JPH0475061B2 - - Google Patents

Info

Publication number
JPH0475061B2
JPH0475061B2 JP20918283A JP20918283A JPH0475061B2 JP H0475061 B2 JPH0475061 B2 JP H0475061B2 JP 20918283 A JP20918283 A JP 20918283A JP 20918283 A JP20918283 A JP 20918283A JP H0475061 B2 JPH0475061 B2 JP H0475061B2
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
oil
pore
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20918283A
Other languages
Japanese (ja)
Other versions
JPS60102938A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20918283A priority Critical patent/JPS60102938A/en
Publication of JPS60102938A publication Critical patent/JPS60102938A/en
Publication of JPH0475061B2 publication Critical patent/JPH0475061B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は重質炭化水素油の水素化処理触媒に関
し、詳しくはアスフアルテン、金属、硫黄分、等
の不純物を除去する水素化処理に適した触媒に関
する。 本発明の目的は重質炭化水素油に含有されるア
スフアルテン、金属、硫黄分等の望ましくない不
純物を水素存在下で接触処理することにより除去
し、付加価値の高い石油製品へ転換するための有
用な触媒を提供することにある。 ここでいう重質炭化水素油はオイルサンド油、
タールサンド油あるいは重質炭化水素油を常圧あ
るいは減圧蒸留した残渣油などを対象としてい
る。これらにはペンタン又はヘプタンのような溶
剤に不溶性のアスフアルテン、あるいはバナジウ
ム、ニツケル等を含む有機金属化合物や硫黄化合
物および窒素化合物などを好ましくない不純物が
含まれている。 重質炭化水素油を水素化処理して、高品質の石
油製品を得る工業的方法として、アルミナ担体に
Mo、CoおよびNi等の活性金属を担持した触媒を
用い、固定床もしくは沸騰床等の反応装置による
水素化処理が一般に行われている。 しかし、これらの方法で最も問題となる点は原
料中に含有されるアスフアルテンおよび重金属が
脱硫や各種水素化反応を著しく阻害すると共に、
触媒上へのコーク生成や触媒細孔の閉塞を促進す
ることにより、触媒寿命の短縮をもたらすことに
ある。したがつて、これら不純物を除去すること
ができれば、その後の水素化脱硫もしくは水素化
分解は既存技術の応用により、比較的容易である
と考えられる。 本発明者らは重質炭化水素油のアスフアルテン
及び重金属の除去には、触媒を構成する担体の組
成並びに触媒の細孔構造が大きく関与していると
考え、アルミナにゼオライトを複合させた担体に
活性金属を担持した一連の触媒について細孔構造
との関連において研究を重ねた。 その結果、ゼオライトとして、クリノプチロラ
イト、モルデナイトおよびA型ゼオライトよりな
る群のうち一種以上をアルミナに複合させた担体
に、モリブテン、タングステン、コバルト、ニツ
ケル、鉄及びクロムよりなる群から選ばれた一種
以上の活性金属を担持した触媒は、アルミナ単独
の担体触媒に比較し、触媒活性が格段に向上する
こと、さらに細孔構造として細孔直径120〜200Å
の範囲の細孔容積が60%以下を占め、且つ細孔直
径200Å以上の細孔容積が少くとも30%を占める
触媒がより良好な結果を示すことを見出した。 従来、この種の水素化処理用触媒の担体はアル
ミナが多用され、ゼオライト単独、又はアルミナ
等とゼオライトの複合物が使用される例は少い。 すなわち、ゼオライトの細孔径は3〜15Åの範
囲内にあり、反応にあずかる分子の大きさがこの
細孔径の範囲内に限定されるので、重質炭化水素
油に含有されるアスフアルテンや有機金属化合物
のような巨大分子は、ゼオライトの細孔内の活性
点へは拡散し難く、反応はほとんど進行しないも
のと推察されるからである。 ところで、特開昭57−102235号公報において、
Y型ゼオライトをアルミナもしくはシリカ−アル
ミナに混合、複合させた多孔質担体に金属成分を
担持してなる触媒を使用する重質炭化水素油の水
素化改質方法が提案された。該方法は、特に中間
留分の得率向上に優れていることを特徴にして提
案されたものである。 本発明は、該方法と異なり、ゼオライトとして
Y型ゼオライトより細孔直径の小さいクリノプチ
ロライト、モルデナイト及びA型ゼオライトとい
う特定のゼオライトを採用するものであり、これ
ら小細孔のゼオライトが、Y型ゼオライトと比
べ、重質炭化水素油の水素化処理における脱アス
フアルテン並びに脱金属の各活性に対して優れた
効果を発揮することが明らかとなり、本発明に至
つたものである。 すなわち、本発明はアルミナ水和物と上記特定
のゼオライトの混合物に成形助剤を添加、混練成
形し、これを乾燥、焼成して得た無機多孔質担体
に前記の活性金属を担持させてなる重質炭化水素
油の水素化処理用触媒を提供するものである。 本発明のアルミナの出発原料としては、ジプサ
イト、ベーマイト、ベーマイトゲル、バイヤライ
トのいずれでも良いが、本触媒に適した原料はベ
ーマイトゲルである。ベーマイトゲルとはX線的
にベーマイト構造(ただし、各回折線はベーマイ
ト構造に比し、極めてブロードである)を有する
アルミナ水和物を意味する。該ゲルに対してゼオ
ライトを混合する。このゼオライトには、Y型ゼ
オライト、X型ゼオライト、A型ゼオライト、モ
ルデナイト、クリノプチロライトおよびエリオナ
イト等各種のものがあるが、本発明では特に優れ
た効果を示す比較的細孔径の小さいA型ゼオライ
ト、モルデナイト及びクリノプチロライトを使用
する。ここで使用される該ゼオライトは合成品も
しくは天然に産出するもののいずれでも良く、ま
たそれ自体にナトリウム、カリウム、カルシウム
等のアルカリ又はアルカリ土類の金属を含有して
おり、通常これらの金属を除去することで炭化水
素油の分解の活性点が付与されるため、酸性溶液
での浸漬、洗浄などの除去操作が加えられるが、
本発明の触媒ではあえてこれらの金属を除去する
必要はなく、これらが存在していても障害とはな
らない。 ゼオライトの含有量は、アルミナとゼオライト
の合計量に対し乾量基準で5〜50重量%の範囲内
で適宜選択されるが、これより少な過ぎても、ま
た多過ぎても、目的とする脱アスフアルテン、脱
金属活性が低下する。好ましくはゼオライト15〜
40重量%の範囲である。 前記のアルミナ水和物とゼオライトの混合物
は、さらにポリエチレングリコール、ポリプロピ
レングリコール、硝酸水溶液及びアンモニア水の
ような成形助剤を添加、ニーダーにより混練し均
一化される。なお、含水状態の担体ゲルを乾燥、
焼成すると一般に水の表面張力の作用により、焼
き縮みが起こり、小さな細孔が生成するが、これ
にポリエチレングリコールやポリプロピレングリ
コール等のような有機物成形助剤を添加すると表
面張力が減少し、焼き縮みが起こりにくく、細孔
径並びに細孔容積の大きなものが生成する。その
程度は、添加量により影響され、本発明では、添
加量を変えることにより調節することもできる、
次いで、これを押出成形後、乾燥、焼成し、無機
多孔質担体を得る。 本発明の触媒は該無機多孔質担体にモリブデ
ン、タングステン、バナジウム、コバルト、ニツ
ケル、鉄、クロムの中から選ばれる少くとも一種
の金属成分が担持されて、水素化処理用触媒とし
て供される。この担持方法としては通常の方法が
採用される。例えば、担体を、その細孔容積に相
当する程度の容積の金属化合物を含有する水溶液
と接触させるいわゆる含浸法等が採用される。含
浸後、乾燥、焼成することにより、本発明の触媒
が得られる。なお、活性金属の担持量は触媒中に
乾量基準で0.5〜15重量%の範囲内で含有される
