JPH047521B2 - - Google Patents

Info

Publication number
JPH047521B2
JPH047521B2 JP58213201A JP21320183A JPH047521B2 JP H047521 B2 JPH047521 B2 JP H047521B2 JP 58213201 A JP58213201 A JP 58213201A JP 21320183 A JP21320183 A JP 21320183A JP H047521 B2 JPH047521 B2 JP H047521B2
Authority
JP
Japan
Prior art keywords
film
substrate
thermoplastic resin
electrolytic
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58213201A
Other languages
Japanese (ja)
Other versions
JPS60105532A (en
Inventor
Osamu Niwa
Toshiaki Tamamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58213201A priority Critical patent/JPS60105532A/en
Priority to US06/657,314 priority patent/US4559112A/en
Priority to EP19840306764 priority patent/EP0144127B1/en
Priority to CA000464743A priority patent/CA1231670A/en
Priority to EP19870106076 priority patent/EP0247366B1/en
Priority to DE8787106076T priority patent/DE3484598D1/en
Priority to DE8484306764T priority patent/DE3481849D1/en
Priority to KR1019840006200A priority patent/KR890004938B1/en
Publication of JPS60105532A publication Critical patent/JPS60105532A/en
Publication of JPH047521B2 publication Critical patent/JPH047521B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は改良された導電性高分子フイルムとそ
の製造方法に関する。 〔従来技術〕 ある種の芳香族化合物は電解質を添加した溶剤
中に溶解させ、電解酸化を行うことにより、導電
性の高分子フイルムを電極基板上に形成させるこ
とができる。このような芳香族化合物としてはビ
ロール類、チオフエン類等の複素環式化合物、ア
ズレン、ビレン、トリフエニレン等の多環芳香族
化合物が知られている〔例えばJ.バーゴン(J.
Bargon)、S.モーマンド(S.Mohmand)、R.J.ウ
オルトマン(R.J.Waltman)、IBMジヤーナル
オブ リサーチ エンド デベロツプメント
(IBM Journal of Reserch&Development)第
27巻、第4号第330頁(1983年)参照〕。 しかしながら、従来の電極基板上に直接電解酸
化して形成した導電性高分子フイルムは以下のよ
うな欠点があつた。 (1) フイルムの機械的な強度が弱いため、基板上
でも、また、フイルムとして単離した状態でも
破れやすく取扱いが困難であつた。 (2) 電気伝導度を制御することが困難であつた。 (3) 基板との密着力が弱く、フイルム形成中ある
いは形成後の洗浄過程ではがれやすい。 (4) ネサガラスの様な電解溶液や形成される芳香
族系高分子フイルムに比べて電気抵抗が同等あ
るいはそれ以下の電極基板を用いると、均一な
フイルムを形成できず、膜厚に大きなバラツキ
がみられた。 〔発明の目的〕 本発明はこれらの欠点を除去するためになされ
たものであり、その目的は電気伝導度、機械的強
度及び密着性に優れた導電性高分子フイルム及び
その製造方法を提供することにある。 〔発明の構成〕 本発明を概説すれば、本発明の第1の発明は導
