JPH0779007B2 - Manufacturing method of conductive composite material - Google Patents

Manufacturing method of conductive composite material

Info

Publication number
JPH0779007B2
JPH0779007B2 JP1108200A JP10820089A JPH0779007B2 JP H0779007 B2 JPH0779007 B2 JP H0779007B2 JP 1108200 A JP1108200 A JP 1108200A JP 10820089 A JP10820089 A JP 10820089A JP H0779007 B2 JPH0779007 B2 JP H0779007B2
Authority
JP
Japan
Prior art keywords
working electrode
electrode
conductive polymer
composite material
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1108200A
Other languages
Japanese (ja)
Other versions
JPH02288018A (en
Inventor
明美 中井
Original Assignee
明美 中井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明美 中井 filed Critical 明美 中井
Priority to JP1108200A priority Critical patent/JPH0779007B2/en
Publication of JPH02288018A publication Critical patent/JPH02288018A/en
Publication of JPH0779007B2 publication Critical patent/JPH0779007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電池用電極材料、光電変換素子、電磁波シール
ド材料、カラースイツチング素子等として好適に使用さ
れるポリアニリン、ポリチエニレン、ポリピロール等の
有機導電性高分子代合物(以下単に導電性高分子材料と
いう)と布帛、不織布等の繊維状材料との導電性高分子
複合材料の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to organic conductive materials such as polyaniline, polythienylene, polypyrrole, which are preferably used as battery electrode materials, photoelectric conversion elements, electromagnetic wave shielding materials, color switching elements and the like. The present invention relates to a method for producing a conductive polymer composite material of a conductive polymer substitute (hereinafter simply referred to as a conductive polymer material) and a fibrous material such as cloth or nonwoven fabric.

〔従来の技術〕[Conventional technology]

近年、導電性高分子材料は軽量で可とう性に優れしかも
加工性がよいうえ、原料が豊富で資源枯渇の問題がない
などのため、導電性高分子材料を電子材料等の機能材料
として使用するための研究開発が盛んに行なわれてお
り、なかでもポリアニリン、ポリチエニレン、ポリピロ
ール、ポリアセチレン、ポリ−P−フエニレン等の導電
性高分子材料は、二次電池や太陽電池等の電極材料とし
て、又カラースイツチング素子、光電変換素子、電磁波
シールド材料、帯電防止材料などに広範な用途を有する
電子材料として注目され、精力的な研究開発が行なわれ
ている。〔H.Shirakawa,Ikeda,Poly.J.2.231(1971),
杉道夫、斎藤充善等、応用物理52.567(1983),横山正
明、高分子34.728(1985)〕 従来から、上記のような導電性高分子化合物は化学的な
酸化重合や電解酸化重合によつて得られることが知られ
ているが、何れの方法によつても生成された導電性高分
子材料は不融、不溶のため加工性に劣り、使用目的物の
形状に合せて重合して製造するなどの方法が採用されて
いる。
In recent years, conductive polymer materials have been used as functional materials such as electronic materials because of their light weight, excellent flexibility, good workability, and the abundance of raw materials that do not cause resource exhaustion. Conductive research and development have been actively carried out, and among them, conductive polymer materials such as polyaniline, polythienylene, polypyrrole, polyacetylene, and poly-P-phenylene are used as electrode materials for secondary batteries and solar cells. It has attracted attention as an electronic material having a wide range of applications such as a color switching element, a photoelectric conversion element, an electromagnetic wave shielding material, and an antistatic material, and vigorous research and development has been conducted. [H. Shirakawa, Ikeda, Poly.J.2.231 (1971),
Sugi Michio, Saito Mitsuyoshi et al., Applied Physics 52.567 (1983), Yokoyama Masaaki, Polymer 34.728 (1985)] Conventionally, conductive polymer compounds such as those mentioned above have been prepared by chemical oxidative polymerization or electrolytic oxidative polymerization. It is known to be obtained, but the conductive polymer material produced by either method is infusible and insoluble, so that it is inferior in processability, and is produced by polymerizing in accordance with the shape of the intended use. Etc. are adopted.

更に上記のように、導電性高分子材料は脆くて、二次加
工が困難なため、SUS鋼製の網などによつて裏打ちして
使用されている。
Further, as described above, since the conductive polymer material is brittle and difficult to be secondary processed, it is used by being lined with a net made of SUS steel or the like.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明者の検討結果によると、導電性高分子材料とSUS
鋼製の網を一体化した従来の複合物においては高分子化
合物の電解重合時と各種用途に使用された場合の電位が
異なるため、その複合物材質が大きな影響を与えること
が見出された。即ち、後記の比較例に示すように、従来
対腐食性に優れているといわれているSUS316等オーステ
ナイト系ステンレスは、電解重合する際においては優れ
た対腐食性を示すが、製品の用途例えば電池電極に使用
したときは電位が貴となるためかえつて腐食する。
According to the examination result of the present inventor, conductive polymer material and SUS
It has been found that the potential of the composite material in a conventional composite material that integrates a steel net has a great influence during electropolymerization of polymer compounds and when it is used for various purposes. . That is, as shown in Comparative Examples below, austenitic stainless steel such as SUS316, which is conventionally said to be excellent in corrosion resistance, shows excellent corrosion resistance during electrolytic polymerization, but is used for products such as batteries. When used as an electrode, it becomes corrosive because it has a noble potential.