ように適宜選択される。 本発明による触媒はアルミナに特定のゼオライ
トを複合させてなる担体に活性金属を担持するこ
とに加えてその触媒の物理的性状が、前記したよ
うに細孔容積が0.4〜1.2ml/gの範囲内にあり、
さらに細孔直径200Å以下の細孔容積が60%以下
を占め、且つ細孔直径200Å以上の細孔容積が少
くとも30%を占めることを特徴としている。 細孔容積が小さいと目的とする活性が得られな
いばかりか、活性劣化を著しく、また多過ると実
用上、機械的強度が劣るので、好ましくは0.5〜
1.0ml/gである。細孔直径120〜200Åの範囲の
細孔は脱硫活性を促進する上で必要であり、多過
ぎると脱アスフアルテン及び脱金属活性が劣るの
で、この範囲の細孔容積としては60%未満に止め
る必要がある。さらに、細孔直径200Å以上の細
孔は重質炭化水素油のアスフアルテンや重金属化
合物などの不純物分子の触媒細孔内への拡散を容
易にするため必要であり、該細孔が細孔容積の中
で占める割合を少くとも30%以上とすることによ
り、活性が著しく向上すると共に、触媒寿命の延
長を図れることが明らかとなつた。 本発明による触媒を用いて重質炭化水素油を水
素化処理するための反応方式は固定床、移動床お
よび沸騰床などの通常の流通式反応装置のいずれ
を採用しても良い。また、この際の水素化処理条
件として、反応温度は通常330〜450℃であり、好
ましくは360〜420℃、反応圧力は50〜200Kg/cm2
G、好ましくは100〜160Kg/cm2Gである。また、
原料の重質炭化水素油を反応器に供給する際の液
空間速度(LHSV)は通常0.1〜10h-1、好ましく
は0.2〜2h-1であり、水素対油比は通常300〜
2000Nm3/Klの範囲内であり、好ましくは800〜
1500Nm3/Klの範囲で選択される。 次に本発明を実施例により、さらに具体的に説
明するが、本発明はその要旨を越えない限り、実
施例に限定されるものではない。 触媒製造例 実施例 1 触媒A−市販のベーマイトアルミナ185gにゼ
オライトとして天然品のクリノプチロライト80
gを加え、さらにポリプロピレングリコール80
g、30%の硝酸水溶液220mlを加える。この混
合物をニーダーにより約1時間混練するが、こ
の間に2.4%のアンモニア水溶液を150ml加え
る。次に該混練物を1.5mmφ孔のダイスを有す
る押出成形機により、円筒形に成形した後成形
物を110℃にて15〜20時間乾燥し、空気気流中
700℃で3時間焼成する。この焼成して得た担
体に二段含浸法でモリブデンおよびニツケルを
担持した。金属担持はモリブデンをMoO3とし
て13.4重量%、ニツケルをNiOとして3.8重量%
担持しており、モリブデン源としてはパラモリ
ブデン酸アンモニウムを、ニツケル源としては
硝酸ニツケルをそれぞれ使用した。すなわち、
担体をパラモリブデン酸アンモニウムのアンモ
ニウム水溶液に5時間含浸後、表面の付着液を
除いて110℃で20時間乾燥した後、600℃で3時
間焼成した。次いで硝酸ニツケルの水溶液に5
時間含浸後、表面の付着液を除いて110℃で20
時間乾燥、600℃で3時間焼成して触媒化した。 触媒B−ゼオライトとしてH型モルデナイトを使
用する以外は触媒Aと同様の方法により触媒を
調製した。 触媒B′−ゼオライトとしてNa型モルデナイトを
使用する以外は触媒Aと同様の方法により触媒
を調製した。 触媒C−ゼオライトとしてA型ゼオライトを使用
する以外は触媒Aと同様の方法により触媒を調
製した。 触媒D(比較触媒)−ゼオライトとしてX型ゼオラ
イトを使用する以外は触媒Aと同様の方法によ
り触媒を調製した。 触媒E(比較触媒)−ゼオライトとしてH型Yゼオ
ライトを使用する以外は触媒Aと同様の方法に
より触媒を調製した。 触媒F(比較触媒)−基本的には触媒Aと同様の方
法を採用して触媒を調製したが、担体にはゼオ
ライトを加えず、ベーマイトアルミナのみを使
用した。 評価試験例 実施例2〜4、比較例1〜3 実施例1で調製した触媒A〜Fを使用して、ま
た原料油として、比重(15/4℃)1.028、n−
ヘプタン不溶解分(アスフアルテン)13.7wt%、
硫黄分5.19wt%、バナジウム257ppm、ニツケル
102ppmの性状を示すオイルサンド油の常圧残油
(沸点330℃以上)を使用して、高圧流通式反応実
験装置により、反応温度390℃、反応圧力150Kg/
cm2G、、液空間速度0.7h-1、水素対油比は1200N
m3/Klの反応条件下で触媒評価試験を行つた。通
油230時間後の生成油の性状および使用触媒の細
孔構造を第1表に示す。
The present invention relates to a catalyst for hydrotreating heavy hydrocarbon oil, and more particularly to a catalyst suitable for hydrotreating to remove impurities such as asphaltene, metals, sulfur, and the like. The purpose of the present invention is to remove undesirable impurities such as asphaltenes, metals, and sulfur contained in heavy hydrocarbon oil by contact treatment in the presence of hydrogen, and to improve the usefulness of converting it into high value-added petroleum products. The goal is to provide a catalyst that can The heavy hydrocarbon oil referred to here is oil sand oil,
The target oil is residual oil obtained by distilling tar sand oil or heavy hydrocarbon oil under normal pressure or reduced pressure. These contain undesirable impurities such as asphaltenes that are insoluble in solvents such as pentane or heptane, organometallic compounds containing vanadium, nickel, etc., sulfur compounds, and nitrogen compounds. As an industrial method for hydrotreating heavy hydrocarbon oil to obtain high-quality petroleum products,
Hydrogenation treatment is generally carried out using a catalyst supporting active metals such as Mo, Co, and Ni, using a reactor such as a fixed bed or an ebullated bed. However, the biggest problem with these methods is that asphaltene and heavy metals contained in the raw materials significantly inhibit desulfurization and various hydrogenation reactions, and
