JPH0475243B2 - - Google Patents

Info

Publication number
JPH0475243B2
JPH0475243B2 JP59089227A JP8922784A JPH0475243B2 JP H0475243 B2 JPH0475243 B2 JP H0475243B2 JP 59089227 A JP59089227 A JP 59089227A JP 8922784 A JP8922784 A JP 8922784A JP H0475243 B2 JPH0475243 B2 JP H0475243B2
Authority
JP
Japan
Prior art keywords
hydrogen atom
group
birefringence
temperature
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59089227A
Other languages
Japanese (ja)
Other versions
JPS60233106A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59089227A priority Critical patent/JPS60233106A/en
Publication of JPS60233106A publication Critical patent/JPS60233106A/en
Publication of JPH0475243B2 publication Critical patent/JPH0475243B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明は、光学デイスク材料に関するものであ
る。さらに詳しくは熱変形温度に代表される耐熱
性および透明性が優れ、複屈折が小さい光学デイ
スク材料の製造法に関するものである。 〈従来の技術〉 一般にプラスチツク材料は軽量で、耐衝撃性、
加工性および大量生産性が優れることから、近年
光フアイバー、光学デイスクおよび光学レンズ等
の光学素子用材料としての需要が拡大しつつあ
る。これら光学素子用プラスチツク材料として
は、現在、ポリメタクリル酸メチル、ポリスチレ
ンおよびポリカーボネートなどの透明性樹脂が主
に用いられている(特公昭43−8978号公報、「日
経エレクトロニクス」第292号、第133頁、1982年
6月7日発行)。 〈発明が解決しようとする問題点〉 しかるにポリメタクリル酸メチルおよびポリス
チレンは熱変形温度に代表される耐熱性が劣るた
め、高温条件下での使用に耐えない問題がある。
また、ポリカーボネートの耐熱性は優れるものの
溶融流動性が劣るため、成形性が悪く、また成形
歪に起因する複屈折が大きいという問題がある。 特に光学デイスクにおいては、その用途がビデ
オデイスク、オーデイオデイスク、フアイル用デ
イスク等の高度な精密を要するものであるため、
より高度な耐熱性および透明性が要求され、とり
わけ複屈折も小さいものであることが要求され
る。 従つて、これらの要求を十分満足し得る光学デ
イスク材料はまだ見出されていない。 本発明者らは、上記要求を同時に満足する高性
能な光学デイスク材料を提供することを目的とし
て鋭意検討した結果、特定の組成を有するポリグ
ルタルイミド系重合体からなる光学デイスクは、
熱変形温度に代表される耐熱性および透明性が優
れ、しかも複屈折が小さいことを見出し本発明に
到達した。 〈問題点を解決するための手段および作用〉 すなわち、本発明は下記()式で表わされる
グルタルイミド単位10〜85重量%および()式
で表わされるアクリリツク単位90〜15重量%を有
するポリグルタルイミド系重合体を、シリンダー
温度220〜280℃、金型温度50〜95℃の条件下で射
出成形することを特徴とする、下記特性を有する
光学デイスク材料の製造法を提供するものであ
る。 熱変形温度 ≧95℃ 光線透過率 ≧87% 複屈折度 ≦35 屈折率(nD) =1.500〜1.545 (()式中、R1およびR2は水素原子またはメ
チル基を、R3は水素原子、炭素数1〜20の置換
または非置換のアルキル基またはアリール基を表
わす。) (()式中、R4は水素原子またはメチル基、
R5は水素原子、炭素数1〜10の置換または非置
換のアルキル基またはアリール基を表わす。) 本発明において光学デイスクとは、光を透過ま
たは反射することによつて機能を発揮するデイス
クを意味し、具体的にはビデオデイスク、オーデ
イオデイスクおよびフアイル用デイスクなどが挙
げられる。 本発明で用いるポリグルタルイミド系重合体自
体は既に公知である(例えば、特公昭52−63989
号公報)。 本発明で用いるポリグルタルイミド系重合体
は、下記式()で表わされるグルタルイミド単
位(グルタルイミド単位()グルタルイミド単
位())および下記式()で表わされるアク
リリツク単位(アクリリツク単位())からな
る。 グルタルイミド単位()においてR1および
R2は水素原子またはメチル基を表わす。R3は水
素原子、炭素数1〜20の置換または非置換のアル
キル基またはアリール基を表わし、具体例として
は水素原子、メチル基、エチル基、t−ブチル基
およびフエニル基などが挙げられる。 アクリリツク単位()はアクリル酸、メタア
クリル酸、アクリル酸エステル、メタアクリル酸
エステルから誘導された単位をいい、アクリリツ
ク単位()においてR4は水素原子またはメチ
ル基を表わす。R5は水素原子、炭素数1〜10の
置換または非置換のアルキル基またはアリール基
を表わす。R5の具体例としては水素原子、メチ
ル基、エチル基プロピル基、ブチル基、シクロヘ
キシル基などが挙げられ、なかでも好ましくは水
素原子またはメチル基が用いられる。 本発明で用いるポリグルタルイミド系重合体に
おいてグルタルイミド単位()とアクリリツク
単位()の割合は()が10〜85重量%に対し
て()が90〜15重量%である。()が10重量
%未満では熱変形温度が低く本発明の効果が十分
発揮されない。()が85重量%を越えると、透
明性が低下し、複屈折が大きくなるので好ましく
ない。また、上記グルタルイミド単位()およ
びアクリリツク単位()のほかに、本発明の効
果を損なわない範囲でスチレン、α−メチルスチ
レン、p−メチルスチレンおよびp−t−ブチル
スチレンなどの芳香族ビニル系単量体、アクリロ
ニトリルおよびメタクリロニトリルなどのシアン
化ビニル系単量体、無水マレイン酸およびマレイ
ミド系単量体等を共重合したものを用いることも
できる。 本発明で用いるポリグルタルイミド系重合体の
製造法に関して特に制限はないが、通常は特開昭
52−63989号公報で提案されているようなポリメ
タクリル酸メチルなどのアクリル酸重合体をアン
モニアまたはメチルアミン、エチルアミンなどの
第一アミンを押出機中で反応させ、グルタルイミ
ド還を形成する方法や特公昭58−71928号公報で
提案されているようなグルタル酸無水物系重合体
をイミド化する方法によつて製造できる。 本発明の光学デイスクは紫外線吸収剤などの光
安定剤、酸化防止剤などの熱安定剤等各種安定剤
を含有することができる。また本発明の効果を損
なわない範囲で他の重合体を混合状態で含有する
こともできる。 〈実施例〉 以下、実施例により本発明をさらに詳しく説明
する。 実施例中で用いられる熱変形温度、光透過率、
複屈折、屈折率は次の方法に従つて測定したもの
である。 熱変形温度:ASTM D−648−56に従つて測定
した。 光透過率:JIS K6714に従い、積分球式光線透過
率測定装置により、厚さ3.0mmの試験片で測定し
た。 複屈折:射出成形によつて厚さ1.2mm、直径120mm
のデイスクを成し、室温20℃の条件下でそのデイ
スクを、偏光面を90°ずらして重ねた2枚の偏光
板の間にはさみ、偏光板を回転させて明暗縞が消
失する角度を測定した。 屈折率(nD):ASTM D542−50に従い、アツベ
の屈折計によつて測定した。 実施例 1〜7 (ポリグルタルイミド系重合体の製造) 下記のポリメタクリル酸メチルM−1、M−2
を表1に示す各イミド化剤(アンモニア、メチル
アミン、t−ブチルアミン)とともに押出機中に
仕込み、押出機に取り付けられた排気口から脱気
しながら、樹脂温度280℃で押出を行ない、表1
に示したポリグルタルイミド系重合体(G−1〜
G−8)を製造した。グルタルイミド単位含有量
は元素分析値から算出した。 ポリメタクリル酸メチル M−1:ジメチルホルムアミドを用い、30℃で測
定した極限粘度(〔η〕)が0.95のポリメタク
リル酸メチル M−2:〔η〕が0.64のポリメタクリル酸メチル
<Industrial Application Field> The present invention relates to optical disk materials. More specifically, the present invention relates to a method for manufacturing an optical disk material that has excellent heat resistance as typified by heat distortion temperature, transparency, and low birefringence. <Conventional technology> Plastic materials are generally lightweight, impact resistant,
Due to its excellent processability and mass productivity, demand for it as a material for optical elements such as optical fibers, optical disks, and optical lenses has been increasing in recent years. Currently, transparent resins such as polymethyl methacrylate, polystyrene, and polycarbonate are mainly used as plastic materials for these optical elements (Japanese Patent Publication No. 43-8978, Nikkei Electronics No. 292, No. 133). Page, published June 7, 1982). <Problems to be Solved by the Invention> However, polymethyl methacrylate and polystyrene have poor heat resistance, typified by heat distortion temperature, and therefore have the problem of not being able to withstand use under high temperature conditions.
Further, although polycarbonate has excellent heat resistance, it has poor melt flowability, resulting in poor moldability and high birefringence due to molding distortion. In particular, optical disks require a high degree of precision, such as video disks, audio disks, and file disks.
Higher heat resistance and transparency are required, and in particular, birefringence is also required to be small. Therefore, an optical disk material that fully satisfies these requirements has not yet been found. The present inventors have made extensive studies with the aim of providing a high-performance optical disk material that simultaneously satisfies the above requirements, and have found that an optical disk made of a polyglutarimide polymer having a specific composition is
