JPH0474791A - Epitaxial growth in liquid phase and apparatus therefor - Google Patents

Epitaxial growth in liquid phase and apparatus therefor

Info

Publication number
JPH0474791A
JPH0474791A JP18549790A JP18549790A JPH0474791A JP H0474791 A JPH0474791 A JP H0474791A JP 18549790 A JP18549790 A JP 18549790A JP 18549790 A JP18549790 A JP 18549790A JP H0474791 A JPH0474791 A JP H0474791A
Authority
JP
Japan
Prior art keywords
solution
layer
growth
substrate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18549790A
Other languages
Japanese (ja)
Inventor
Shogo Tomita
冨田 尚吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP18549790A priority Critical patent/JPH0474791A/en
Publication of JPH0474791A publication Critical patent/JPH0474791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To enable formation of a thick epitaxial layer of excellent crystallinity with hardly any dispersion in layer thickness or composition by changing the thickness of a solution placed in a solution reservoir and varying the growth rate during epitaxial growth in the liquid phase. CONSTITUTION:A pulling rod 6 for a substrate holder 4 is initially operated to slide the substrate holder 4 to bring a GaAs substrate 5 into contact with the solution 2 for growing the first layer and directly allowed to stand for about 2.5 hr. Thereby, the epitaxial layer of the first layer is formed. In the process, the thickness of the solution for growing the first layer is about 6mm. A pulling rod 8 for a partition member is then moved in the direction of an arrow while keeping the GaAs substrate 5 in a contact state with the solution 2 for growing the second layer to move the partition member 7. The solution 2 for growing the first layer is divided into the upper and lower parts to change the thickness of the solution 9 in contact with the substrate 5 on the side of the lower part to about 3mm. After completing the growth of the first layer, the substrate holder 4 is further slid to bring the GaAs substrate 5 into contact with a solution 3 for growing the second layer to form the second layer.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はスライドボード法を用いた液相エピタキシャル
成長法及びその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid phase epitaxial growth method using a slide board method and an apparatus therefor.

[従来の技術] 一般に半導体装置、特に化合物半導体装置は液相エピタ
キシャル成長法を用いて製造され、発光ダイオード、半
導体レーザなとの光半導体装置は主にスライドボード法
を用いて製造されている。
[Prior Art] Semiconductor devices, particularly compound semiconductor devices, are generally manufactured using the liquid phase epitaxial growth method, and optical semiconductor devices such as light emitting diodes and semiconductor lasers are mainly manufactured using the slide board method.

第6図に発光ダイオードの製造に用いられるスライドボ
ードの概略図を示す。複数個の溶液溜めの並んだ溶液ホ
ルダ1に所要の溶液、図示例では第1N成長溶液2.第
2層成長溶液3を入iz、GaAs基板5の載置された
摺動自在な基板ホルダ4を引張り棒6により矢印方向に
スライドして、第1N、第2層の成長溶液2,3をGa
As基板5に逐次接触させながらエピタキシャル層を一
層ずつ成長させていく。高純度H2ガスを成長雰囲気と
し、かつスライドボードの長さ方向に均一な温度分布が
要求される。第7図に、温度分布に徐冷法を採用したと
きの発光ダイオード製造に要求される成長温度プログラ
ム例を示す。
FIG. 6 shows a schematic diagram of a slide board used for manufacturing light emitting diodes. A required solution, in the illustrated example, a first N growth solution 2. Add the second layer growth solution 3, slide the slidable substrate holder 4 on which the GaAs substrate 5 is placed in the direction of the arrow by the pull rod 6, and add the first and second layer growth solutions 2 and 3. Ga
The epitaxial layer is grown layer by layer while being successively brought into contact with the As substrate 5. High purity H2 gas is used as the growth atmosphere, and a uniform temperature distribution in the length direction of the slide board is required. FIG. 7 shows an example of a growth temperature program required for manufacturing a light emitting diode when a slow cooling method is adopted for temperature distribution.