The purpose is to shorten catalyst life by promoting coke formation on the catalyst and clogging of catalyst pores. Therefore, if these impurities can be removed, subsequent hydrodesulfurization or hydrocracking is considered to be relatively easy by applying existing technology. The present inventors believe that the composition of the carrier constituting the catalyst and the pore structure of the catalyst are largely involved in the removal of asphaltene and heavy metals from heavy hydrocarbon oil, and we believe that the removal of asphaltene and heavy metals from heavy hydrocarbon oil is largely affected by the composition of the carrier that makes up the catalyst and the pore structure of the catalyst. A series of catalysts supporting active metals were studied in relation to their pore structure. As a result, the zeolite was selected from the group consisting of molybdenum, tungsten, cobalt, nickel, iron, and chromium on a carrier in which one or more of the group consisting of clinoptilolite, mordenite, and A-type zeolite was composited with alumina. Catalysts that support one or more active metals have significantly improved catalytic activity compared to catalysts supported only by alumina, and have a pore structure with a pore diameter of 120 to 200 Å.
It has been found that a catalyst having a pore volume in the range of 60% or less and a pore diameter of 200 Å or more accounting for at least 30% shows better results. Conventionally, alumina is often used as a carrier for this type of hydrotreating catalyst, and there are few cases in which zeolite alone or a composite of alumina or the like and zeolite is used. In other words, the pore diameter of zeolite is within the range of 3 to 15 Å, and the size of molecules that participate in the reaction is limited within this pore diameter range, so asphaltene and organometallic compounds contained in heavy hydrocarbon oil This is because it is assumed that such macromolecules are difficult to diffuse into the active sites within the pores of zeolite, and the reaction hardly progresses. By the way, in Japanese Patent Application Laid-open No. 57-102235,
A method for hydrogenating and reforming heavy hydrocarbon oil has been proposed that uses a catalyst in which a metal component is supported on a porous carrier in which Y-type zeolite is mixed and composited with alumina or silica-alumina. This method was proposed because it is particularly excellent in improving the yield of middle distillates. The present invention differs from the above method in that it employs specific zeolites such as clinoptilolite, mordenite, and A-type zeolite, which have smaller pore diameters than Y-type zeolite. It has become clear that this type of zeolite exhibits superior effects on the activities of deasphaltenization and demetallization in the hydrogenation treatment of heavy hydrocarbon oils, leading to the present invention. That is, in the present invention, a forming aid is added to a mixture of alumina hydrate and the above-mentioned specific zeolite, the mixture is kneaded and formed, and the above-mentioned active metal is supported on an inorganic porous carrier obtained by drying and calcining the mixture. The present invention provides a catalyst for hydrotreating heavy hydrocarbon oil. The starting raw material for the alumina of the present invention may be any of gypsite, boehmite, boehmite gel, and bayerite, but the raw material suitable for the present catalyst is boehmite gel. Boehmite gel means an alumina hydrate having an X-ray boehmite structure (however, each diffraction line is extremely broad compared to the boehmite structure). Zeolite is mixed into the gel. There are various types of zeolite, such as Y-type zeolite, type zeolite, mordenite and clinoptilolite are used. The zeolite used here may be either synthetic or naturally occurring, and it itself contains alkali or alkaline earth metals such as sodium, potassium, and calcium, and these metals are usually removed. This provides active sites for hydrocarbon oil decomposition, so removal operations such as immersion in acidic solutions and washing are added.