The present invention was achieved by discovering that it has excellent heat resistance as represented by heat distortion temperature and transparency, and low birefringence. <Means and effects for solving the problems> That is, the present invention provides a polyglutarine having 10 to 85% by weight of glutarimide units represented by the following formula () and 90 to 15% by weight of acrylic units represented by the following formula (). The present invention provides a method for producing an optical disk material having the following characteristics, which is characterized by injection molding an imide polymer under conditions of a cylinder temperature of 220 to 280°C and a mold temperature of 50 to 95°C. Heat distortion temperature ≧95℃ Light transmittance ≧87% Birefringence ≦35 Refractive index (n D ) = 1.500 to 1.545 (In the formula (), R 1 and R 2 represent a hydrogen atom or a methyl group, and R 3 represents a hydrogen atom or a substituted or unsubstituted alkyl group or aryl group having 1 to 20 carbon atoms.) (() In the formula, R 4 is a hydrogen atom or a methyl group,
R 5 represents a hydrogen atom, a substituted or unsubstituted alkyl group or aryl group having 1 to 10 carbon atoms. ) In the present invention, the optical disk refers to a disk that functions by transmitting or reflecting light, and specifically includes video disks, audio disks, file disks, and the like. The polyglutarimide polymer used in the present invention itself is already known (for example, Japanese Patent Publication No. 52-63989
Publication No.). The polyglutarimide-based polymer used in the present invention includes glutarimide units (glutarimide units () glutarimide units ()) represented by the following formula () and acrylic units (acrylic units ()) represented by the following formula (). Consisting of R 1 and in the glutarimide unit ()
R 2 represents a hydrogen atom or a methyl group. R3 represents a hydrogen atom, a substituted or unsubstituted alkyl group or aryl group having 1 to 20 carbon atoms, and specific examples include a hydrogen atom, a methyl group, an ethyl group, a t-butyl group, and a phenyl group. The acrylic unit ( ) refers to a unit derived from acrylic acid, methacrylic acid, acrylic ester, or methacrylic ester, and R 4 in the acrylic unit ( ) represents a hydrogen atom or a methyl group. R 5 represents a hydrogen atom, a substituted or unsubstituted alkyl group or aryl group having 1 to 10 carbon atoms. Specific examples of R 5 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, a cyclohexyl group, and among them, a hydrogen atom or a methyl group is preferably used. In the polyglutarimide polymer used in the present invention, the ratio of glutarimide units () to acrylic units () is 10 to 85% by weight and 90 to 15% by weight. If () is less than 10% by weight, the heat distortion temperature will be low and the effects of the present invention will not be fully exhibited. If () exceeds 85% by weight, transparency decreases and birefringence increases, which is not preferable. In addition to the above-mentioned glutarimide units () and acrylic units (), aromatic vinyl units such as styrene, α-methylstyrene, p-methylstyrene, and p-t-butylstyrene may also be used within the range that does not impair the effects of the present invention. Monomers, copolymerized vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, maleic anhydride and maleimide monomers, etc. can also be used. There are no particular restrictions on the method for producing the polyglutarimide polymer used in the present invention, but it is usually
52-63989, in which an acrylic acid polymer such as polymethyl methacrylate is reacted with ammonia or a primary amine such as methylamine or ethylamine in an extruder to form a glutarimide ring; It can be produced by a method of imidizing a glutaric anhydride polymer as proposed in Japanese Patent Publication No. 71928/1983. The optical disk of the present invention can contain various stabilizers such as light stabilizers such as ultraviolet absorbers and heat stabilizers such as antioxidants. Further, other polymers may be contained in a mixed state within a range that does not impair the effects of the present invention. <Example> Hereinafter, the present invention will be explained in more detail with reference to Examples. Heat distortion temperature, light transmittance, used in the examples
Birefringence and refractive index were measured according to the following method. Heat distortion temperature: Measured according to ASTM D-648-56. Light transmittance: Measured on a 3.0 mm thick test piece using an integrating sphere light transmittance measuring device in accordance with JIS K6714. Birefringence: 1.2mm thick, 120mm diameter by injection molding
The disk was sandwiched between two stacked polarizing plates with their planes of polarization shifted by 90 degrees at a room temperature of 20°C, and the angle at which the bright and dark stripes disappeared was measured by rotating the polarizing plates. Refractive index ( nD ): Measured with an Atsube refractometer according to ASTM D542-50. Examples 1 to 7 (Production of polyglutarimide polymer) The following polymethyl methacrylates M-1 and M-2
was charged into an extruder together with each imidizing agent (ammonia, methylamine, t-butylamine) shown in Table 1, and extrusion was performed at a resin temperature of 280°C while degassing from the exhaust port attached to the extruder. 1
The polyglutarimide polymers shown in (G-1~
G-8) was produced. The glutarimide unit content was calculated from elemental analysis values. Polymethyl methacrylate M-1: Polymethyl methacrylate with an intrinsic viscosity ([η]) of 0.95 measured at 30°C using dimethylformamide M-2: Polymethyl methacrylate with an [η] of 0.64