[発明が解決しようとする課題] ところで、発光ダイオードを製造する場合、基板からの
結晶欠陥の伝播の影響を防ぐために20μm以上のエピ
タキシャル層厚が必要であるとされている。し・かも、
このN厚を持つエピタキシャル層は高品質であることが
要求される。
[Problems to be Solved by the Invention] Incidentally, when manufacturing a light emitting diode, it is said that an epitaxial layer thickness of 20 μm or more is required to prevent the influence of propagation of crystal defects from the substrate. Maybe,
The epitaxial layer having this thickness of N is required to be of high quality.

エピタキシャル層の品質を決定する重要な因子の一つは
ピタキシャル層の成長速度である。第7図に示す従来の
徐冷法巳こおいては、エピタキシャル層の成長速度は溶
液の厚さと徐冷温度勾配によって決まり、成長中の溶液
の厚さは3〜10mmの範囲で一定に保たれている。
One of the important factors determining the quality of the epitaxial layer is the growth rate of the epitaxial layer. In the conventional slow cooling method shown in Figure 7, the growth rate of the epitaxial layer is determined by the thickness of the solution and the slow cooling temperature gradient, and the thickness of the solution during growth is kept constant in the range of 3 to 10 mm. There is.

通常、温度勾配はプログラムによって固定されているこ
とから、高品質の厚いビタキシャル層を得るには、成長
溶液の厚さを決めることか藺易な手法となる。
Since the temperature gradient is usually fixed by the program, determining the thickness of the growth solution is an easy way to obtain a high-quality, thick bitaxial layer.

ところが、成長溶液の厚さが薄いと成長厚さや組成が均
一であるエピタキシャル層か得られるが、厚いエピタキ
シャル層は得られない。
However, if the growth solution is thin, an epitaxial layer with uniform growth thickness and composition can be obtained, but a thick epitaxial layer cannot be obtained.

逆に溶液の厚さか厚い場合には厚いエピタキシャル層は
得られるものの、エピタキシャル層厚や組成のウェハ面
内でのバラツキを生しる。例えば、5mm以上の厚い溶
液を使用した場合には、面内ての組成のバラツキが生じ
、発光波長の面内バラツキが現れる。また、成長速度か
速いために結晶性か悪く発光出力び低いものし、か得ら
れない。
Conversely, if the solution is thick, a thick epitaxial layer can be obtained, but the epitaxial layer thickness and composition will vary within the wafer surface. For example, when a thick solution of 5 mm or more is used, in-plane compositional variations occur, resulting in in-plane emission wavelength variations. In addition, because the growth rate is fast, the crystallinity is poor and the luminous output is low, making it difficult to obtain.

本発明の目的は、前記した従来技術の欠点を解消し、層
厚や組成のばらつきのない、結晶性の良好な、厚いエピ
タキシャル層を形成することが可能な液相エピタキシャ
ル成長法及びその装置を提供することにある。
An object of the present invention is to provide a liquid phase epitaxial growth method and an apparatus therefor, which eliminates the drawbacks of the prior art described above and can form a thick epitaxial layer with good crystallinity and no variation in layer thickness or composition. It's about doing.

[課題を解決するための手段] 本発明の液相エピタキシャル成長法は、スライドボード
の長さ方向に形成された均一な温度分布下で、溶液溜め
の並んだ溶液ホルダに所要の溶液を入れ、これを逐次基
板に接触させながらビタキシャル層を一層ずつ成長させ
ていく液相エピタキシャル成長法に適用される。
[Means for Solving the Problems] The liquid phase epitaxial growth method of the present invention involves placing a required solution in a solution holder lined with solution reservoirs under a uniform temperature distribution formed in the length direction of a slide board, It is applied to the liquid phase epitaxial growth method, in which the bitaxial layer is grown layer by layer while successively contacting the substrate.

