JPH0474939A - Detecting device of fitting stress of double tube - Google Patents

Detecting device of fitting stress of double tube

Info

Publication number
JPH0474939A
JPH0474939A JP2185414A JP18541490A JPH0474939A JP H0474939 A JPH0474939 A JP H0474939A JP 2185414 A JP2185414 A JP 2185414A JP 18541490 A JP18541490 A JP 18541490A JP H0474939 A JPH0474939 A JP H0474939A
Authority
JP
Japan
Prior art keywords
waveform
signal
double tube
converter
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2185414A
Other languages
Japanese (ja)
Other versions
JPH0752132B2 (en
Inventor
Shinichi Fukuda
真一 福田
Hideki Kashiwamura
英樹 柏村
Mitsuhiro Ikemoto
池本 満博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2185414A priority Critical patent/JPH0752132B2/en
Publication of JPH0474939A publication Critical patent/JPH0474939A/en
Publication of JPH0752132B2 publication Critical patent/JPH0752132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To select a good material reliably, stably and in a non-destructive manner on the basis of whether a fitting stress of a double tube is a necessary value or not, by providing an appropriateness determinator which compares one or more signals out of ones corresponding to a waveform continuation time, a waveform area and a maximum amplitude value of a waveform of a signal processing device, with a set signal. CONSTITUTION:An elastic wave propagated in the direction of an arrow 5 is received by a reception converter 6 through a contact medium 2 and converted into an electric signal. This electric signal is subjected to an envelope detection processing by an AE measurer 7. An envelope detection waveform thus obtained is taken in an A/D converter in a signal processing device 8, AE waveform parameters are measured digitally in a sampling time of 100 usec, and based on the level thereof, it is judged by an appropriateness selector 9 whether fitting of inner and outer tubes is good or bad. According to this constitution, the precision in quality assurance of a double tube can be improved to a large extent.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、腐食性物質を含有する石油、天然ガスを輸送
するラインパイプあるいは化学工業における配管等に使
用される耐食性二重管(以下単に二重管という)の外管
と内管のはめあい応力が所要値あるか否かの良否材を、
擬似アコースディックエミッション(以下AEという)
法により選別するための検知装置に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to corrosion-resistant double pipes (hereinafter simply The quality of the material is determined to determine whether the fitting stress between the outer tube and inner tube of the double tube
Pseudo acoustic emission (hereinafter referred to as AE)
This invention relates to a detection device for sorting by law.

[従来の技術] 二重管は耐食性および低コスト化を目的に開発された管
材てあり、−数的には内管は耐食性の優れた材料、外管
には炭素鋼か使用される。二重管は特公昭56−464
51 月公報に示されているように、別々の製管ライン
で造られた成分および材質の異なる内管および外管を用
い、加熱膨張させた外管内に内管を挿入し、内管内に圧
力を加えて内管を拡管させた後、外管の熱収縮によって
内管と外管を機械的に嵌合して造られるか、内外管嵌今
時のはめあい応力か二重管の品質に大きく影響する。
[Prior Art] A double pipe is a pipe material developed for the purpose of corrosion resistance and cost reduction; numerically, the inner pipe is made of a material with excellent corrosion resistance, and the outer pipe is made of carbon steel. The double pipe is a special public service issued in 1974-464.
As shown in the May 1999 bulletin, an inner tube and an outer tube with different components and materials made on separate tube manufacturing lines are used, the inner tube is inserted into the heated and expanded outer tube, and pressure is applied inside the inner tube. The inner and outer tubes are mechanically fitted together by thermal contraction of the outer tube after expanding the inner tube by adding a do.

二重管のはめあい応カカ司Okgf 7mm2以上の場
合は内管か抜けたりすれたりすることなく、二重管とし
ての品質が保たれる。
If the fit of the double tube is 7mm2 or more, the inner tube will not come off or rub, and the quality of the double tube will be maintained.