電性高分子フイルムの発明であつて、電極基板上
に形成した熱可塑性樹脂フイルムと、該基板上に
電解酸化により電気化学的に形成した芳香族系高
分子材料とから成ることを特徴とする。 そして、本発明の第2の発明は導電性高分子フ
イルムの製造方法の発明であつて、電極基板上に
熱可塑性樹脂フイルムを作製する工程、及びその
上に電解酸化により芳香族系高分子材料を電気化
学的に形成する工程の各工程を包含することを特
徴とする。 電解重合による導電性高分子フイルムは通常電
解基板を、アセトニトリル等の有機溶媒中に電解
重合用モノマーとなる芳香族系化合物と通電させ
るための電解質とを溶解させた溶液中に、対向電
極と共に入れ、両電極間に通電させることにより
形成される。この際、電極基板を絶縁性の高分子
フイルムでコーテイングすれば、当然通電できず
導電性フイルムは全く形成されない。しかしなが
ら本発明者等は電極基板上に各種の熱可塑性樹脂
フイルムを塗布し、これを溶解させることのない
適当な電解反応溶液を組合せることにより、電解
反応が通常の電極基板上と同様に進行することを
見出した。このようにして得られたフイルムは熱
可塑性樹脂フイルムと、電解酸化による芳香族系
高分子フイルムの混合物となり、その混合状態は
作製条件に依存し、また全体のフイルムの特性が
現れることになる。したがつて熱可塑性樹脂フイ
ルムとしてフイルム強度の強い材料を選べばフイ
ルム強度の高い導電性高分子フイルムを作製でき
る。また作製条件によつて一体の混合フイルムに
なる場合と、全く混合せず2層に分離して形成で
きる場合もある。 このフイルムはいずれも重合時間により電気伝
導度を任意に制御でき、電気伝導度を10桁程度変
えることができる。また、ネサガラス基板を用い
ても全く均一に重合が進行し、フイルムの膜厚分
布が著しく少ない。これはネサガラス基板上に直
接ポリピロールの様な高導電性フイルムを作製す
るとリード線をとる部分に近い方からポリマーが
形成し、この電気伝導度が高いため集中して重合
が進行するためと推定される。他方、本発明のフ
イルムで重合初期は電気伝導度が低く、徐々に高
くなつていくため、均一に膜が形成できる。また
基板との密着力の良好な熱可塑性樹脂フイルムを
用いると形成した導電性高分子フイルムの密着力
を向上することができる。 このようにして均一で良質の導電性高分子フイ
ルムが得られる原因は、熱可塑性の高分子フイル
ムが電解溶液である程度膨潤し、モノマー分子が
架橋フイルム内に拡散でき、電極表面で電解酸化
反応が進行するためと推定される。したがつて熱
可塑性樹脂フイルム内にモノマーが拡散できる様
な電解反応溶液組成を選択することにより均一な
導電性高分子フイルムが得られる。 したがつて高分子フイルムは熱可塑性樹脂であ
ればいずれのものでも良く種類には限定されな
い。 電解液としては次の条件を満していればよい。 (1) 熱可塑性樹脂フイルムを溶かさないこと (2) 電解塩と電解重合用モノマーを溶かすことが
できること (3) 熱可塑性樹脂フイルム中に電解重合用モノマ
ーを拡散させることができること なお、本発明におけるフイルム用高分子材料中
には、可塑剤、顔料及び色素等の常用の添加剤を
添加してもよく、それらを添加した場合でも、そ
れら添加剤が電解液中に溶出することはなく、ま
た得られた導電性高分子フイルムの所望の特性は
変化しない。 〔実施例〕 以下、本発明を実施例により更に具体的に説明
するが、本発明はこれらに限定されない。 なお、第1図はポリピロールの重合時間(横
軸)(分)と混合フイルムの電気伝導度(縦軸)
(σ)との関係を示したグラフである。 実施例 1 ネサガラス基板上にスピンコート法によりクロ
ロメチル化ポリスチレン(以下CMSと略記する)
(分子量30万)を1μm厚に塗布した。このフイル
ムをコーテイングした基板を正極とし負極に網目
状の白金電極を用いて電解溶液に浸し、0.9〜
1.5Vの定電圧でビロールの電解重合を行つた。
電解溶液としてはアセトニトリル−水−エチレン
グリコール(90:5:5)にビロール1M、電解
塩としてテトラエチルアンモニウムテトラフルオ
ロボレート0.3Mを溶解させたものを用いた。電
解時間は5〜60分間変化させると、ネサガラス基
板上は絶縁性のフイルムに覆われているにもかか
わらず、電解をかけると黒色のポリピロールが基
板上に析出し、膜厚が増加していつた。第1図に
重合時間と得られたフイルムの電気伝導度の関係
をグラフで示した。重合時間を変化させることに