In the catalyst of the present invention, it is not necessary to remove these metals, and even if they exist, they do not pose a problem. The content of zeolite is appropriately selected within the range of 5 to 50% by weight on a dry weight basis based on the total amount of alumina and zeolite. Asphaltene, demetalization activity decreases. Preferably zeolite 15~
It is in the range of 40% by weight. The mixture of alumina hydrate and zeolite is further mixed with forming aids such as polyethylene glycol, polypropylene glycol, nitric acid aqueous solution, and aqueous ammonia, and is homogenized by kneading with a kneader. In addition, drying the carrier gel in a water-containing state,
When baking, baking shrinkage generally occurs due to the action of the surface tension of water, creating small pores, but if an organic forming aid such as polyethylene glycol or polypropylene glycol is added to this, the surface tension decreases and baking shrinkage occurs. This is less likely to occur, and pores with large pore diameters and pore volumes are produced. The degree is affected by the amount added, and in the present invention, it can also be adjusted by changing the amount added.
Next, this is extruded, dried and fired to obtain an inorganic porous carrier. The catalyst of the present invention has at least one metal component selected from molybdenum, tungsten, vanadium, cobalt, nickel, iron, and chromium supported on the inorganic porous carrier, and is used as a catalyst for hydrogenation treatment. A usual method is adopted as this supporting method. For example, a so-called impregnation method is employed in which the carrier is brought into contact with an aqueous solution containing a metal compound in a volume corresponding to the pore volume of the carrier. After impregnation, the catalyst of the present invention is obtained by drying and firing. The amount of active metal supported is appropriately selected so that the active metal is contained in the catalyst in an amount of 0.5 to 15% by weight on a dry weight basis. The catalyst according to the present invention not only supports an active metal on a carrier made of alumina and a specific zeolite, but also has physical properties such as a pore volume in the range of 0.4 to 1.2 ml/g as described above. It is within;
Further, it is characterized in that the volume of pores with a pore diameter of 200 Å or less occupies 60% or less, and the volume of pores with a pore diameter of 200 Å or more occupies at least 30%. If the pore volume is small, not only will the desired activity not be obtained, but the activity will be significantly degraded, and if it is too large, the mechanical strength will be poor in practical terms, so it is preferably 0.5~
It is 1.0ml/g. Pores with a pore diameter in the range of 120 to 200 Å are necessary to promote desulfurization activity, and if there are too many, the deasphaltene and metal removal activities will be poor, so the pore volume in this range needs to be kept at less than 60%. There is. Furthermore, pores with a pore diameter of 200 Å or more are necessary to facilitate the diffusion of impurity molecules such as asphaltenes in heavy hydrocarbon oil and heavy metal compounds into the catalyst pores. It has become clear that by increasing the proportion of the catalyst to at least 30%, the activity can be significantly improved and the life of the catalyst can be extended. As a reaction method for hydrotreating heavy hydrocarbon oil using the catalyst according to the present invention, any of conventional flow-through reactors such as a fixed bed, a moving bed, and an ebullated bed may be employed. In addition, as the hydrogenation treatment conditions at this time, the reaction temperature is usually 330 to 450°C, preferably 360 to 420°C, and the reaction pressure is 50 to 200 Kg/cm 2