一方貴な電位で対腐食性の優れているSUS444等のフエラ
イト系ステンレス鋼はその逆に、電池電極として作用す
るときは腐食しないが、電解重合時には濃厚な酸溶液で
腐食する。
On the other hand, ferritic stainless steels such as SUS444, which have excellent corrosion resistance at noble potential, do not corrode when acting as a battery electrode, but corrode with a concentrated acid solution during electrolytic polymerization.

例えば、SUS316ステンレス鋼の網を重合電極として、こ
れに電解重合法によつてポリアニリン膜を析出形成さ
せ、このポリアニリン膜を正極、重合電極を正極集電体
とする電池を作成し、サイクル寿命を評価したところ著
しく寿命が短かく、電池性能が著しく不良であることが
判明した。その原因は正極集電体(SUS316)に電池試験
中に孔食が発生し、この孔食発生にともなう腐食生成物
がポリアニリンの電気化学的活性部位に悪影響を及ぼし
て、ポリアニリンの正極のクーロン効果や放電容量を減
少させたり、あるいは腐食の進行に伴つてポリアニリン
膜と集電体との間に剥離を生じさせて、集電体の集電能
力の低下や内部抵抗の増大を惹き起すためである。
For example, a net of SUS316 stainless steel is used as a polymerization electrode, and a polyaniline film is deposited and formed on this by an electrolytic polymerization method, and a battery using the polyaniline film as a positive electrode and the polymerization electrode as a positive electrode current collector is prepared, and the cycle life is increased. Upon evaluation, it was found that the battery life was extremely short and the battery performance was extremely poor. The cause is that pitting corrosion occurs on the positive electrode current collector (SUS316) during the battery test, and the corrosion product accompanying this pitting corrosion adversely affects the electrochemically active site of polyaniline, and the polyaniline positive electrode Coulomb effect. Or to reduce the discharge capacity, or to cause peeling between the polyaniline film and the current collector with the progress of corrosion, which causes a decrease in the current collecting ability of the current collector and an increase in internal resistance. is there.

このように集電体即ち重合電極にSUS316等のオルステナ
イト系のステンレスを使用したときは電池試験中に腐食
することによつて、サイクル寿命等電池性能に重大な悪
影響を与えることが本発明者によつて見付けられた。
In this way, when an austenitic stainless steel such as SUS316 is used for the current collector, that is, the polymerized electrode, the present inventor may have a serious adverse effect on the battery performance such as cycle life due to corrosion during the battery test. Was found by.

またSUS444等のフエライト系のステンレス鋼を上記重合
電極に使用したときは、電解重合する際に濃厚酸を含む
電解液に一定時間以上放置すると腐食し、ステンレス鋼
組成金属が溶出し、重合電解液を汚染すると同時にステ
ンレス鋼補強材を劣化溶解することになる。この原因は
重合電極としてホウフツ化水素酸などを含む濃厚酸溶液
中に、或一定以上放置させるとSUS444の腐食電位はSUS3
16のそれに比して卑なため腐食が起る。
Further, when a ferrite type stainless steel such as SUS444 is used for the above-mentioned polymerization electrode, it is corroded when left in an electrolytic solution containing concentrated acid for a certain time or more during electrolytic polymerization, the stainless steel composition metal is eluted, and the polymerization electrolytic solution At the same time, it will deteriorate and dissolve the stainless steel reinforcing material. This is because the corrosion potential of SUS444 is SUS3 when it is left in a concentrated acid solution containing borofluoric acid, etc.
Corrosion occurs because it is baser than that of 16.

この対策としては、SUS444が既に持つている不働体膜が
消滅するまえに電解重合を開始し、ポリアニリンによつ
て、覆つてしまう必要があるが実際の工業的生産におい
ては著しく困難である。
As a countermeasure against this, it is necessary to start electrolytic polymerization before the passivation film already possessed by SUS444 and cover it with polyaniline, which is extremely difficult in actual industrial production.

更に平滑な金属板に電解重合し、ポリアニリン被膜を剥
ぎ取る方法も考えられるが、前記のように導電性高分子
材料は可とう性に劣るため、厚さが数10μmに限定さ
れ、それ以上厚くなると割れてしまう。
A method of stripping the polyaniline coating by electrolytic polymerization on a smooth metal plate is also conceivable. However, since the conductive polymer material is inferior in flexibility as described above, the thickness is limited to several tens of μm, and the thickness is further increased. Then it will break.