よりフイルムの電気伝導度を約9桁変化させるこ
とができ、所望の電気伝導度のフイルムを作製で
きることが明らかになつた。 実施例 2 ネサガラス基板上にポリ塩化ビニル(分子量70
万)フイルムをスピンコート法で約1μmに塗布
する。この基板をアセトニトリル−水−エチレン
グリコール(98:1:1)溶剤にビロール1M、
テトラエチルアンモニウムテトラフルオロボレー
ト0.3Mを溶解させた溶液に浸し、1.3Vで20分間
電解重合を行つた。実施例1と同様に黒色のポリ
ピロールフイルムが析出した。このポリピロール
はネサガラス基板とポリ塩化ビニルの間に積層さ
れる形で形成された。このフイルムはネサガラス
基板から容易にひきはがすことができ、表面が滑
らかで非常に機械的強度の高いフイルムが得ら
れ、約1.5倍に延伸することができた。電気伝導
度はポリピロール面で約80/Ω・cmであつた。 実施例 3 実施例2と同様にポリ塩化ビニルをネサガラス
基板上に1μmの厚さにスピンコーテイングし、
これをアセトニトリル−メチルエチルケトン−水
−エチレングリコール(58:40:1:1)の混合
溶媒にビロール3M、テトラエチルアンモニウム
テトラフルオロボレート0.3Mを溶解させた溶液
中で20分間1.2Vで電解酸化を行つた。実施例2
と同様にポリピロールが析出してきたが実施例2
と異なり得られたフイルムは積層構造でなく一層
の構造のフイルムであり、その電気伝導度は実施
例1と同程度の3.5/Ω・cmであつた。 比較例 1 実施例2、3と同じフイルムをアセトニトリル
−水(9:1)中で電解重合を行つても全くポリ
ピロールは析出しなかつた。 以上実施例2、3、比較例1から明らかなよう
に、均一なフイルムを作製するには各樹脂につい
て電解重合溶媒を最適化する必要がある。すなわ
ち、モノマーが十分に熱可塑性樹脂フイルムの中
を拡散し、電極表面に到達できることが必要であ
る。この比較例1では、拡散できなかつたものと
推定される。なお前記各実施例の場合、熱可塑性
樹脂フイルム中に十分な空間があれば電解酸化さ
れたポリピロールがフイルム内に成長し、実施例
1、3の様な複合フイルムとして得られ、ポリピ
ロールフイルム内に入り込めない場合は2層構造
の膜となると推定される。 実施例 4〜44 下記表1に示した熱可塑性樹脂フイルムをそれ
ぞれ約1μmの厚さにネサガラス基板上にスピン
コート法あるいはキヤステイング法を用いて塗布
した。この基板を表1に示した溶媒に1Mのピロ
ールと0.3Mのテトラエチルアンモニウムテトラ
フルオロボレートを溶解させ、1.2Vで20分間電
解重合を行つた。いずれの系でも黒色のポリピロ
ールが析出し、実施例1と同様の均一なフイルム
が得られた。 表1に、得られた複合フイルムの膜厚と電気伝
導度の測定値を示した。 表1において、基板としてはネサガラス基板、
重合時間は20分/室温とした。またMEKはメチ
ルエチルケトン、EGはエチレングリコール、
DMFはN,N−ジメチルホルムアミドを意味す
る。
[Industrial Field of Application] The present invention relates to an improved conductive polymer film and a method for producing the same. [Prior Art] A conductive polymer film can be formed on an electrode substrate by dissolving certain aromatic compounds in a solvent containing an electrolyte and performing electrolytic oxidation. Known examples of such aromatic compounds include heterocyclic compounds such as virols and thiophenes, and polycyclic aromatic compounds such as azulene, birene, and triphenylene [for example, J. Burgon (J.
Bargon), S. Mohmand, RJ Waltman, IBM Journal
of Research & Development (IBM Journal of Research & Development) No.