【表】 (成形品による物性測定) かくして製造したポリグルタルイミド系重合体
(G−1〜G−7)を射出成形して、各試験片デ
イスクを作成し、熱変形温度、光透過率および複
屈折を測定した。測定結果を表2に示した。 射出成形におけるシリンダー温度を表2にあわ
せて示した。金型温度はいずれも60℃で行なつ
た。 比較例 1〜5 (他の樹脂との比較) ポリメタクリル酸メチル(M−1およびM−
2)、“スタイロン666”(旭ダウ(株)製ポリスチレ
ン)、“レキサン121”(エンジニアリングプラスチ
ツク(株)製ポリカーボネート)および実施例1で製
造したポリグルタルイミド系重合体(G−8)に
ついて実施例1と同じ方法で各測定を行なつた。
[Table] (Measurement of physical properties using molded products) The polyglutarimide polymers (G-1 to G-7) produced in this way were injection molded to create test specimen disks, and the heat distortion temperature, light transmittance, and Birefringence was measured. The measurement results are shown in Table 2. The cylinder temperature during injection molding is also shown in Table 2. The mold temperature was 60°C in all cases. Comparative Examples 1 to 5 (Comparison with other resins) Polymethyl methacrylate (M-1 and M-
2) Conducted on "Styron 666" (polystyrene manufactured by Asahi Dow Co., Ltd.), "Lexan 121" (polycarbonate manufactured by Engineering Plastics Co., Ltd.) and the polyglutarimide polymer (G-8) produced in Example 1. Each measurement was carried out in the same manner as in Example 1.