従つて上記のようなポリアニリン等の導電性高分子材料
を有効に電解重合し、高分子としての性能低下を来すこ
となく、その特性を有効に発揮させる複合材料の開発が
要望されていた。本発明は上記の要望に応えることを目
的とするものである。
Therefore, there has been a demand for the development of a composite material which effectively electrolytically polymerizes a conductive polymer material such as polyaniline as described above and effectively exhibits its characteristics without deteriorating the performance as a polymer. The present invention aims to meet the above-mentioned needs.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明者は上記の目的を達成するために、鋭意研究した
結果、遂に本発明に到達したもので、本発明は電解槽内
に収容された電解重合液中に作用極と対極とを浸漬し、
電解重合法によつて導電性高分子化合物を作用極上に析
出形成させることにより、導電性高分子化合物を製造す
る方法において、電解槽の電解重合液中に作用極と対極
とをほぼ水平方向にそつて、かつ作用極を下側に、対極
を上側に配置し、上記作用極に予め繊維布帛を配設し、
電解重合した後に、作用極より繊維布帛つき導電性複合
材料を剥離する導電性複合材料の製造法を提供するもの
である。
In order to achieve the above-mentioned object, the present inventor has conducted earnest research and, as a result, finally reached the present invention.The present invention involves immersing a working electrode and a counter electrode in an electropolymerization solution contained in an electrolytic cell. ,
By depositing and forming a conductive polymer compound on the working electrode by an electrolytic polymerization method, in a method for producing a conductive polymer compound, the working electrode and the counter electrode in the electrolytic polymerization liquid of the electrolytic cell in a substantially horizontal direction. Then, the working electrode is arranged on the lower side and the counter electrode is arranged on the upper side, and the fiber cloth is previously arranged on the working electrode,
The present invention provides a method for producing a conductive composite material in which the conductive composite material with a fiber cloth is peeled off from the working electrode after electrolytic polymerization.

以下に本発明を更に詳細説明する。The present invention will be described in more detail below.

本発明によつて製造し得る導電性高分子材料は電解重合
によつて得ることができるものであれば、その種類に限
定はなく、例えばポリベンゼン、ポリパラフェニレン、
ポリアニリン等のベンゼン及びその誘導体のポリマー、
ポリピリジン、ポリチオフエン、ポリフラン、ポリピロ
ール、ポリアントラセンやポリナフタレン等のヘテロ及
び多核芳香族化合物のポリマーが挙げられる。
The conductive polymer material that can be produced according to the present invention is not limited in kind as long as it can be obtained by electrolytic polymerization, and examples thereof include polybenzene and polyparaphenylene.
Polymers of benzene and its derivatives, such as polyaniline,
Examples include polymers of hetero- and polynuclear aromatic compounds such as polypyridine, polythiophene, polyfuran, polypyrrole, polyanthracene and polynaphthalene.

本発明においては、上記の導電性高分子材料を電解重合
法によつて製造する場合には、電解槽に電解重合液を入
れ、該電解槽に作用極(重合電極)と対極とを所定の間
隔を隔てて配置して電解重合を行なう。その場合、本発
明においては作用極としては電解重合液の酸によつて腐
食され難いものなら特に限定はなく、前記のSUS313ステ
ンレス、白金、金、鉛、パラジウム、ニツケル、チタ
ン、カーボングラフアイト等が挙げられる。あるいはこ
れらの材料をフイルム又はガラス上に蒸着、スパツタリ
ング、塗布等で析出させたものでもよい。
In the present invention, when the above-mentioned conductive polymer material is produced by an electrolytic polymerization method, an electrolytic polymerization solution is put into an electrolytic cell, and a predetermined working electrode (polymerization electrode) and counter electrode are put in the electrolytic cell. Electropolymerization is performed by arranging them at intervals. In that case, in the present invention, the working electrode is not particularly limited as long as it is difficult to be corroded by the acid of the electrolytic polymerization solution, and the above-mentioned SUS313 stainless steel, platinum, gold, lead, palladium, nickel, titanium, carbon graphite, etc. Is mentioned. Alternatively, these materials may be deposited on a film or glass by vapor deposition, sputtering, coating or the like.

本発明においては電解重合を開始する以前に作用極上に
繊維布帛を配設する。
In the present invention, the fiber cloth is arranged on the working electrode before the electrolytic polymerization is started.