27, No. 4, p. 330 (1983)]. However, conventional conductive polymer films formed by direct electrolytic oxidation on electrode substrates have the following drawbacks. (1) Because the film has low mechanical strength, it is easy to tear and difficult to handle, both on a substrate and when isolated as a film. (2) It was difficult to control electrical conductivity. (3) It has weak adhesion to the substrate and is likely to peel off during film formation or during the cleaning process after formation. (4) If an electrode substrate such as Nesa Glass is used that has an electrical resistance equal to or lower than that of the electrolytic solution or the aromatic polymer film that is formed, it will not be possible to form a uniform film and there will be large variations in film thickness. It was seen. [Object of the Invention] The present invention was made to eliminate these drawbacks, and its purpose is to provide a conductive polymer film with excellent electrical conductivity, mechanical strength, and adhesion, and a method for producing the same. There is a particular thing. [Structure of the Invention] To summarize the present invention, the first invention of the present invention is an invention of a conductive polymer film, which includes a thermoplastic resin film formed on an electrode substrate, and a thermoplastic resin film formed on the substrate by electrolytic oxidation. It is characterized by being made of an electrochemically formed aromatic polymer material. The second invention of the present invention is an invention of a method for manufacturing a conductive polymer film, which includes a step of manufacturing a thermoplastic resin film on an electrode substrate, and applying an aromatic polymer material thereon by electrolytic oxidation. It is characterized in that it includes each step of electrochemically forming. Conductive polymer films produced by electrolytic polymerization are usually produced by placing an electrolytic substrate together with a counter electrode in a solution containing an aromatic compound that will become a monomer for electrolytic polymerization and an electrolyte for conducting electricity in an organic solvent such as acetonitrile. , is formed by passing current between both electrodes. At this time, if the electrode substrate is coated with an insulating polymer film, it will naturally not be possible to conduct electricity and no conductive film will be formed. However, the present inventors coated various thermoplastic resin films on the electrode substrate and combined them with an appropriate electrolytic reaction solution that does not dissolve the film, so that the electrolytic reaction proceeded in the same way as on a normal electrode substrate. I found out what to do. The film thus obtained is a mixture of a thermoplastic resin film and an aromatic polymer film produced by electrolytic oxidation, and the state of the mixture depends on the production conditions, and the characteristics of the film as a whole will appear. Therefore, if a material with high film strength is selected as the thermoplastic resin film, a conductive polymer film with high film strength can be produced. Further, depending on the manufacturing conditions, there are cases where an integrated mixed film is formed, and cases where two layers can be formed without being mixed at all. The electrical conductivity of any of these films can be controlled arbitrarily by changing the polymerization time, and the electrical conductivity can be changed by about 10 orders of magnitude. Further, even when a Nesa glass substrate is used, polymerization proceeds completely uniformly, and the film thickness distribution is extremely small. This is presumed to be because when a highly conductive film such as polypyrrole is made directly on a Nesa glass substrate, polymers are formed from the side closer to where the lead wires are taken, and because of this high electrical conductivity, polymerization progresses in a concentrated manner. Ru. On the other hand, in the film of the present invention, the electrical conductivity is low at the initial stage of polymerization and gradually increases, so that a uniform film can be formed. Further, by using a thermoplastic resin film that has good adhesion to the substrate, the adhesion of the formed conductive polymer film can be improved. The reason why a uniform and high-quality conductive polymer film is obtained in this way is that the thermoplastic polymer film swells to some extent in the electrolytic solution, allowing monomer molecules to diffuse into the crosslinked film, and electrolytic oxidation reactions occur on the electrode surface. It is presumed that this is due to progress. Therefore, by selecting a composition of the electrolytic reaction solution that allows the monomer to diffuse into the thermoplastic resin film, a uniform conductive polymer film can be obtained. Therefore, the polymer film may be any thermoplastic resin and is not limited in type. The electrolyte only needs to satisfy the following conditions. (1) Not to dissolve the thermoplastic resin film (2) To be able to dissolve the electrolytic salt and the monomer for electrolytic polymerization (3) To be able to diffuse the monomer for electrolytic polymerization into the thermoplastic resin film Commonly used additives such as plasticizers, pigments, and dyes may be added to the polymeric material for films, and even if they are added, they will not dissolve into the electrolyte. The desired properties of the resulting conductive polymer film remain unchanged. [Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. In addition, Figure 1 shows the polymerization time (horizontal axis) (minutes) of polypyrrole and the electrical conductivity (vertical axis) of the mixed film.