従来、このような製造方法て作られた二重管の内外管の
はめあい応力を、非破壊的に測定する方法としては、特
開昭62−828号公報か知られている。この方法は、
二重管を打撃した際に発生する音響信号を周波数て弁別
することにより、外管と内管のはめあい応力を測定する
ものである。
Conventionally, a method for non-destructively measuring the fitting stress between the inner and outer tubes of a double tube manufactured by such a manufacturing method is known from Japanese Patent Laid-Open No. 62-828. This method is
The fitting stress between the outer tube and the inner tube is measured by distinguishing the acoustic signals generated when the double tube is hit by frequency.

[発明が解決しようとする課!] このような従来法では、二重管の保持方法によって音響
信号の周波数が異なることや、測定場所の振動音などに
よって周波数弁別粒度か低くなる等の問題を生していた
。また、破壊的に測定する方法としては二重管の管端部
より採取した管材の内管の内表面側にひずみゲージをは
りつけて外管を鋸等によって切断したときの内管残留ひ
ずみを測定し、計算により求めることができるか、管材
中央部のはめあい応力か測定できない等の問題かある。
[The problem that the invention tries to solve! ] Such conventional methods have problems such as the frequency of the acoustic signal being different depending on how the double tube is held, and the frequency discrimination granularity becoming low due to vibration noise at the measurement location. In addition, as a destructive measurement method, a strain gauge is attached to the inner surface of the inner tube of the tube material taken from the end of the double tube, and the residual strain in the inner tube is measured when the outer tube is cut with a saw etc. However, there are problems such as whether it can be determined by calculation or whether it is impossible to measure the fitting stress in the center of the pipe material.

本発明は、前記従来技術の問題点に鑑み、二重管のはめ
あい応力か所要値あるか否かの良否材を確実に非破壊的
に安定して選別する二重管はめあい応力測定装置を提供
することを目的とする。
In view of the problems of the prior art, the present invention provides a double pipe fitting stress measuring device that reliably non-destructively and stably selects pass/fail material to determine whether the fitting stress of the double pipe has a required value or not. The purpose is to

[課題を解決するための手段] この目的を達成するための本発明の二重管はめあい応力
測定装置は、パルス発生器の信号を擬似AE信号に変換
する送信変換器と、信号を電気信号に変換する受信変換
器と、受信変換器の13号を包絡線検波処理するAE計
測器と、AE計測器の信号をA/D変換処理する信号処
理装置と、信号処理装置の波形持続時間、波形面積およ
び波形最大振幅値に相当する信号のうち1つ以上の信号
を設定信号と比較する合否判定器とからなることを特徴
とするものである。
[Means for Solving the Problems] To achieve this object, the double tube fitting stress measuring device of the present invention includes a transmitting converter that converts a pulse generator signal into a pseudo AE signal, and a transmitting converter that converts the signal of a pulse generator into a pseudo AE signal, and the signal into an electrical signal. A receiving converter to convert, an AE measuring device to perform envelope detection processing on No. 13 of the receiving converter, a signal processing device to perform A/D conversion processing on the signal of the AE measuring device, and a waveform duration and waveform of the signal processing device. The present invention is characterized by comprising a pass/fail determiner that compares one or more of the signals corresponding to the area and the waveform maximum amplitude value with a set signal.

[実施例] 以下、本発明の実施例を図面に基つき詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図に示すように、パルス発生器1により発生させた
電気パルス信号(第2図(a))は送信変換器4により
接触媒質2を介して擬似AE信号に変換し、被測定用二
重管3内に弾性波を発生させる。矢印5の方向に伝播し
た弾性波は、接触媒質2を介して受信変換器6にて受信
され、電気信号に変換される。この電気信号は第2図(
b)のような波形をしており、こねをAE計測器7によ
り包絡線検波処理して第2図(C)のような波形にする
。この包絡線検波波形を信号処理装置8内のA/D変換
器に取り込み、サンプリンタタイム100μsecでA
E波形パラメーターをディジタル計測し、そのレベルに
より合否選別器9で内外管のはめあいの良否を判断する
。ディジタル計測は第2図に示すように、所定のしきい
値Thを越えている波形持続時間T、波形面積Sおよび
波形最大振幅値■2のAE波形パラメーターの何れに対
して行ってもよい。
As shown in FIG. 1, the electric pulse signal (FIG. 2(a)) generated by the pulse generator 1 is converted into a pseudo AE signal by the transmitting converter 4 via the couplant 2, and then An elastic wave is generated within the heavy pipe 3. The elastic waves propagated in the direction of arrow 5 are received by reception converter 6 via couplant 2 and converted into electrical signals. This electrical signal is shown in Figure 2 (
It has a waveform as shown in b), and the kneading is subjected to envelope detection processing by the AE measuring device 7 to form a waveform as shown in FIG. 2(C). This envelope detection waveform is taken into the A/D converter in the signal processing device 8, and the A/D converter in the signal processing device 8 is
E waveform parameters are digitally measured, and based on the level, a pass/fail selector 9 judges whether the fit between the inner and outer tubes is good or bad. As shown in FIG. 2, digital measurement may be performed on any of the AE waveform parameters of waveform duration T, waveform area S, and waveform maximum amplitude value (2) that exceed a predetermined threshold value Th.