電解重合は所定条件によつて、作用極と対極との間で行
なわれるが、導電性高分子材料は作用極の上に析出す
る。電解重合が進行するに従つて、配設された繊維布帛
を包み覆うようにして導電性高分子材料が成長する。
The electropolymerization is performed between the working electrode and the counter electrode under certain conditions, but the conductive polymer material is deposited on the working electrode. As the electrolytic polymerization progresses, the conductive polymer material grows so as to cover and cover the arranged fiber cloth.

所定条件の後、重合を停止し、繊維布帛を芯材として作
用極より導電性複合材料を剥離する。
After predetermined conditions, the polymerization is stopped, and the conductive composite material is peeled off from the working electrode using the fiber cloth as the core material.

上記の導電性複合材料の作用極からの剥離は湿潤状態で
行なうのが好ましく、また作用極表面が平滑であるほど
容易である。
The above-mentioned conductive composite material is preferably peeled off from the working electrode in a wet state, and the smoother the working electrode surface, the easier the peeling.

本発明に使用される繊維布帛には特に限定はないが、電
解重合中に比較的容易に電解液を通過させ、作用極との
密着が容易であればよく、各種布帛の平織、簾織、綾織
等の織布や不織布が使用可能である。また使用繊維布帛
の材質も特に限定されないが、電解重合によつて溶解や
劣化せず、電池等の製品に使用時においても、溶解劣化
しないものであればよく、ポリプロピレン、ポリ塩化ビ
ニル、ポリエチレン、ポリエステル等が好適に使用され
る。
The fiber cloth used in the present invention is not particularly limited, as long as it allows the electrolytic solution to pass relatively easily during the electropolymerization and easily adheres to the working electrode, a plain weave of various cloths, a blind weave, A woven fabric such as a twill or a non-woven fabric can be used. Further, the material of the fiber cloth used is not particularly limited, but it does not dissolve or deteriorate due to electrolytic polymerization, and even when used in products such as batteries, it does not have to dissolve and deteriorate, and polypropylene, polyvinyl chloride, polyethylene, Polyester or the like is preferably used.

また対極に使用し得る材質としては、上記の作用極と同
様の材料が使用し得るほか、電解中に重合液に不溶であ
れば特に制限はない。
The material that can be used for the counter electrode may be the same as the material for the working electrode described above, and is not particularly limited as long as it is insoluble in the polymerization liquid during electrolysis.

本発明の複合材料を電池電極材料として電池を構成した
場合、その他の電池構成部材としては公知のものが使用
し得る。例えば上記のような導電性高分子材料を正極と
する場合は負極活物質としてはこのような導電性高分子
材料のほか、グラフアイトや1〜2価のカチオンとなり
得る金属であつて、例えばリチウム、ナトリウム、マグ
ネシウム、カルシウム、バリウム、亜鉛及びそれらを含
む合金(リチウム−アルミニウム合金)を使用すること
ができる。
When a battery is constructed by using the composite material of the present invention as a battery electrode material, other known battery constituent members can be used. For example, when the above-mentioned conductive polymer material is used as the positive electrode, as the negative electrode active material, in addition to such conductive polymer material, a graphite or a metal capable of becoming a mono- or divalent cation, such as lithium , Sodium, magnesium, calcium, barium, zinc and alloys containing them (lithium-aluminum alloys) can be used.

また電解質、封口板、電池ケース等においても通常使用
されるものを用いて何等問題はない。
In addition, there is no problem in using electrolytes, sealing plates, battery cases, etc. that are normally used.

〔作用〕[Action]

本発明の製造方法により導電性高分子材料を製造する場
合、電解槽内に配設する作用極と対極との配置に関して
は特に制限はないが、電解槽の電解重合液中に作用極と
対極とをほぼ水平方向にそつて、かつ作用極を下側に、
対極を上側に配置することが好ましく、これによつて電
解重合時に対極から発生するガスが作用極に重合生成す
る導電性高分子膜に殆んど影響を与えることがなく、対
極から上昇し、作用極に膜厚が均一にピンホールやひび
割れ等のない均一な導電性高分子を得ることができる効
果を奏する。更に、この場合対極の下側に発生するガス
が部分的に凝集して停滞することを防ぐため、対極を網
状、その他気体通過が容易な形状に作成すると、作用極
上により均一な膜を得ることができる。同様に対極に振
動を与えることはガス離れに効果がある。
When producing a conductive polymer material by the production method of the present invention, there is no particular limitation on the arrangement of the working electrode and the counter electrode disposed in the electrolytic cell, but the working electrode and the counter electrode in the electrolytic polymerization liquid of the electrolytic cell. And in a substantially horizontal direction, and the working electrode on the lower side,
It is preferable to arrange the counter electrode on the upper side, whereby the gas generated from the counter electrode during electrolytic polymerization hardly affects the conductive polymer film polymerized and formed on the working electrode and rises from the counter electrode. The effect that a uniform conductive polymer having a uniform film thickness without pinholes or cracks on the working electrode can be obtained. Furthermore, in this case, in order to prevent the gas generated below the counter electrode from partially condensing and stagnating, if the counter electrode is formed in a mesh shape or other shape that allows easy gas passage, a more uniform film can be obtained on the working electrode. You can Similarly, applying vibration to the counter electrode is effective in separating gas.