G, preferably 100 to 160 Kg/cm 2 G. Also,
The liquid hourly space velocity (LHSV) when feeding heavy hydrocarbon oil as a raw material to the reactor is usually 0.1 to 10 h -1 , preferably 0.2 to 2 h -1 , and the hydrogen to oil ratio is usually 300 to 2 h -1.
Within the range of 2000Nm 3 /Kl, preferably 800~
Selected in the range of 1500Nm 3 /Kl. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the Examples unless the gist of the invention is exceeded. Catalyst production example Example 1 Catalyst A - 185 g of commercially available boehmite alumina and 80 g of natural clinoptilolite as zeolite
Add 80g of polypropylene glycol
g, add 220 ml of 30% nitric acid aqueous solution. This mixture is kneaded using a kneader for about 1 hour, during which time 150 ml of a 2.4% ammonia aqueous solution is added. Next, the kneaded product was molded into a cylindrical shape using an extruder having a die with a 1.5 mm diameter hole, and the molded product was dried at 110°C for 15 to 20 hours and placed in an air stream.
Bake at 700℃ for 3 hours. Molybdenum and nickel were supported on the fired carrier by a two-stage impregnation method. Metal support is 13.4% by weight of molybdenum as MoO 3 and 3.8% by weight of nickel as NiO.
Ammonium paramolybdate was used as the source of molybdenum, and nickel nitrate was used as the source of nickel. That is,
After the carrier was immersed in an ammonium aqueous solution of ammonium paramolybdate for 5 hours, the liquid adhering to the surface was removed, dried at 110°C for 20 hours, and then calcined at 600°C for 3 hours. Next, add 5 to an aqueous solution of nickel nitrate.
After soaking for an hour, remove the liquid on the surface and heat it at 110℃ for 20 hours.
It was dried for hours and then calcined at 600°C for 3 hours to become a catalyst. Catalyst B - A catalyst was prepared in the same manner as Catalyst A except that H-type mordenite was used as the zeolite. Catalyst B' - A catalyst was prepared in the same manner as Catalyst A except that Na-type mordenite was used as the zeolite. Catalyst C - A catalyst was prepared in the same manner as Catalyst A except that Type A zeolite was used as the zeolite. Catalyst D (comparative catalyst) - A catalyst was prepared in the same manner as Catalyst A except that type X zeolite was used as the zeolite. Catalyst E (comparative catalyst) - A catalyst was prepared in the same manner as Catalyst A except that H-type Y zeolite was used as the zeolite. Catalyst F (comparative catalyst) - A catalyst was prepared using basically the same method as Catalyst A, but no zeolite was added to the carrier and only boehmite alumina was used. Evaluation Test Examples Examples 2 to 4, Comparative Examples 1 to 3 Catalysts A to F prepared in Example 1 were used as feedstock oil, specific gravity (15/4°C) 1.028, n-
Heptane insoluble matter (asphaltene) 13.7wt%,
Sulfur content 5.19wt%, vanadium 257ppm, nickel
Using atmospheric residual oil (boiling point 330℃ or higher) of oil sand oil showing properties of 102ppm, a reaction temperature of 390℃ and a reaction pressure of 150Kg/
cm 2 G, liquid space velocity 0.7h -1 , hydrogen to oil ratio 1200N
Catalyst evaluation tests were conducted under reaction conditions of m 3 /Kl. Table 1 shows the properties of the produced oil after 230 hours of oil passing and the pore structure of the catalyst used.

