and vulcanization accelerator were used in amounts that would give the optimum state when vulcanizing each rubber compound composition. 160 of these rubber compound compositions
A test piece was prepared by press vulcanization at 15 to 30 minutes at ℃.

【衚】 それぞれのゎム配合組成物の加硫ゎムに぀い
お、匷床特性をJIS−−6301に埓぀お、たた反
発匟性率はダンロツプトリプ゜メヌタヌを甚い
お、枩床55℃にお枬定した。り゚ツトスキツド抵
抗はポヌタヌブルスキツドテスタヌ英囜スタン
レヌ瀟補を甚いお23℃で、ASTM−−303−
74の路面3M瀟補屋倖甚タむル、黒のセヌフ
テむヌりオヌクで枬定し、 各ゎム配合加硫物のり゚ツトスキツド抵抗倀−SBR
配合加硫物のり゚ツトスキツド抵抗倀 ×100 で蚈算しお指数衚瀺した。 ピコ摩耗指数は、ASTM−−2228に埓぀お、
グツドリツチ匏ピコ摩耗詊隓機を甚いお枬定し −SBR−1502の配合加硫物のピコ摩耗床各ゎム配合
加硫物のピコ摩耗量 ×100 で蚈算しお衚瀺した。結果を第衚に瀺す。 第衚から、比范䟋の実隓番号〜に察応し
た本発明䟋、実隓番号〜15の反発匟性率が、い
ずれも、り゚ツトスキツド抵抗や、ピコ摩耗性を
損うこずなく、〜ポむントの向䞊効果が認め
られる。
[Table] Regarding the vulcanized rubber of each rubber compound composition, the strength characteristics were measured according to JIS-K-6301, and the rebound modulus was measured at a temperature of 55° C. using a Danlop lipometer. Wet skid resistance was measured using a portable skid tester (manufactured by Stanley, UK) at 23°C, according to ASTM-E-303-
Measured on 74 road surfaces (3M outdoor tile B, black Safety Walk), wet skid resistance value of each rubber compound vulcanizate / E-SBR
The wet skid resistance of the blended vulcanizate was calculated by multiplying by 100 and expressed as an index. Pico wear index is according to ASTM-D-2228,
It was measured using a Gutdrich Pico abrasion tester and calculated and expressed as Pico abrasion degree of E-SBR-1502 compound vulcanizate/Pico abrasion amount of each rubber compound vulcanizate x 100. The results are shown in Table 3. From Table 3, it can be seen that the rebound modulus of the invention examples and experiment numbers 7 to 15, which correspond to the comparative example experiment numbers 2 to 6, was 3 to 5 without impairing wet skid resistance or pico abrasion resistance. The effect of improving points is recognized.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  スチレン−ブタゞ゚ン共重合ゎム分子鎖に、
少なくずも個のアミノ基、アルキルアミノ基あ
るいはゞアルキルアミノ基を有するベンゟプノ
ン類又はチオベンゟプノン類を、該ゎム分子鎖
モル圓り少なくずも0.1モルを導入した結合ス
チレン含有量が10〜40重量、ブタゞ゚ン単䜍郚
分の−結合含有量が10〜50で、ムヌニヌ
粘床ML1+4、100℃が20〜150のスチレン−ブ
タゞ゚ン共重合ゎム20〜95重量ず、倩然
ゎムおよびたたはシス−−結合含有量が
少なくずも90のポリむ゜プレンゎム60〜
重量および−結合含有量が20重量以
䞋で、ムヌニヌ粘床ML1+4、100℃が20〜100
のポリブタゞ゚ンゎム50〜重量をゎム
成分ずしお含んで成るこずを特城ずするタむダト
レツド甚ゎム組成物。
1 In the styrene-butadiene copolymer rubber molecular chain,
A bound styrene content of 10 to 40% by weight, in which at least 0.1 mole of benzophenones or thiobenzophenones having at least one amino group, alkylamino group or dialkylamino group is introduced per mole of the rubber molecular chain; Styrene-butadiene copolymer rubber () with a 1,2-bond content of 10-50% in the butadiene unit moiety and a Mooney viscosity (ML 1+4 , 100°C) of 20-150 and 20-95% by weight of natural Rubber and/or polyisoprene rubber with a cis-1,4-bond content of at least 90% ()60~
5% by weight and 1,2-bond content not more than 20% by weight, and Mooney viscosity (ML 1+4 , 100℃) of 20-100
A rubber composition for a tire tread, comprising 50 to 0% by weight of polybutadiene rubber () as a rubber component.
JP7218683A 1983-04-26 1983-04-26 Tire tread rubber composition Granted JPS59197443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7218683A JPS59197443A (en) 1983-04-26 1983-04-26 Tire tread rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7218683A JPS59197443A (en) 1983-04-26 1983-04-26 Tire tread rubber composition

Publications (2)

Publication Number Publication Date
JPS59197443A JPS59197443A (en) 1984-11-09
JPH04102B2 true JPH04102B2 (en) 1992-01-06

Family

ID=13481926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7218683A Granted JPS59197443A (en) 1983-04-26 1983-04-26 Tire tread rubber composition

Country Status (1)

Country Link
JP (1) JPS59197443A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2557238B2 (en) * 1987-11-11 1996-11-27 日本合成ゎム株匏䌚瀟 Diene rubber composition
JPH07110911B2 (en) * 1987-11-13 1995-11-29 日本合成ゎム株匏䌚瀟 Butadiene rubber composition
JPH0693134A (en) * 1992-07-31 1994-04-05 Sumitomo Chem Co Ltd Rubber composition excellent in grip and rolling resistance and its production
JP2011079883A (en) * 2009-10-02 2011-04-21 Sumitomo Rubber Ind Ltd Rubber composition and pneumatic tire

Also Published As

Publication number Publication date
JPS59197443A (en) 1984-11-09

Similar Documents

Publication Publication Date Title
JPH0121178B2 (en)
JP5240410B2 (en) Rubber composition for tire tread
JPS5937014B2 (en) Rubber composition for tires and treads
US4555548A (en) Rubber composition for tire treads
JP5014536B2 (en) End-modified diene copolymer and rubber composition for tire tread containing the same
JPS6335668B2 (en)
JPH0378424B2 (en)
JP2013032497A (en) Tire rubber composition and pneumatic tire
US4555547A (en) Rubber composition for tire treads
JP6575236B2 (en) Rubber composition and pneumatic tire
JP6575237B2 (en) Rubber composition and pneumatic tire
JPH04102B2 (en)
KR102549890B1 (en) Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, polymer composition, crosslinked product and tire
JPH05202102A (en) Production of modified conjugated diene polymer and rubber composition
KR100194007B1 (en) Abrasion Resistant Rubber Composition
JPH0475253B2 (en)
JPH04103B2 (en)
JPH04104B2 (en)
JPS59196338A (en) Tire tread rubber composition
JPH04105B2 (en)
JP2005213380A (en) Rubber composition for tire, and pneumatic tire
JPH044335B2 (en)
JP2705668B2 (en) Method for producing modified unsaturated rubbery polymer
JPH04101B2 (en)
JP2705670B2 (en) Rubber composition