このような液相エピタキシャル成長法による成長中に、
成長2の厚みや成長ホモロジ制御を有利にするために、
溶液溜めに入れた溶液の厚さを変えて、成長速度を変化
させるようにしたものである。
During growth by such liquid phase epitaxial growth method,
In order to advantageously control the thickness of growth 2 and growth homology,
The growth rate is changed by changing the thickness of the solution placed in the solution reservoir.

また、本発明の液相エピタキシャル成長装置は、所要の
溶液を入れた溶液溜めの並んだ溶液ホルダに対して基板
を保持した基板ホルダを相対移動することにより、所要
の溶液を逐次基板に接触させながらエピタキシャル層を
一層ずつ成長させていく液相エピタキシャル成長装置に
適用される。
In addition, the liquid phase epitaxial growth apparatus of the present invention moves the substrate holder holding the substrate relative to the solution holder in which solution reservoirs containing the required solution are arranged, thereby sequentially bringing the required solution into contact with the substrate. It is applied to liquid phase epitaxial growth equipment that grows epitaxial layers one by one.

このような液相エピタキシャル成長装置において、溶液
溜めに入れた溶液の厚さを変えて成長速度を変化させる
ために、溶液溜め内の溶液を上下に二倍して、基板と接
触する溶液の厚さを変更する仕切手段を摺動自在に設け
たものである。
In such a liquid phase epitaxial growth apparatus, in order to change the growth rate by changing the thickness of the solution in the solution reservoir, the solution in the solution reservoir is doubled vertically to increase the thickness of the solution in contact with the substrate. It is provided with a slidable partition means for changing the area.

[作用コ 既述したように徐冷法においては、エピタキシャル層の
成長速度を決める因子の一つは溶液の厚さである。発光
ダイオードを製造する場合、溶液が厚いと成長速度が速
いため結晶性か悪く発光出力の低いものしか得られない
が、基板からの結晶欠陥の伝播の影響を防ぐために必要
とされる20μm以上の厚いエピタキシャル層か得られ
る。
[Function] As mentioned above, in the slow cooling method, one of the factors that determines the growth rate of the epitaxial layer is the thickness of the solution. When manufacturing light emitting diodes, if the solution is thick, the growth rate is fast, so only those with poor crystallinity and low light emitting output can be obtained. A thick epitaxial layer can be obtained.

ところで、溶液の厚さが厚くても、当初は、成長層の組
成は相当精度よく制御されるので組成の均一なエピタキ
シャル層が得られるが、成長が進むにつれて、成長層の
組成が崩れ始める。こnは溶液の上部と下部とて溶液の
組成か変り、成長速度を決める溶液中の物質輸送がうま
くゆかなくなるからである。
By the way, even if the thickness of the solution is thick, the composition of the grown layer is initially controlled with high precision and an epitaxial layer with a uniform composition can be obtained, but as growth progresses, the composition of the grown layer begins to collapse. This is because the composition of the solution changes between the upper and lower parts of the solution, and the transport of substances in the solution, which determines the growth rate, becomes difficult.

従って、溶液の厚さが厚いままであると成長途中から成
長層の組成が崩れ始める。
Therefore, if the thickness of the solution remains thick, the composition of the grown layer will begin to collapse during the growth.

そこで、成長途中で溶液の厚さを薄くしてやると、溶液
中の物質輸送を定める拡散もしくは拡散と対流の組合せ
のうち、対流がほぼ無視てきるようになるため、物質輸
送がうまくいき、薄い溶液の利点が成長途中から得られ
ることになる。
Therefore, if the thickness of the solution is reduced during the growth, convection will be almost ignored out of the combination of diffusion or diffusion and convection that determines the mass transport in the solution, so mass transport will be successful, and the thin solution The benefits of this can be obtained even during the growth stage.

[実施例コ 以下、本発明の液相エピタキシャル成長法及びその装置
の実施例を第1図〜第5図を用いて説明する。
[Example 7] Examples of the liquid phase epitaxial growth method and apparatus thereof according to the present invention will be described below with reference to FIGS. 1 to 5.