次に、本発明装置を用いての実測例について述へる。第
3図に破壊試験により求めたはめあし\応力と波形持続
時間Tの関係の一例を示す。両者は、この図に示すよう
に比例関係にあるので、例えば所要のはめあい応力を1
0kgf 7mm2とする場合は、波形持続時間Tが4
 m5ec以上の場合を合格とするように合否選別器9
をセットすればよい。また、二重管のはめあい応力と波
形面積Sあるし1は波形最大振幅値■2の間にも比例関
係にあるのて、こわらによっても合否を選別することか
てきる。
Next, an actual measurement example using the device of the present invention will be described. Figure 3 shows an example of the relationship between the fit\stress and the waveform duration T determined by a destructive test. Since the two are in a proportional relationship as shown in this figure, for example, if the required fitting stress is 1
In the case of 0kgf 7mm2, the waveform duration T is 4
A pass/fail selector 9 is used to pass the case of m5ec or higher.
All you have to do is set . In addition, since there is a proportional relationship between the fitting stress of the double pipe, the waveform area S or 1, and the waveform maximum amplitude value (2), it is also possible to determine pass/fail based on stiffness.

送信変換器および受イ3変換器の配置は管軸または管周
方向あるいは管内面または管外面のいすねでもよい。第
4図に両度換器4.6間の距離と波形持続時間の関係の
一例を示す。変換器間路NLか大きくなると波形持続時
間Tか小さくなり、はめあい応力を評価する場合には変
換器間距離を定にする必要かある。変換器間路111L
か異なる管材を評価する場合には、予め変換器間距離と
波形持続時間の関係を求め、その検量線区により補正す
る必要かある。
The transmitting transducer and the receiving transducer may be arranged along the tube axis or in the circumferential direction, or on the inner or outer surface of the tube. FIG. 4 shows an example of the relationship between the distance between the bidirectional converters 4.6 and the waveform duration. As the transducer distance NL increases, the waveform duration T decreases, and when evaluating the fitting stress, it is necessary to keep the transducer distance constant. Converter path 111L
When evaluating different pipe materials, it is necessary to determine the relationship between the distance between transducers and the waveform duration in advance and correct it using the calibration curve section.