更に上記作用極を長尺のシート状に形成し、この作用極
を連続的に又は間欠的に走行させながら電解重合を行な
うことができ、これより導電性高分子膜を連続的に大量
生産することができる。
Further, the working electrode can be formed in a long sheet shape, and electrolytic polymerization can be carried out while running the working electrode continuously or intermittently, whereby a conductive polymer film is continuously mass-produced. be able to.

本発明に使用される電解重合液の組成、電解条件は従来
からの組成、条件が採用でき、製造すべき導電性高分子
の種類、膜厚、物性等に応じて適宜選定すればよい。
The composition and electrolysis conditions of the electropolymerization solution used in the present invention may be the conventional compositions and conditions, and may be appropriately selected according to the type, film thickness and physical properties of the conductive polymer to be produced.

(a)電解重合液の温度を−40℃〜30℃、好適には−5
℃〜20℃に設定する。
(A) The temperature of the electropolymerization liquid is -40 ° C to 30 ° C, preferably -5.
Set to ℃ ~ 20 ℃.

(b)導電性高分子膜が析出する側の電極(作用極)の
電流密度を50A/cm2以下とする。
(B) The current density of the electrode (working electrode) on the side where the conductive polymer film is deposited is set to 50 A / cm 2 or less.

(c)ポリマー浮遊物の発生、増加をもたらすおそれの
ある電解重合液の攪拌を行なわない。
(C) Do not stir the electropolymerization liquid, which may cause generation or increase of polymer suspended matter.

を採用することが望ましい。It is desirable to adopt.

〔発明の効果〕〔The invention's effect〕

本発明の効果を纒めると下記の通りである。本発明は電
解槽内に収容された電解重合液中に作用極と対極とを浸
漬し、電解重合法によつて導電性高分子材料を製造する
方法において、予め作用極上に繊維布帛を配設し、電解
重合をした後に作用極より繊維布帛つき導電性複合材料
を剥離する製造法によつて、 (i)導電性高分子材料の特性を有効に発揮させること
のできる複合材料が簡単かつ確実に得られる。
The effects of the present invention are summarized as follows. The present invention is a method of immersing a working electrode and a counter electrode in an electrolytic polymerization solution housed in an electrolytic cell, and producing a conductive polymer material by an electrolytic polymerization method, in which a fiber cloth is disposed on the working electrode in advance. Then, by the manufacturing method in which the conductive composite material with the fiber cloth is peeled off from the working electrode after the electrolytic polymerization, (i) the composite material capable of effectively exhibiting the characteristics of the conductive polymer material is simple and reliable. Can be obtained.

(ii)上記のようにして製造された導電性高分子材料を
電池正極として電池を構成し、サイクル試験を行つたと
きはSUS316ステンレス等の孔食の原因となる材料がない
ため、極めて良好なサイクル寿命が得られる。また電解
重合においても腐食の原因となるSUS444ステンレスを使
用する必要がないので、電解液が清純に保たれ、作業上
に不都合が無い。
(Ii) When a battery is constructed using the conductive polymer material produced as described above as a battery positive electrode and a cycle test is performed, there is no material that causes pitting corrosion such as SUS316 stainless steel, so it is extremely good. Cycle life is obtained. In addition, since it is not necessary to use SUS444 stainless steel which causes corrosion even in electrolytic polymerization, the electrolytic solution is kept pure and there is no inconvenience in work.

(iii)芯材として繊維布帛が存在するため、電池作成
に際しても割れなどの不都合を生ずることなく、良好に
電池作業が実施できた。
(Iii) Since the fiber cloth is present as the core material, the battery work was satisfactorily carried out without causing any inconvenience such as cracking when the battery was produced.

(iv)本発明の導電性複合材料は電解重合においても電
池等の製品試験においても耐食性が高く、導電性高分子
の特性を有効に発揮させると同時に加工性、強度等の性
能においても、また価格の点においても優れた製品とい
える。
(Iv) The conductive composite material of the present invention has high corrosion resistance both in electrolytic polymerization and in product tests of batteries and the like, and effectively exhibits the characteristics of the conductive polymer, and at the same time, in terms of performance such as workability and strength, It can be said that it is an excellent product in terms of price.