(σ). Example 1 Chloromethylated polystyrene (hereinafter abbreviated as CMS) was deposited on a Nesa glass substrate by spin coating.
(molecular weight 300,000) was applied to a thickness of 1 μm. The substrate coated with this film was immersed in an electrolytic solution using a platinum mesh electrode as a positive electrode and a negative electrode.
The electrolytic polymerization of virol was carried out at a constant voltage of 1.5V.
The electrolytic solution used was acetonitrile-water-ethylene glycol (90:5:5) in which 1M of virol was dissolved and 0.3M of tetraethylammonium tetrafluoroborate was dissolved as an electrolytic salt. When the electrolysis time was varied from 5 to 60 minutes, black polypyrrole was precipitated on the substrate and the film thickness increased even though the Nesaglass substrate was covered with an insulating film. . FIG. 1 is a graph showing the relationship between polymerization time and electrical conductivity of the obtained film. It has been revealed that by changing the polymerization time, the electrical conductivity of the film can be changed by about nine orders of magnitude, and that a film with a desired electrical conductivity can be produced. Example 2 Polyvinyl chloride (molecular weight 70
10,000) Apply a film to a thickness of approximately 1 μm using the spin coating method. This substrate was mixed with 1M virol in acetonitrile-water-ethylene glycol (98:1:1) solvent.
It was immersed in a solution containing 0.3M of tetraethylammonium tetrafluoroborate, and electrolytically polymerized at 1.3V for 20 minutes. As in Example 1, a black polypyrrole film was deposited. This polypyrrole was formed to be laminated between a Nesa glass substrate and polyvinyl chloride. This film could be easily peeled off from the Nesa glass substrate, and a film with a smooth surface and extremely high mechanical strength was obtained, and could be stretched approximately 1.5 times. The electrical conductivity was approximately 80/Ω·cm on the polypyrrole surface. Example 3 As in Example 2, polyvinyl chloride was spin-coated onto a Nesa glass substrate to a thickness of 1 μm.
This was electrolytically oxidized at 1.2 V for 20 minutes in a solution containing 3 M of virol and 0.3 M of tetraethylammonium tetrafluoroborate in a mixed solvent of acetonitrile-methyl ethyl ketone-water-ethylene glycol (58:40:1:1). . Example 2
Polypyrrole was precipitated in the same manner as in Example 2.
Unlike in Example 1, the obtained film did not have a laminated structure but a single layer structure, and its electrical conductivity was 3.5/Ω·cm, which was about the same as in Example 1. Comparative Example 1 Even when the same films as in Examples 2 and 3 were subjected to electrolytic polymerization in acetonitrile-water (9:1), no polypyrrole was deposited. As is clear from Examples 2 and 3 and Comparative Example 1, it is necessary to optimize the electrolytic polymerization solvent for each resin in order to produce a uniform film. That is, it is necessary that the monomer can sufficiently diffuse through the thermoplastic resin film and reach the electrode surface. It is presumed that in Comparative Example 1, diffusion could not be achieved. In the case of each of the above examples, if there is sufficient space in the thermoplastic resin film, the electrolytically oxidized polypyrrole will grow within the film, and a composite film as in Examples 1 and 3 will be obtained. If it cannot penetrate, it is estimated that the film will have a two-layer structure. Examples 4 to 44 The thermoplastic resin films shown in Table 1 below were each applied to a thickness of about 1 μm on a Nesa glass substrate using a spin coating method or a casting method. This substrate was dissolved in 1M pyrrole and 0.3M tetraethylammonium tetrafluoroborate in the solvent shown in Table 1, and electrolytically polymerized at 1.2V for 20 minutes. In both systems, black polypyrrole was precipitated, and a uniform film similar to that of Example 1 was obtained. Table 1 shows the measured values of the film thickness and electrical conductivity of the obtained composite film. In Table 1, the substrates are Nesa glass substrate,
Polymerization time was 20 minutes/room temperature. Also, MEK is methyl ethyl ketone, EG is ethylene glycol,
DMF means N,N-dimethylformamide.