【表】 実施例および比較例の結果から次のことが明ら
かである。すなわち本発明のポリグルタルイミド
系重合体(G−1〜G−7)からなるデイスクは
熱変形温度、透明性がすぐれ、複屈折も小さい。
それに対しポリメタクリル酸メチル(M−1、M
−2)は熱変形温度が低い。ポリスチレンからな
るデイスク(スタイロン666)は熱変形温度、複
屈折が劣る。ポリカーボネートからなるデイスク
は熱変形温度は高いが、複屈折が著しく高い。ま
たグルタルイミド単位が90重量%を越えるポリグ
ルタルイミド系重合体(G−8)からなるデイス
クは透明性および複屈折が劣るため好ましくな
い。 〈発明の効果〉 以上説明したように、本発明のポリグルタルイ
ミド系重合体からなる光学デイスク材料は熱変形
温度に代表される耐熱性、透明性が優れ同時に複
屈折が小さく、これらのバランスが従来の光学用
プラスチツクからなるデイスクに比べ優れてい
る。
[Table] The following is clear from the results of Examples and Comparative Examples. That is, the disks made of the polyglutarimide polymers (G-1 to G-7) of the present invention have excellent heat distortion temperature and transparency, and have low birefringence.
On the other hand, polymethyl methacrylate (M-1, M
-2) has a low heat distortion temperature. Discs made of polystyrene (Styron 666) have poor heat distortion temperature and birefringence. Disks made of polycarbonate have a high heat deformation temperature, but have extremely high birefringence. Further, a disk made of a polyglutarimide polymer (G-8) containing more than 90% by weight of glutarimide units is not preferred because of its poor transparency and birefringence. <Effects of the Invention> As explained above, the optical disk material made of the polyglutarimide polymer of the present invention has excellent heat resistance represented by heat distortion temperature, excellent transparency, and at the same time, low birefringence, and has a good balance of these. It is superior to conventional discs made of optical plastic.