(v)本発明の繊維布帛と高分子材料とが一体化した導
電性複合材料は二次電池や太陽電池などの電極材料、光
電変換素子、電磁波シール材料、カラースイツチング素
子などに使用することができて、本発明によつて製造さ
れた複合材料を電池の電極とする場合、導電性複合材料
は正極及び/又は負極として有効に働く。このように本
発明の複合材料を電池の電極とした場合には補強材とし
て繊維布帛又は不織布が使用されており、電解重合にお
いて腐食の原因となるSUS444や電池使用時に孔食を発生
するSUS316を使用していないため、良好に電解重合が実
施できるうえに更に電池性能においてもサイクル寿命が
長いなどの利点がある。
(V) The conductive composite material in which the fiber cloth of the present invention and a polymer material are integrated is used for an electrode material of a secondary battery or a solar cell, a photoelectric conversion element, an electromagnetic wave sealing material, a color switching element, or the like. Therefore, when the composite material manufactured according to the present invention is used as an electrode of a battery, the conductive composite material effectively functions as a positive electrode and / or a negative electrode. In this way, when the composite material of the present invention is used as a battery electrode, a fiber cloth or a non-woven fabric is used as a reinforcing material, and SUS444 that causes corrosion in electrolytic polymerization or SUS316 that causes pitting corrosion when using a battery is used. Since it is not used, it has advantages such that good electrolytic polymerization can be carried out and the cycle life is long in battery performance.

(vi)電解槽の電解重合液中に作用極と対極とをほぼ水
平方向にそって、かつ作用極を下側に、対極を上側に配
置することによつて、電解重合時に対極から発生するガ
スが作用極に重合生成する導電性高分子膜に殆ど影響を
与えることがなく、対極から上昇し、作用極に膜厚がピ
ンホールやひび割れ等のない均一な導電性高分子を得る
ことができる。
(Vi) Generated from the counter electrode during electropolymerization by arranging the working electrode and the counter electrode in the electropolymerization solution in the electrolytic cell in a substantially horizontal direction, and disposing the working electrode on the lower side and the counter electrode on the upper side. The gas has almost no effect on the conductive polymer film formed by polymerization on the working electrode and rises from the counter electrode to obtain a uniform conductive polymer having a film thickness on the working electrode without pinholes or cracks. it can.

〔実施例〕〔Example〕

以下に本発明の実施例を示すが本発明は実施例のみに限
定されるものではない。
Examples of the present invention will be shown below, but the present invention is not limited to the examples.

実施例1 作用極に下記組成のステンレス鋼を使用し、作用極の上
にポリプロピレン不織布(厚さ10μm)を密着配置し対
極に白金板を使用し、電解液として1モル/lのアニリ
ン、2モル/lのHBF4を含む水溶液を使用した。
Example 1 A stainless steel having the following composition was used as a working electrode, a polypropylene non-woven fabric (thickness 10 μm) was closely placed on the working electrode, a platinum plate was used as a counter electrode, and 1 mol / l of aniline was used as an electrolytic solution. An aqueous solution containing mol / l HBF 4 was used.

電解条件として、液温15℃、作用極電流密度20mA/cm2
定電流にて55分電解酸化重合を行つたところ、ポリアニ
リン被膜は不織布を完全に覆つた形状にて得られた。こ
の不織布によつて複合されたポリアニリンを作用極より
注意深く剥離する。剥離後の作用極面は腐食はなく、鏡
面を示した。
As electrolysis conditions, electrolytic oxidative polymerization was carried out for 55 minutes at a constant temperature of a working electrode current density of 20 mA / cm 2 at a liquid temperature of 15 ° C., and a polyaniline coating was obtained in a form in which the nonwoven fabric was completely covered. The polyaniline composited by this non-woven fabric is carefully peeled off from the working electrode. The surface of the working electrode after peeling was not corroded and showed a mirror surface.

ステンレス鋼組成(SUS316) C 0.03% Si 0.15 Mn 0.04 P 0.015 S 0.015 Ni 0.18 Cr 30.0 Mo 2.0 その他の成分はFe 次にポリアニリン複合材料を電池正極に、負極にAl−Li
合金を使用し、電解液にはiMLiBF4をポリピレンカーボ
ネートとヂメトキシエタンとの混合溶媒に溶解した非水
電解液を使用した。
Stainless steel composition (SUS316) C 0.03% Si 0.15 Mn 0.04 P 0.015 S 0.015 Ni 0.18 Cr 30.0 Mo 2.0 Other components are Fe Next, polyaniline composite material is used for battery positive electrode and negative electrode is Al-Li.
An alloy was used, and as the electrolyte, a non-aqueous electrolyte in which iMLiBF 4 was dissolved in a mixed solvent of polypropylene carbonate and dimethoxyethane was used.