第1図に本発明の液相エピタキシャル成長法を赤色G 
a AI A s発光ダイオードに適用するために必要
なスライドボード例を示す。
Figure 1 shows the liquid phase epitaxial growth method of the present invention in red G.
a An example of a slide board required for application to AI As light emitting diodes is shown.

溶液ホルダ1には複数個の溶液溜め12.13が並べら
れ、これら溶液溜め12.13に第1成長層を形成する
ための第1層成長溶液2.第2成長層を形成するための
第2N成長溶液3がそれぞれ入れられている。
A plurality of solution reservoirs 12.13 are arranged in the solution holder 1, and a first layer growth solution 2.1 for forming a first growth layer is placed in these solution reservoirs 12.13. A second N growth solution 3 for forming a second growth layer is respectively placed.

基板ホルダ4は、この溶液ホルダ1を貫通し、かつスラ
イドボードの長さ方向に摺動自在に設けられており、基
板ホルダ4の端部に取り付けた基板ホルダ用引張り棒6
により、基板ホルダ4上に載置したG a A s基板
5を溶液ホルダ1の各成長溶液2,3と接触させること
ができるようになっている。
The substrate holder 4 passes through the solution holder 1 and is slidably provided in the length direction of the slide board, and has a substrate holder pull rod 6 attached to the end of the substrate holder 4.
This allows the GaAs substrate 5 placed on the substrate holder 4 to be brought into contact with each of the growth solutions 2 and 3 of the solution holder 1.

そして、上記溶液ホルダ1は、その第1N成長溶液2を
入れる溶液溜め12側に、溶液溜め12内の第1層成長
溶液2を上下に二倍して、GaAs基板5と接触する溶
液の厚さを変更する仕切手段10を備えている。
Then, the solution holder 1 doubles the first layer growth solution 2 in the solution reservoir 12 vertically on the solution reservoir 12 side into which the first N growth solution 2 is placed, so that the thickness of the solution in contact with the GaAs substrate 5 is It is equipped with partition means 10 for changing the height.

この仕切手段10は仕切部材7と、二の仕切部材7を摺
動操作する仕切部材用引張り棒8とから構成される。仕
切部材7は、溶液溜め12を貫通しかつ基板ホルダ4と
同し5方向に摺動自在に設けられた板状部材で、途中ご
こ溶液溜め12とほぼ同し口径の開口を有し、摺動前こ
こはその開口を溶液溜め12に合致させ、摺動によりそ
の開口位置を動かして溶液溜め12を上下に分割するよ
うになっている。
This partitioning means 10 is composed of a partitioning member 7 and a partitioning member tension rod 8 for slidingly operating the second partitioning member 7. The partition member 7 is a plate-shaped member that penetrates the solution reservoir 12 and is slidably provided in the same five directions as the substrate holder 4, and has an opening approximately the same diameter as the solution reservoir 12 in the middle. Before sliding, the opening is aligned with the solution reservoir 12, and the opening position is moved by sliding to divide the solution reservoir 12 into upper and lower parts.

次に、上記した構成の液相エピタキシャル成長装置を用
いて赤色G a A I A S発光ダイオードを成長
した場合について説明する。第2図、第3図に実際の操
作の際の仕切部材7の配置を、第4図に成長温度プログ
ラムと操作のタイミングを示す。
Next, a case will be described in which a red GaAIS light emitting diode is grown using the liquid phase epitaxial growth apparatus having the above configuration. FIGS. 2 and 3 show the arrangement of the partition member 7 during actual operation, and FIG. 4 shows the growth temperature program and timing of the operation.