Claims (1)

【特許請求の範囲】 1 下記()式で表わされるグルタルイミド単
位10〜85重量%および()式で表わされるアク
リリツク単位90〜15重量%を有するポリグルタル
イミド系重合体を、シリンダー温度220〜280℃、
金型温度50〜95℃の条件下で射出成形することを
特徴とする、下記特性を有する光学デイスク材料
の製造法。 熱変形温度 ≧95℃ 光線透過率 ≧87% 複屈折度 ≦35 屈折率(nD) =1.500〜1.545 (()式中、R1およびR2は水素原子またはメ
チル基を、R3は水素原子、炭素数1〜20の置換
または非置換のアルキル基またはアリール基を表
わす。) (()式中、R4は水素原子またはメチル基、
R5は水素原子、炭素数1〜10の置換または非置
換のアルキル基またはアリール基を表わす。)
[Scope of Claims] 1. A polyglutarimide polymer having 10 to 85% by weight of glutarimide units represented by the following formula () and 90 to 15% by weight of acrylic units represented by the following formula () is heated at a cylinder temperature of 220 to 280℃,
A method for producing an optical disk material having the following characteristics, which is characterized by injection molding at a mold temperature of 50 to 95°C. Heat distortion temperature ≧95℃ Light transmittance ≧87% Birefringence ≦35 Refractive index (n D ) = 1.500 to 1.545 (In the formula (), R 1 and R 2 represent a hydrogen atom or a methyl group, and R 3 represents a hydrogen atom or a substituted or unsubstituted alkyl group or aryl group having 1 to 20 carbon atoms.) (() In the formula, R 4 is a hydrogen atom or a methyl group,
R 5 represents a hydrogen atom, a substituted or unsubstituted alkyl group or aryl group having 1 to 10 carbon atoms. )
JP59089227A 1984-05-07 1984-05-07 Optical disk material Granted JPS60233106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59089227A JPS60233106A (en) 1984-05-07 1984-05-07 Optical disk material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59089227A JPS60233106A (en) 1984-05-07 1984-05-07 Optical disk material