この電池に対し、60℃の恒温条件下で充電、放電を繰返
し行なうサイクル寿命試験を実施した。充放電は0.6mA
の一定電流で電池電圧が3.3Vになるまで充電を行つた
後、0.6mAの一定電流で電池電圧が2.0Vになるまで放電
を行なうという条件を採用し、この充放電を繰返し行つ
て電池の放電容量が初期の50%以下になつた時点のサイ
クル数をその電池のサイクル寿命とした。
This battery was subjected to a cycle life test in which charging and discharging were repeated under a constant temperature condition of 60 ° C. Charge / discharge is 0.6mA
The battery is charged at a constant current of 3.3V until the battery voltage becomes 3.3V, and then discharged at a constant current of 0.6mA until the battery voltage becomes 2.0V. The cycle number of the battery was defined as the number of cycles when the discharge capacity reached 50% or less of the initial value.

実験の結果、本発明におけるサイクル寿命は189回であ
り、ポリアニリンと上記不織布が一体化した複合物は電
池電極として優れた特性を有していることが認められ
た。
As a result of the experiment, the cycle life in the present invention was 189 times, and it was confirmed that the composite in which the polyaniline and the nonwoven fabric were integrated had excellent characteristics as a battery electrode.

比較例1 作用極に実施例1と同様組成のステンレス鋼の網を用
い、不織布によつて密着被覆させなかつたほかは実施例
1と同様方法でアニリンの電解重合を行ない、作用極面
にポリアニリン膜を析出形成させ、そん作用極とポリア
ニリン膜とが一体化した複合材料を得た。
Comparative Example 1 Electrolytic polymerization of aniline was carried out in the same manner as in Example 1 except that a stainless steel net having the same composition as in Example 1 was used as the working electrode, and the non-woven fabric was not used for adhesion coating, and polyaniline was applied to the working electrode surface. A film was deposited and formed to obtain a composite material in which the working electrode and the polyaniline film were integrated.

次にポリアニリン膜を電池電極に、作用極をそのまま正
極集電体に使用して実施例1と同様の電池を作成し、そ
のサイクル寿命を測定した。結果は89回であつた。
Next, using the polyaniline film as the battery electrode and the working electrode as it was as the positive electrode current collector, a battery similar to that of Example 1 was prepared, and its cycle life was measured. The result was 89 times.

なお試験終了後、この比較例1の電池を分解し、正極集
電体を電子顕微鏡により観察したところ、ステンレズ鋼
に孔食が発生していることが本発明者の研究の結果確認
された。
After the end of the test, the battery of Comparative Example 1 was disassembled and the positive electrode current collector was observed by an electron microscope. As a result of the research conducted by the present inventors, it was confirmed that pitting corrosion occurred in the stainless steel.

この孔食発生に伴なう腐食生成物がポリアニリンの電気
化学的活性点に悪影響を及ぼしたり、ポリアニリン膜と
集電体との間の剥離を生じ、サイクル寿命を低下させた
ものである。
Corrosion products resulting from the occurrence of pitting corrosion adversely affect the electrochemically active sites of polyaniline and cause peeling between the polyaniline film and the current collector, thus shortening the cycle life.

比較例2 作用極に下記組成のステンレス鋼の網を使用し、作用極
上を不織布で密着被覆しなかつたほかは実施例1と同様
の電解液組成と液温を使用した。この状態で電解重合を
実施せず2時間放置した。電解液は徐々に茶褐色状とな
り、不透明になつた。
Comparative Example 2 The same electrolytic solution composition and liquid temperature as in Example 1 were used, except that a stainless steel net having the following composition was used for the working electrode, and the working electrode was not covered with a non-woven fabric. In this state, electrolytic polymerization was not carried out and the mixture was left for 2 hours. The electrolyte gradually became dark brown and became opaque.

更に浸漬後の作用極を取出し電子顕微鏡によつて観察す
ると、ステンレス鋼表面に孔食が発生していることが認
められた。この孔食発生に伴う腐食生成物が茶褐色状物
質であることが確認された。
Further, when the working electrode after immersion was taken out and observed with an electron microscope, it was confirmed that pitting corrosion had occurred on the stainless steel surface. It was confirmed that the corrosion product accompanying the occurrence of pitting corrosion was a brownish substance.

ステンレス鋼の組成 C 0.025% Si 1.0 Mn 1.0 P 0.04 S 0.03 Cr 20.0 Mo 2.5 Ni 0.025 Ti 0.8 その他はFeComposition of stainless steel C 0.025% Si 1.0 Mn 1.0 P 0.04 S 0.03 Cr 20.0 Mo 2.5 Ni 0.025 Ti 0.8 Others are Fe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 9/00 W ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display H05K 9/00 W