【表】【table】

【表】 以上の表1から明らかなように、いずれの系で
も高い電気伝導度を示すことがわかつた。 このように、基板上に薄膜として塗布できる熱
可塑性樹脂フイルムはほとんどの材料が、電解重
合溶液の組成を適正に選択することにより、導電
性高分子フイルムに変えることが可能である。し
たがつて、本発明に使用できる熱可塑性樹脂フイ
ルムは上記の実施例にとどまることはなく、広範
囲な材料が適用できる。 実施例 45〜50 実施例1と同様にネサガラス基板上にCMSを
約1μm厚にスピンコートした。この基板を正極
とし、3−メチルピロール(実施例45)、N−メ
チルピロール(実施例46)、チオフエン(実施例
47)、アズレン(実施例48)、メチルアズレン(実
施例49)、ピレン(実施例50)を下記表2に示し
た各溶剤に溶解させ、溶液中に白金電極を対向電
極として電解重合を行つた。20分間の電解重合で
いずれも膜厚増加と共に、フイルムの電気伝導度
の向上がみられた。結果は表2にまとめた。 表2において、基板としてはネサガラス基板、
CMS膜厚は約1μm、重合時間20分/室温とした。
また、実施例45〜48の電解質としては0.3Mのテ
トラエチルアンモニウムテトラフルオロボレート
を用いた。
[Table] As is clear from Table 1 above, it was found that all systems exhibited high electrical conductivity. In this way, most thermoplastic resin films that can be applied as a thin film onto a substrate can be converted into conductive polymer films by appropriately selecting the composition of the electrolytic polymerization solution. Therefore, the thermoplastic resin film that can be used in the present invention is not limited to the above embodiments, and a wide range of materials can be used. Examples 45 to 50 As in Example 1, CMS was spin-coated onto a Nesa glass substrate to a thickness of about 1 μm. This substrate was used as a positive electrode, and 3-methylpyrrole (Example 45), N-methylpyrrole (Example 46), thiophene (Example
47), azulene (Example 48), methyl azulene (Example 49), and pyrene (Example 50) were dissolved in each solvent shown in Table 2 below, and electrolytic polymerization was performed using a platinum electrode as a counter electrode in the solution. Ivy. After 20 minutes of electrolytic polymerization, both film thickness increased and the electrical conductivity of the films improved. The results are summarized in Table 2. In Table 2, the substrates are Nesa glass substrate,
The CMS film thickness was approximately 1 μm, and the polymerization time was 20 minutes/room temperature.
Moreover, 0.3M tetraethylammonium tetrafluoroborate was used as the electrolyte in Examples 45 to 48.