【表】 第1表から明らかなように、担体としてアルミ
ナにクリノプチロライト、モルデナイト及びA型
ゼオライトを加えたものを採用することにより、
これらを用い調製した触媒は、脱アスフアルテン
及び脱金属活性において格段に優れ、改善されて
いることがわかる。 触媒調製例 比較例 4 触媒G−担体の調製において、ポリプロピレング
リコールの添加量を減少させる以外は基本的に
は、実施例1の触媒Aと同様の方法を採用し
て、触媒を調製した。 評価試験例 比較例 5 触媒Aおよび触媒Gを使用し、原料油、反応装
置、反応条件は実施例2と同一にして水素化処理
を行つた。得られた生成油の性状及び使用触媒の
細孔構造を第2表に示す。
[Table] As is clear from Table 1, by using alumina with clinoptilolite, mordenite, and A-type zeolite added as a carrier,
It can be seen that the catalysts prepared using these are significantly superior and improved in asphaltene removal and metal removal activities. Catalyst Preparation Example Comparative Example 4 In the preparation of Catalyst G-carrier, a catalyst was prepared basically in the same manner as in Catalyst A of Example 1, except that the amount of polypropylene glycol added was reduced. Evaluation Test Example Comparative Example 5 Hydrogenation treatment was carried out using Catalyst A and Catalyst G, using the same feedstock oil, reaction equipment, and reaction conditions as in Example 2. Table 2 shows the properties of the resulting oil and the pore structure of the catalyst used.