Publications (2)

Publication Number Publication Date
JPS60233106A JPS60233106A (en) 1985-11-19
JPH0475243B2 true JPH0475243B2 (en) 1992-11-30

Family

ID=13964853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59089227A Granted JPS60233106A (en) 1984-05-07 1984-05-07 Optical disk material

Country Status (1)

Country Link
JP (1) JPS60233106A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218068A (en) * 1988-03-25 1993-06-08 The Dow Chemical Company Intrinsically low birefringent molding polymers and optical storage disks therefrom
JPH03195710A (en) * 1989-12-08 1991-08-27 Dow Chem Co:The Molded polymer having essentially low birefringence
EP0915105B1 (en) * 1997-11-07 2003-04-09 Rohm And Haas Company Plastic substrates for electronic display applications
JPWO2005108438A1 (en) * 2004-05-10 2008-03-21 株式会社カネカ IMIDE RESIN, ITS MANUFACTURING METHOD, AND MOLDED BODY USING SAME
WO2006043409A1 (en) * 2004-10-22 2006-04-27 Kaneka Corporation Imide resin with high refractive index, thermoplastic resin composition for lens using same, and lens
JP5636165B2 (en) * 2009-04-21 2014-12-03 株式会社カネカ Optical film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263989A (en) * 1975-11-19 1977-05-26 Rohm & Haas Process for producing imidized acrylic acid polymer
JPS5416599A (en) * 1977-06-09 1979-02-07 Gaf Corp Preparation of linear cyclic polyimide
JPS585306A (en) * 1981-06-25 1983-01-12 イ−・アイ・デユボン・ド・ネモア−ス・アンド・コンパニ− Manufacture of imidized acryl polymer
JPS5871928A (en) * 1981-10-07 1983-04-28 ロ−ム・アンド・ハ−ス・コンパニ− Thermoplastic non-bridgeable anhydrous polymer and imide polymer and manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263989A (en) * 1975-11-19 1977-05-26 Rohm & Haas Process for producing imidized acrylic acid polymer
JPS5416599A (en) * 1977-06-09 1979-02-07 Gaf Corp Preparation of linear cyclic polyimide
JPS585306A (en) * 1981-06-25 1983-01-12 イ−・アイ・デユボン・ド・ネモア−ス・アンド・コンパニ− Manufacture of imidized acryl polymer
JPS5871928A (en) * 1981-10-07 1983-04-28 ロ−ム・アンド・ハ−ス・コンパニ− Thermoplastic non-bridgeable anhydrous polymer and imide polymer and manufacture

Also Published As

Publication number Publication date
JPS60233106A (en) 1985-11-19

Similar Documents

Publication Publication Date Title
KR101074996B1 (en) Thermoplastic resin composition, molded article, and film
JPS6195011A (en) Optical disk substrate
CA2049439C (en) Optical material
JPH0475243B2 (en)
JP2006274118A (en) Thermoplastic resin composition and molded product, film and sheet formed of the same
US4753996A (en) Heat-resistant methacrylic resin composition
JP3053239B2 (en) Low hygroscopic methacrylic resin composition
JP3048183B2 (en) Low birefringence methacrylic resin composition
KR101214647B1 (en) Acryl-based resin composition with high impact resistance
CA2045452C (en) Optical material
JP2000239325A (en) Transparent resin composition
JPS61278509A (en) Optical disc base
JPS63309547A (en) Optical resin molding
JP2501561B2 (en) Optical disc material
JPS63234009A (en) Methacrylic resin composition
JP4187504B2 (en) Copolymer
JP2007177230A (en) Thermoplastic resin composition, its production process, and molded article
JPS63241011A (en) Optical resin material
JPH0192209A (en) Molded resin article for optical use
JPH0527101A (en) Plastic lens
JPH03255108A (en) Maleimide copolymer
JP2000178317A (en) Production of polymer
JPS62199605A (en) Optical resin material
JPH0614413B2 (en) Optical disc material
JPH0122864B2 (en)