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電解槽内に収容された電解重合液中に作用
極と対極とを浸漬し、電解重合法にて導電性高分子化合
物を作用極上に析出形成させることにより、導電性高分
子化合物を製造する方法において、電解槽の電解重合液
中に作用極と対極とをほぼ水平方向にそつて、かつ作用
極を下側に、対極を上側に配置し、該作用極に予め繊維
布帛を配設し、電解重合した後に、作用極より繊維布帛
つきの導電性複合材料を剥離することを特徴とする導電
性複合材料の製造法。
1. A conductive polymer is prepared by immersing a working electrode and a counter electrode in an electrolytic polymerization solution contained in an electrolytic cell and depositing a conductive polymer compound on the working electrode by an electrolytic polymerization method. In the method for producing a compound, a working electrode and a counter electrode are arranged in a substantially horizontal direction in an electrolytic polymerization solution in an electrolytic cell, and the working electrode is disposed on the lower side and the counter electrode is disposed on the upper side, and the working electrode is preliminarily made of a fiber cloth. Is provided, electrolytic polymerization is performed, and then the conductive composite material with the fiber cloth is peeled off from the working electrode.
【請求項2】請求項1記載の導電性複合材料の製造法に
おいて、繊維布帛が不織布である導電性複合材料の製造
法。
2. The method for producing a conductive composite material according to claim 1, wherein the fiber cloth is a non-woven fabric.
【請求項3】請求項2記載の導電性複合材料の製造法に
おいて、不織布の材質がポリプロピレンである導電性複
合材料の製造法。
3. The method for producing a conductive composite material according to claim 2, wherein the material of the non-woven fabric is polypropylene.
【請求項4】請求項1または2記載の導電性複合材料の
製造法において、導電性高分子化合物の材質がポリアニ
リンである導電性高分子複合材料の製造法。
4. The method for producing a conductive polymer composite material according to claim 1, wherein the material of the conductive polymer compound is polyaniline.
JP1108200A 1989-04-27 1989-04-27 Manufacturing method of conductive composite material Expired - Lifetime JPH0779007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1108200A JPH0779007B2 (en) 1989-04-27 1989-04-27 Manufacturing method of conductive composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1108200A JPH0779007B2 (en) 1989-04-27 1989-04-27 Manufacturing method of conductive composite material

Publications (2)

Publication Number Publication Date
JPH02288018A JPH02288018A (en) 1990-11-28
JPH0779007B2 true JPH0779007B2 (en) 1995-08-23

Family

ID=14478557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1108200A Expired - Lifetime JPH0779007B2 (en) 1989-04-27 1989-04-27 Manufacturing method of conductive composite material

Country Status (1)

Country Link
JP (1) JPH0779007B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080911A (en) * 2008-04-30 2010-04-08 Tayca Corp Wide band electromagnetic wave absorbing material and method of manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105532A (en) * 1983-11-15 1985-06-11 日本電信電話株式会社 Conductive high molecular film and manufacture thereof

Also Published As

Publication number Publication date
JPH02288018A (en) 1990-11-28

Similar Documents

Publication Publication Date Title
Kuwabata et al. Charge–discharge properties of composites of LiMn2O4 and polypyrrole as positive electrode materials for 4 V class of rechargeable Li batteries
US4999263A (en) Sheet-shaped electrode, method or producing the same, and secondary battery
EP0402554A1 (en) Method of conditioning of organic polymeric electrodes
US4915985A (en) Process for forming articles of filled intrinsically conductive polymers
US5536601A (en) Current collectors for electrochemical cells and batteries
JP5219320B2 (en) Paste material body having electrochemical structural element and nanocrystalline material for layer and electrochemical structural element produced therefrom
EP0199175B1 (en) Negative electrodes for non-aqueous secondary batteries composed of conjugated polymer and alkali metal alloying or inserting material
Wang et al. Functionalised polyterthiophenes as anode materials in polymer/polymer batteries
JPS61133557A (en) Battery having polymer electrode and making thereof
JPH0779007B2 (en) Manufacturing method of conductive composite material
Koga et al. Electrically conductive composite of polyaniline-aramid and its application as a cathode material for secondary battery
JPS61161673A (en) Secondary battery
Naoi et al. Electrochemical Study on Charge‐Discharge Performance of Lithium/Polyazulene Battery
US4753715A (en) Process for the production of electrically conducting organic polymer compounds as thick film electrode materials for rechargeable galvanic elements
Herrasti et al. Electrochemical synthesis and characterization of poly (m-toluidine)
JP2752377B2 (en) Sheet electrode
JPS61245468A (en) Nonaqueous electrolyte storage battery
JPH04179049A (en) Negative electrode for battery
JPH01646A (en) conductive composite material
JPH01157060A (en) Polyaniline electrode
JPH03163753A (en) Conductive polymer electrode
Tsutsumi et al. Electrochemical behavior of ferrocene-deoxycholic acid 1: 2 inclusion compound and its application to positive material of zinc—iodine secondary batteries
JP3344152B2 (en) Manufacturing method of electrode plate for lead-acid battery
JPH04332466A (en) Electrically conductive high polymer electrode
JPS61190871A (en) Battery