【表】 第2表から、細孔直径120〜200Åの範囲の細孔
容積が73%を占め、細孔直径200Å以上の細孔容
積が22%を占める触媒Gは、細孔直径200Å以上
の細孔容積が40%占める触媒Aに比べ、脱アスフ
アルテンおよび脱金属活性の劣ることがわかる。
このことより、細孔構造を特定の範囲に規定する
ことが重要であるといえる。 実施例 5 触媒中のゼオライト(クリノプチロライト)含
有量と触媒活性との関連を調べるため、触媒とし
て基本的には実施例1の触媒Aと同様の方法を採
用して調製し、ゼオライト含有量を乾量基準で0
〜50重量%の範囲で変化させた触媒について、原
料油、反応装置、反応条件は実施例2と同一に
し、水素化処理を行つた。230時間通油後の生成
油を分析し、触媒中のゼオライト含有量とアスフ
アルテン分、パナジウム分および硫黄分の除去率
との関係を調べた結果を第1図に示す。この図表
から明らかなように、本発明の触媒についてはゼ
オライト含有量の最適値が存在し、5〜50重量%
の範囲内で適宜選択する必要があることがわか
る。 触媒調製例 実施例 6 触媒H−基本的には実施例1の触媒Aと同様の方
法を採用して担体を調製し、二段含浸法でモリ
ブデンおよびコバルトを担持した。金属担持は
モリブデンをMoO2として13.4重量%、コバル
トをCoOとして3.8重量%担持しており、金属
化合物は、パラモリブデン酸アンモニウムおよ
び硝酸コバルトをそれぞれ使用し、実施例1の
触媒Aに準ずる方法により触媒化した。 触媒I−基本的には実施例1の触媒Aと同様の方
法を採用して担体を調製し、タングステン酸の
アンモニア水溶液に含浸後、乾燥し、550℃で
3時間焼成した。次いで、硝酸ニツケルの水溶
液に含浸し、乾燥後550℃で、3時間焼成し、
触媒を得た。タングステンはWO3として9重
量%、ニツケルはNiOとして3.2重量%担持し
た。 触媒J−基本的には実施例1の触媒Aと同様の方
法を採用して担体を調製し、これにモリブデン
(MoO3として10重量%)および鉄(Fe2O3とし
て3重量%)を担持した。モリブデンはパラモ
リブデン酸アンモニウムを、また鉄は硝酸鉄の
化合物を、それぞれ使用し、実施例1の触媒A
の準拠する方法により触媒化した。 評価試験例 実施例 7〜9 触媒H、触媒I、および触媒Jを使用し、原料
油、反応装置および反応条件は実施例2と同一に
して水素化処理を行つた。得られた生成油の性状
及び使用触媒の細孔横造を第3表に示す。
[Table] From Table 2, Catalyst G has 73% of the pore volume with pore diameters of 120 to 200 Å and 22% of the pore volume with pore diameters of 200 Å or more. It can be seen that the asphaltene removal and metal removal activities are inferior to that of catalyst A in which the pore volume occupies 40%.
From this, it can be said that it is important to define the pore structure within a specific range. Example 5 In order to investigate the relationship between the zeolite (clinoptilolite) content in the catalyst and the catalytic activity, a catalyst was prepared basically in the same manner as catalyst A in Example 1, and a zeolite-containing The amount is 0 on a dry basis.
Hydrogenation treatment was carried out using the same feedstock oil, reaction equipment, and reaction conditions as in Example 2, using the same catalysts as in Example 2, using catalysts that were varied in the range of ~50% by weight. Figure 1 shows the results of analyzing the produced oil after passing through the oil for 230 hours to examine the relationship between the zeolite content in the catalyst and the removal rate of asphaltene, panadium, and sulfur. As is clear from this diagram, there is an optimal value for the zeolite content for the catalyst of the present invention, which is 5 to 50% by weight.
It can be seen that it is necessary to make an appropriate selection within the range of . Catalyst Preparation Examples Example 6 Catalyst H - A carrier was prepared using basically the same method as for Catalyst A in Example 1, and molybdenum and cobalt were supported by a two-stage impregnation method. The metals were supported at 13.4% by weight of molybdenum as MoO 2 and 3.8% by weight of cobalt as CoO, using ammonium paramolybdate and cobalt nitrate as the metal compounds, respectively, and by a method similar to Catalyst A in Example 1. catalyzed. Catalyst I - A carrier was prepared basically in the same manner as for Catalyst A in Example 1, impregnated with an ammonia aqueous solution of tungstic acid, dried, and calcined at 550°C for 3 hours. Next, it was impregnated with an aqueous solution of nickel nitrate, dried, and then fired at 550°C for 3 hours.
I got a catalyst. Tungsten was supported in an amount of 9% by weight as WO 3 and nickel was supported in an amount of 3.2% by weight as NiO. Catalyst J - A support was prepared using essentially the same method as Catalyst A in Example 1, to which molybdenum (10% by weight as MoO 3 ) and iron (3% by weight as Fe 2 O 3 ) were added. carried it. For molybdenum, ammonium paramolybdate was used, and for iron, a compound of iron nitrate was used, and Catalyst A of Example 1 was used.
It was catalyzed by a method according to . Evaluation Test Examples Examples 7 to 9 Hydrogenation was carried out using Catalyst H, Catalyst I, and Catalyst J, and using the same feedstock oil, reaction equipment, and reaction conditions as in Example 2. Table 3 shows the properties of the resulting oil and the pore structure of the catalyst used.