まず、基板ホルダ用引張り棒6を操作して基板ホルダ4
をスライドさせ、GaA、s基板5を第1層成長溶液2
と接触させ、そのまま2時間30分間放置し、第1層目
のエピタキシャル層を成長する(第2図)。このときの
第1N成長溶液の厚さは6mmとした。
First, operate the board holder pull rod 6 to hold the board holder 4.
Slide the GaA, s substrate 5 into the first layer growth solution 2.
The first epitaxial layer was grown by contacting with the substrate and leaving it as it was for 2 hours and 30 minutes (FIG. 2). The thickness of the first N growth solution at this time was 6 mm.

次に、GaAs基板5を第2層成長溶液2と接触させた
状態を保持したまま、仕切部材用引張り棒8を矢印方向
く第1図)に動かして仕切部材7を移動し、第1層成長
溶液2を上下に仕切って、基板5と接触している下部側
の溶液9の厚さを3mmに変更して、第1層成長を続行
する(第3図)。
Next, while keeping the GaAs substrate 5 in contact with the second layer growth solution 2, the partition member tension rod 8 is moved in the direction of the arrow (FIG. 1) to move the partition member 7, and the first layer is grown. The growth solution 2 is divided into upper and lower parts, and the thickness of the lower part of the solution 9 in contact with the substrate 5 is changed to 3 mm, and the first layer growth is continued (FIG. 3).

第1層成長の終了後、基板ホルダ4を更にスライドさせ
てGaAs基板5を第2層成長溶液3と接触させて、第
2層を成長した。
After the first layer growth was completed, the substrate holder 4 was further slid to bring the GaAs substrate 5 into contact with the second layer growth solution 3 to grow the second layer.

このようにして2層のエピタキシャル層を成長したエピ
タキシャルウェハの第1N目の膜厚を調べたところ、第
1Nは約40μm成長しており、所望の膜厚が得られた
。さらに、このエピタキシャルウェハより赤色GaAl
As発光ダイオードを形成し、その発光光度を従来方法
により製造した発光ダイオードと比較したところ、その
結果は、第5図に示す通りとなった。発光光度は30%
増加し、ウェハ面内での発光波長のばらつきも従来方法
の1/2になった。
When the 1Nth film thickness of the epitaxial wafer on which two epitaxial layers were grown in this manner was examined, the 1Nth layer had grown by about 40 μm, and the desired film thickness was obtained. Furthermore, this epitaxial wafer has red GaAl.
When an As light emitting diode was formed and its luminous intensity was compared with that of a light emitting diode manufactured by a conventional method, the results were as shown in FIG. Luminous intensity is 30%
The variation in the emission wavelength within the wafer surface was also reduced to 1/2 that of the conventional method.

以上述べたように本実施例によれば、エピタキシャル成
長の過程において溶液の厚さを変えて、成長速度を変え
るようにし・だので、5mm以上の厚い溶液を使用した
場合ても面内ての■成のバラツキが生じず、発光波長の
面内バラツキも現れない。また、結晶性が良く高い発光
出力か得られ、発光ダイオードの発光特性を大幅に向上
させることができる。
As described above, according to this embodiment, the growth rate is changed by changing the thickness of the solution during the epitaxial growth process. Therefore, even when a thick solution of 5 mm or more is used, the in-plane There is no variation in the composition, and there is no in-plane variation in the emission wavelength. In addition, it has good crystallinity and can provide high light emitting output, making it possible to significantly improve the light emitting characteristics of the light emitting diode.

なお、上記実施例では、−層に対してのみ溶液の厚さを
変えて成長速度を変えた場合について説明したが、本発
明はこれに限定されるものではなく、多層に対しても適
用可能である。
In addition, in the above example, a case was explained in which the growth rate was changed by changing the thickness of the solution only for the − layer, but the present invention is not limited to this, and can also be applied to multilayers. It is.

また、本発明は化合物半導体や光半導体に限定されず、
エピタキシャル層を要求される半導体装置に広く適用で
き、また、成長温度も徐冷法に限定されるものではない
Furthermore, the present invention is not limited to compound semiconductors or optical semiconductors,
The method can be widely applied to semiconductor devices requiring an epitaxial layer, and the growth temperature is not limited to the slow cooling method.