二重管の外径: 88.9mmφ、外管の肉厚 5.0
mm、外管の鋼種:炭素鋼、内管の肉厚: 1.5mm
 、内管の鋼種:インコネル625(商品名)、管材の
長さ: 1.5mの二重管2木について、擬似AE信号
を発生させて波形持続時間Tを検出し、はめあい応力の
良否を判断した。測定条件は、電気パルス電圧V : 
IOV 、変換器周波数f : 200kHz、変換器
間路11[L:1m、パルス繰り返し周波数fp;20
Hz、しきい値Th:0.lVとした。はめあい応力の
合否を判断した結果、No、]の二重管の波形持続時間
Tは7.5m5ecて合格と判断された。N011の二
重管のはめあい応力を破壊試験によって測定した結果、
18kgf/III[I12てあった。N002二重管
の波形持続時間Tは2 m5eCで不合格と判断された
。No、2の二重管のはめあい応力を破壊試験によって
測定した結果、4 kgf/mm2であった。
Double tube outer diameter: 88.9mmφ, outer tube wall thickness 5.0
mm, steel type of outer tube: carbon steel, wall thickness of inner tube: 1.5 mm
, Inner tube steel type: Inconel 625 (trade name), tube material length: 1.5 m double tube 2 wood, generate a pseudo AE signal, detect the waveform duration T, and judge whether the fitting stress is good or bad. did. The measurement conditions are electric pulse voltage V:
IOV, converter frequency f: 200kHz, converter path 11 [L: 1m, pulse repetition frequency fp; 20
Hz, threshold Th: 0. It was set to lV. As a result of judging whether the fitting stress was acceptable or not, the waveform duration T of the double pipe of No.] was 7.5 m5ec, and it was judged to be acceptable. As a result of measuring the fitting stress of N011 double pipe by destructive test,
There was 18kgf/III[I12. The waveform duration T of the N002 double tube was 2 m5eC, and it was determined to fail. The fitting stress of No. 2 double tubes was measured by a destructive test and was found to be 4 kgf/mm2.

[発明の効果] 本発明によれば、音響信号を周波数弁別する従来法に比
へ、二重管の保持方法や測定場所の騒音に関係なく、確
実に二重管のはめあい応力が所要値あるか否かを非破壊
的に判断して良否材を選別でき、二重管の品質保証精度
を大幅に向上させることかてきる。
[Effects of the Invention] According to the present invention, compared to the conventional method of frequency discriminating acoustic signals, the fitting stress of the double tube can be reliably maintained at the required value regardless of the method of holding the double tube or the noise at the measurement location. It is possible to non-destructively judge whether or not the material is good or bad and to sort out good or bad materials, greatly improving the accuracy of quality assurance for double pipes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の具体例を示すブロック図、第2図は受
信変換器により検出された波形を示す図、第3図は破壊
試験により求めたはめあい応力と波形持続時間Tの関係
の一例を示す図、第4図は変換器間距離と波形持続時間
の関係の一例を示す図である。 1・・・パルス発生器、2・・・接触媒質、3・・・二
重管、4・・・送信変換器、5・・・検出弾性波の伝播
方向、6・・・受信変換器、7・・・AE計測器、8・
・・信号処理装置、9・・・合否判定器、Th・・・し
きい値、T・・・波形持続時間、S・・・波形面積、v
p・・・波形最大振幅値、L・・・変換器間距離、V−
・・電気パルス電圧、f・・・変換器周波数、fp−・
・パルス縁り返し周波数。
Fig. 1 is a block diagram showing a specific example of the present invention, Fig. 2 is a diagram showing a waveform detected by a receiving converter, and Fig. 3 is an example of the relationship between fitting stress and waveform duration T determined by a destructive test. FIG. 4 is a diagram showing an example of the relationship between the distance between transducers and the waveform duration. DESCRIPTION OF SYMBOLS 1... Pulse generator, 2... Couple material, 3... Double tube, 4... Transmission transducer, 5... Propagation direction of detected elastic wave, 6... Receiving transducer, 7...AE measuring instrument, 8.
...Signal processing device, 9...Pass/fail judge, Th...Threshold value, T...Waveform duration, S...Waveform area, v
p... Waveform maximum amplitude value, L... Distance between converters, V-
...Electric pulse voltage, f...Converter frequency, fp-...
・Pulse reversal frequency.

Claims (1)

【特許請求の範囲】[Claims] 1、パルス発生器(1)の信号を擬似AE信号に変換す
る送信変換器(4)と、信号を電気信号に変換する受信
変換器(6)と、受信変換器(6)の信号を包絡線検波
処理するAE計測器(7)と、AE計測器(7)の信号
をA/D変換処理する信号処理装置(8)と、信号処理
装置(8)の波形持続時間、波形面積および波形最大振
幅値に相当する信号のうち1つ以上の信号を設定信号と
比較する合否判定器(9)とからなる二重管はめあい応
力検知装置。
1. A transmitting converter (4) that converts the signal of the pulse generator (1) into a pseudo AE signal, a receiving converter (6) that converts the signal into an electrical signal, and an envelope of the signal of the receiving converter (6). The waveform duration, waveform area, and waveform of the AE measuring device (7) that performs line detection processing, the signal processing device (8) that performs A/D conversion processing on the signal of the AE measuring device (7), and the signal processing device (8). A double tube fitting stress detection device comprising a pass/fail judge (9) that compares one or more signals corresponding to the maximum amplitude value with a set signal.
JP2185414A 1990-07-16 1990-07-16 Double pipe fitting stress detector Expired - Lifetime JPH0752132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2185414A JPH0752132B2 (en) 1990-07-16 1990-07-16 Double pipe fitting stress detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2185414A JPH0752132B2 (en) 1990-07-16 1990-07-16 Double pipe fitting stress detector