【表】【table】

【表】【table】

【表】 第3表から金属の種類を変えた場合、触媒Aと
同様の結果が得られることがわかる。
[Table] It can be seen from Table 3 that the same results as catalyst A can be obtained when the type of metal is changed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は触媒中のゼオライト(クリノプチロラ
イト)含有量と原料油中のアスフアルテン分、バ
ナジウム分、および硫黄分の除去率との関係を調
べた図表である。
FIG. 1 is a chart examining the relationship between the zeolite (clinoptilolite) content in the catalyst and the removal rate of asphaltene, vanadium, and sulfur in the feed oil.

Claims (1)

【特許請求の範囲】 1 アルミナ50〜95重量%およびゼオライト5〜
50重量%からなる無機多孔質担体において、該ゼ
オライトがクリノプチロライト、モルデナイト、
およびA型ゼオライトの少くとも一種であり、該
担体にモリブデン、タングステン、コバルト、ニ
ツケル、鉄、クロムの中から選ばれる少くとも一
種の金属成分を担持させてなることを特徴とする
重質炭化水素油の水素化処理触媒。 2 細孔容積が0.4〜1.2ml/gの範囲にあり、細
孔直径120〜200Åの範囲の細孔容積が60%以下を
占め、且つ細孔直径200Å以上の細孔容積が少く
とも30%を占める特許請求の範囲第1項の触媒。
[Claims] 1 50 to 95% by weight of alumina and 5 to 95% of zeolite
In the inorganic porous carrier consisting of 50% by weight, the zeolite is clinoptilolite, mordenite,
and A-type zeolite, and a heavy hydrocarbon characterized in that the carrier supports at least one metal component selected from molybdenum, tungsten, cobalt, nickel, iron, and chromium. Oil hydroprocessing catalyst. 2 The pore volume is in the range of 0.4 to 1.2 ml/g, the pore volume with a pore diameter in the range of 120 to 200 Å accounts for 60% or less, and the pore volume with a pore diameter of 200 Å or more accounts for at least 30%. The catalyst of claim 1 which occupies .
JP20918283A 1983-11-09 1983-11-09 Catalyst for hydrorefining of heavy hydrocarbon oil Granted JPS60102938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20918283A JPS60102938A (en) 1983-11-09 1983-11-09 Catalyst for hydrorefining of heavy hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20918283A JPS60102938A (en) 1983-11-09 1983-11-09 Catalyst for hydrorefining of heavy hydrocarbon oil

Publications (2)

Publication Number Publication Date
JPS60102938A JPS60102938A (en) 1985-06-07
JPH0475061B2 true JPH0475061B2 (en) 1992-11-27

Family

ID=16568693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20918283A Granted JPS60102938A (en) 1983-11-09 1983-11-09 Catalyst for hydrorefining of heavy hydrocarbon oil

Country Status (1)

Country Link
JP (1) JPS60102938A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005052016B4 (en) * 2005-10-31 2009-05-20 Süd-Chemie AG Process for the preparation of porous moldings and moldings obtainable by the process

Also Published As

Publication number Publication date
JPS60102938A (en) 1985-06-07

Similar Documents

Publication Publication Date Title
US5545602A (en) Catalyst with specified pore size distribution
EP0876443B1 (en) Hydroconversion process employing a catalyst with specified pore size distribution and no added silica
US5030780A (en) Aromatic saturation process with a silica-alumina and zeolite catalyst
US4115248A (en) Hydrocarbon hydroconversion with a catalyst having interconnected macropores
US5300217A (en) Hydroprocess utilizing a delta alumina-supported nickel and molybdenum catalyst
US5616530A (en) Hydroconversion process employing catalyst with specified pore size distribution
JP3439790B2 (en) Hydroconversion method
US5468371A (en) Catalyst for residual conversion demonstrating reduced toluene insolubles
JPS62260888A (en) Mild hydrocracking of hydrocarbon supply raw material
JP3688476B2 (en) Hydrocracking catalyst for medium distillate oil production
JPH07241472A (en) Hydrocracking of raw material and its catalyst
US6043178A (en) Midbarrel hydrocracking catalyst and preparation thereof
JPH0239305B2 (en)
US3673112A (en) Hydroconversion catalyst preparation
JPH0263553A (en) Residue hydrotreating catalyst, production thereof and catalytic hydrotreatment of hydrocarbon containing oil using said catalyst
EP1027156B1 (en) Hydrocracking catalyst, producing method thereof, and hydrocracking method
JP2631704B2 (en) Catalyst composition for hydrotreating heavy hydrocarbon oils
PL202787B1 (en) High-macropore hydroprocessing catalyst and its use
US6387248B2 (en) Method of preparing a catalyst for use in the hydrotreating of high boiling hydrocarbon feedstocks
US5035793A (en) Hydrotreating catalyst and process
JPH0295443A (en) Catalyst for hydrogenation treatment of residual oil
JPH03273092A (en) Catalyst for hydrogenation of residual oil
JPH0475061B2 (en)
JPH0573466B2 (en)
JPH0593190A (en) Hydrogenation of residual oil