また、仕切手段として成長溶液を二倍する場合について
述べたが、成長溶液を二倍して上部を排除するような構
成を取るようにしてもよい。
Moreover, although the case where the growth solution is doubled as a partitioning means has been described, a structure may be adopted in which the growth solution is doubled and the upper part is excluded.

さらに、仕切操作において、最初に仕切手段により溶液
を仕切っといて、成長途中でその仕切を解除することに
より、途中から厚い溶液に変更してやることもてきる。
Furthermore, in the partitioning operation, it is possible to first partition the solution using a partitioning means, and then release the partition during the growth, thereby changing to a thick solution midway through the growth.

これにより混晶比の制御も可能となる。This also makes it possible to control the mixed crystal ratio.

[発明の効果コ 以上述べたように本発明によれば、次のような効果を発
揮する。
[Effects of the Invention] As described above, the present invention provides the following effects.

(1)請求項1に記載の液相エピタキシャル成長法によ
れば、当初ある厚さの溶液を使ったとしても、エピタキ
シャル成長の過程で溶液の厚さを変更して、成長速度を
変えるようにしたので、層厚や組成のばらつきのない結
晶性の優れた厚いエピタキシャル層を得ることができる
(1) According to the liquid phase epitaxial growth method according to claim 1, even if a solution of a certain thickness is initially used, the thickness of the solution is changed during the epitaxial growth process to change the growth rate. , a thick epitaxial layer with excellent crystallinity without variations in layer thickness or composition can be obtained.

(2)請求項2に記載の液相エピタキシャル成長装置に
よれば、仕切手段を設けるという簡単な構成で、結晶性
の優れた厚いエピタキシャル層を得ることができる。
(2) According to the liquid phase epitaxial growth apparatus according to the second aspect, a thick epitaxial layer with excellent crystallinity can be obtained with a simple configuration of providing a partitioning means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例によるスライドボード法による
液相エピタキシャル成長装置の断面図、第2図及び第3
図は本実施例による成長過程における液相エピタキシャ
ル成長装置の部分拡大断面図、第4図は本実施例による
成長温度プログラムを説明する温度特性図、第5図二よ
本実施例と従来例の相対値比較における発光光度特性図
、第6図は従来例のスライドボード法の概略図、第7図
は従来例の発光ダイオード成長時の徐冷法ごこよる成長
温度プログラムを説明する温度特性図である。 1は溶液ホルダ、2は第1N成長溶液、3は第2層成長
溶液、4は基板ホルダ、5はGaAs基板、6は基板ホ
ルダ用引張り棒、7は仕切部材、8は仕切部材用引張り
棒、9は溶液厚さを変更したときの下部溶液、10は仕
切手段である。
FIG. 1 is a sectional view of a liquid phase epitaxial growth apparatus using a slide board method according to an embodiment of the present invention, and FIGS.
The figure is a partially enlarged sectional view of the liquid phase epitaxial growth apparatus during the growth process according to this embodiment, FIG. 4 is a temperature characteristic diagram explaining the growth temperature program according to this embodiment, and FIG. FIG. 6 is a schematic diagram of a conventional slide board method, and FIG. 7 is a temperature characteristic diagram illustrating a growth temperature program using a slow cooling method during growth of a conventional light emitting diode. 1 is a solution holder, 2 is a first N growth solution, 3 is a second layer growth solution, 4 is a substrate holder, 5 is a GaAs substrate, 6 is a tension rod for the substrate holder, 7 is a partition member, and 8 is a tension rod for the partition member. , 9 is the lower solution when the solution thickness is changed, and 10 is a partition means.