Publications (2)

Publication Number Publication Date
JPH0474939A true JPH0474939A (en) 1992-03-10
JPH0752132B2 JPH0752132B2 (en) 1995-06-05

Family

ID=16170375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2185414A Expired - Lifetime JPH0752132B2 (en) 1990-07-16 1990-07-16 Double pipe fitting stress detector

Country Status (1)

Country Link
JP (1) JPH0752132B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223564A (en) * 2016-06-16 2017-12-21 千代田化工建設株式会社 Pressure tank inspection method, inspection system and inspection program
CN115112291A (en) * 2022-05-20 2022-09-27 四川中能西控低碳动力装备有限公司 Double-layer pipeline dynamic air pressure measuring device and method of engine gas supply system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629241A (en) * 1985-07-08 1987-01-17 Hitachi Constr Mach Co Ltd Ultrasonic measuring method for contact stress of hose joint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629241A (en) * 1985-07-08 1987-01-17 Hitachi Constr Mach Co Ltd Ultrasonic measuring method for contact stress of hose joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223564A (en) * 2016-06-16 2017-12-21 千代田化工建設株式会社 Pressure tank inspection method, inspection system and inspection program
CN115112291A (en) * 2022-05-20 2022-09-27 四川中能西控低碳动力装备有限公司 Double-layer pipeline dynamic air pressure measuring device and method of engine gas supply system

Also Published As

Publication number Publication date
JPH0752132B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
US4658649A (en) Ultrasonic method and device for detecting and measuring defects in metal media
US5035143A (en) Method of detecting creep swelling
US8820163B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
US7565252B2 (en) Method for automatic differentiation of weld signals from defect signals in long-range guided-wave inspection using phase comparison
EP0232613A2 (en) Detection of hydrogen damage in boiler tubes
US5661241A (en) Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
WO2006011484A1 (en) Buried pipe examining method
US4531409A (en) Test system for defect determination in welding seams
JPS60104255A (en) Device and method for inspecting solid under nondestructive state
KR101949875B1 (en) Apparatus and method for detecting defects of structures
JP4144703B2 (en) Tube inspection method using SH waves
JPH0474939A (en) Detecting device of fitting stress of double tube
JP4241529B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP4515848B2 (en) Inspection method for buried pipes
JPH11118771A (en) Ultrasonic flaw-detecting method and device of thin plate with plate-thickness change
CN116026921A (en) Intelligent grouting sleeve system with built-in annular ultrasonic sensor array
KR20040033698A (en) Method and apparatus for diagnosing pipe by using the guided ultrasound
JPH11133003A (en) Ppm electromagnetic ultrasonic transducer and device and method for detecting flaw using ppm electromagnetic ultrasonic transducer
JP2005221321A (en) Method and device for detecting ultrasonic signal
JPH09236585A (en) Diagnostic measurement sensor for surface degradation, hardening, fatigue, etc., and diagnostic device and diagnostic method
GB1600643A (en) Method of dynamically discriminating between flaws and indications of faults with ultrasonic testing
JPH095309A (en) Sensor for diagnosing surface deterioration and fatigue, device for diagnosing surface deterioration and fatigue and its diagnostic method
JPH0375536A (en) Method for detecting joint stress of duplex tube
JP3715177B2 (en) Evaluation method of circular pipe
JP4538928B2 (en) Crystal grain size abnormality judgment device and crystal grain size abnormality judgment method