【表】 実施例 51、52 実施例1と同じCMSを約0.1μm厚の金を蒸着
したガラス基板(実施例51)、n型シリコン基板
(リンドーブ、抵抗15Ω・cm、実施例52)に約1μ
mの厚さでスピンコーテイングした。この基板を
アセトニトリルにピロール3M、テトラエチルア
ンモニウムトルエンスルホネート0.3Mを加えた
溶液中に対向電極と共に浸漬し、1.2Vで20分間
電解重合を行つた。その結果、金蒸着基板では
1.8μm厚、n型シリコン基板では1.35μm厚のフ
イルムが得られ、電気伝導度はそれぞれ4.5/
Ω・cm、1.2/Ω・cmであつた。このように金属
基板でも半導体基板でも均一な導電性高分子フイ
ルムが得られた。 以上実施例を挙げたが、本発明は従来にない新
しい原理による導電性高分子フイルムの作製法で
あり、上記の実施例のみに制限されるものでな
く、広範囲な材料の組合せが可能である。 〔発明の効果〕 以上説明したように、本発明に従つて、ピロー
ル等の電解酸化反応により導電性高分子材料を形
成する芳香族系化合物を、熱可塑性樹脂フイルム
をコーテイングした電極基板上で電解酸化する
と、熱可塑性樹脂フイルムと導電性芳香族系高分
子材料の複合フイルムが均一性よく得られる。こ
れらのフイルムは高い電気伝導度を示し、また、
重合時間により、任意に電気伝導度を制御できる
利点がらう。更に熱可塑性樹脂フイルムとして機
械的強度の高いものを用いることにより、機械的
強度の優れた導電性高分子フイルムが得られ、ま
た、基板密着力の強い熱可塑性樹脂フイルムを用
いると密着力の高い導電性高分子フイルムが得ら
れる等、格別顕著な効果が奏せられる。
[Table] Examples 51, 52 The same CMS as in Example 1 was applied to a glass substrate (Example 51) on which gold was deposited approximately 0.1 μm thick, and an n-type silicon substrate (Lin dove, resistance 15 Ω cm, Example 52). 1μ
Spin coating was performed to a thickness of m. This substrate was immersed together with a counter electrode in a solution containing 3M of pyrrole and 0.3M of tetraethylammonium toluenesulfonate in acetonitrile, and electrolytic polymerization was performed at 1.2V for 20 minutes. As a result, on gold-deposited substrates,
A film with a thickness of 1.8 μm and an n-type silicon substrate of 1.35 μm was obtained, and the electrical conductivity was 4.5/1, respectively.
It was Ω・cm, 1.2/Ω・cm. In this way, uniform conductive polymer films were obtained on both metal and semiconductor substrates. Although the examples have been given above, the present invention is a method for producing a conductive polymer film based on a new principle that has never existed before, and is not limited to the above examples, but a wide range of combinations of materials are possible. . [Effects of the Invention] As explained above, according to the present invention, an aromatic compound such as pyrrole that forms a conductive polymer material by electrolytic oxidation reaction is electrolyzed on an electrode substrate coated with a thermoplastic resin film. When oxidized, a composite film of a thermoplastic resin film and a conductive aromatic polymer material can be obtained with good uniformity. These films exhibit high electrical conductivity and also
It has the advantage that electrical conductivity can be controlled arbitrarily by changing the polymerization time. Furthermore, by using a thermoplastic resin film with high mechanical strength, a conductive polymer film with excellent mechanical strength can be obtained, and by using a thermoplastic resin film with strong substrate adhesion, it is possible to obtain a conductive polymer film with high mechanical strength. Particularly remarkable effects, such as the ability to obtain a conductive polymer film, can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はクロロメチル化ポリスチレンを塗布し
たネサガラス基板を用いた場合のポリピロールの
重合時間と混合フイルムの電気伝導度との関係を
示したグラフである。
FIG. 1 is a graph showing the relationship between the polymerization time of polypyrrole and the electrical conductivity of a mixed film when using a Nesa glass substrate coated with chloromethylated polystyrene.