Claims (1)

【特許請求の範囲】 1、スライドボードの長さ方向に形成された均一な温度
分布下で、溶液溜めの並んだ溶液ホルダに所要の溶液を
入れ、これを逐次基板に接触させながらピタキシャル層
を一層ずつ成長させていく液相エピタキシャル成長法に
おいて、 成長中に溶液溜めに入れた溶液の厚さを変えて、成長速
度を変化させるようにしたことを特徴とする液相エピタ
キシャル成長方法。 2、所要の溶液を入れた溶液溜め並んだ溶液ホルダに対
して基板を保持した基板ホルダを相対移動することによ
り、所要の溶液を逐次基板に接触させながらエピタキシ
ャル層を一層ずつ成長させていく液相エピタキシャル成
長装置において、溶液溜め内の溶液を上下に二分して、
基板と接触する溶液の厚さを変更する仕切手段を摺動自
在に設けたことを特徴とする液相エピタキシャル成長装
置。
[Claims] 1. Under a uniform temperature distribution formed in the length direction of the slide board, the required solution is poured into a solution holder lined with solution reservoirs, and the pitaxial layer is sequentially brought into contact with the substrate. A liquid phase epitaxial growth method in which growth is performed layer by layer, and the growth rate is varied by changing the thickness of a solution added to a solution reservoir during growth. 2. Solution reservoir containing the required solution. By moving the substrate holder holding the substrate relative to the lined up solution holders, the epitaxial layer is grown layer by layer while the required solution is successively brought into contact with the substrate. In a phase epitaxial growth apparatus, the solution in the solution reservoir is divided into upper and lower halves,
A liquid phase epitaxial growth apparatus characterized in that a partition means is slidably provided to change the thickness of a solution in contact with a substrate.
JP18549790A 1990-07-13 1990-07-13 Epitaxial growth in liquid phase and apparatus therefor Pending JPH0474791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18549790A JPH0474791A (en) 1990-07-13 1990-07-13 Epitaxial growth in liquid phase and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18549790A JPH0474791A (en) 1990-07-13 1990-07-13 Epitaxial growth in liquid phase and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH0474791A true JPH0474791A (en) 1992-03-10

Family

ID=16171804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18549790A Pending JPH0474791A (en) 1990-07-13 1990-07-13 Epitaxial growth in liquid phase and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH0474791A (en)

Similar Documents

Publication Publication Date Title
JPH0474791A (en) Epitaxial growth in liquid phase and apparatus therefor
US4149914A (en) Method for depositing epitaxial monocrystalline semiconductive layers via sliding liquid phase epitaxy
US4390379A (en) Elimination of edge growth in liquid phase epitaxy
JPS62128522A (en) Liquid growth method
JPS60157219A (en) Liquid phase epitaxial growing method
JPH04960B2 (en)
JP3151277B2 (en) Liquid phase epitaxial growth method
JPH04254321A (en) Liquid phase epitaxial growth method
JPH0243723A (en) Solution growth device
US4412502A (en) Apparatus for the elimination of edge growth in liquid phase epitaxy
JPS6311596A (en) Liquid phase epitaxy for multiple element compound semiconductor by two-phase melt method
JPH02296791A (en) Liquid phase epitaxial growth method
JPS63112494A (en) Growth method by liquid epitaxy
JPS6278198A (en) Method of epitaxial growth of gai-xalxas
JPH02133390A (en) Method and device for multilayer epitaxial growth
JPS627696A (en) Method and apparatus for liquid-phase epitaxial growth
JPS61176111A (en) Manufacture of compound semiconductor thin film
JPH0369587A (en) Liquid phase epitaxy device
JPS63256599A (en) Gaalas epitaxial wafer and its production
JPS5841798A (en) Liquid-phase epitaxial crystal growth
JPS6041216A (en) Crystal growth method
JPS5827239B2 (en) Semiconductor crystal manufacturing equipment
JPS6317292A (en) Device for multi-layer liquid phase epitaxial growth
JPS63138724A (en) Liquid phase epitaxial growth apparatus
JPS6110099A (en) Method for continuous growth of thin film crystal