Claims (1)

【特許請求の範囲】 1 電極基板上に形成した熱可塑性樹脂フイルム
と、該基板上に電解酸化により電気化学的に形成
した芳香族系高分子材料とから成ることを特徴と
する導電性高分子フイルム。 2 電極基板上に熱可塑性樹脂フイルムを作製す
る工程、及びその上に電解酸化により芳香族系高
分子材料を電気化学的に形成する工程の各工程を
包含することを特徴とする導電性高分子フイル
ム。の製造方法
[Claims] 1. A conductive polymer comprising a thermoplastic resin film formed on an electrode substrate and an aromatic polymer material electrochemically formed on the substrate by electrolytic oxidation. film. 2. A conductive polymer comprising the steps of producing a thermoplastic resin film on an electrode substrate and electrochemically forming an aromatic polymer material thereon by electrolytic oxidation. film. manufacturing method
JP58213201A 1983-10-07 1983-11-15 Conductive high molecular film and manufacture thereof Granted JPS60105532A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP58213201A JPS60105532A (en) 1983-11-15 1983-11-15 Conductive high molecular film and manufacture thereof
US06/657,314 US4559112A (en) 1983-10-07 1984-10-02 Electrically conducting polymer film and method of manufacturing the same
EP19840306764 EP0144127B1 (en) 1983-10-07 1984-10-04 Electrically conducting polymer film and method of manufacturing the same
CA000464743A CA1231670A (en) 1983-10-07 1984-10-04 Electrically conducting polymer film and method of manufacturing the same
EP19870106076 EP0247366B1 (en) 1983-10-07 1984-10-04 Electrically conducting polymer film and method of manufacturing the same
DE8787106076T DE3484598D1 (en) 1983-10-07 1984-10-04 ELECTRICALLY CONDUCTIVE POLYMER AND THEIR PRODUCTION.
DE8484306764T DE3481849D1 (en) 1983-10-07 1984-10-04 ELECTRICALLY CONDUCTIVE POLYMERS AND THEIR PRODUCTION.
KR1019840006200A KR890004938B1 (en) 1983-10-07 1984-10-06 Electrically conduction polymer film and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213201A JPS60105532A (en) 1983-11-15 1983-11-15 Conductive high molecular film and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60105532A JPS60105532A (en) 1985-06-11
JPH047521B2 true JPH047521B2 (en) 1992-02-12

Family

ID=16635206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213201A Granted JPS60105532A (en) 1983-10-07 1983-11-15 Conductive high molecular film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60105532A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228546A (en) * 1984-04-27 1985-11-13 Nippon Telegr & Teleph Corp <Ntt> Antistatic film having excellent transparency
JPS624898A (en) * 1985-07-01 1987-01-10 Agency Of Ind Science & Technol Production of electrically conductive polymer film containing particle
JPH0619031B2 (en) * 1986-11-13 1994-03-16 徳山曹達株式会社 Conducting polymer and method for producing the same
JPH0779007B2 (en) * 1989-04-27 1995-08-23 明美 中井 Manufacturing method of conductive composite material

Also Published As

Publication number Publication date
JPS60105532A (en) 1985-06-11

Similar Documents

Publication Publication Date Title
EP0144127B1 (en) Electrically conducting polymer film and method of manufacturing the same
KR900003155B1 (en) Polymer film with conductive pattern and method of manufacturing the same
JPH0678492B2 (en) Highly conductive polymer composition and method for producing the same
JPS5918726A (en) Pyrrole electroconductive copolymer and manufacture
JPH047521B2 (en)
JPH056285B2 (en)
JPH07104527B2 (en) Electrochromic display element
JPS60177506A (en) Conductive polymer film and method of producing same
JPH056284B2 (en)
JPS60137922A (en) Apparatus for electrolytic polymerization
JPH0124236B2 (en)
JPH03231932A (en) Porous film produced by electrolytic polymerization and production thereof
JPS5931565A (en) Polymer covering electrode
JPS60228548A (en) Continuous production of conductive polymer film and apparatus therefor
JPS63248054A (en) Conductive high-molecular electrode material and its manufacture
JP2582935B2 (en) Liquid crystal display
KALAYCIOĞLU et al. Impedance characteristics of conducting polypyrrole-poly (ethylvinylether) graft films
JPS60257011A (en) Method of producing polymer film having conductivity in pattern shape
JP2566674B2 (en) Liquid crystal display
JPS61279001A (en) Conducting high polymer film and manufacture thereof
JPH0578575B2 (en)
JPS60251675A (en) Conductive high-molecular film solar cell and manufacture thereof
JPS60228547A (en) Preparation of conductive polymer film
JPS6124103A (en) Conductive polymer film and method of producing same
JPS63156832A (en) Production of transparent and electrically conductive film