JPS5841798A - Liquid-phase epitaxial crystal growth - Google Patents
Liquid-phase epitaxial crystal growthInfo
- Publication number
- JPS5841798A JPS5841798A JP13802081A JP13802081A JPS5841798A JP S5841798 A JPS5841798 A JP S5841798A JP 13802081 A JP13802081 A JP 13802081A JP 13802081 A JP13802081 A JP 13802081A JP S5841798 A JPS5841798 A JP S5841798A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- growth
- solute
- crystal growth
- vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/10—Controlling or regulating
- C30B19/106—Controlling or regulating adding crystallising material or reactants forming it in situ to the liquid
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】 重発明は液相エピタキシャル成長法、に化合物半△ 導体の液相エピタキシャル成長法に関するものである。[Detailed description of the invention] The major invention is liquid phase epitaxial growth method, compound half △ The present invention relates to a liquid phase epitaxial growth method for conductors.
G a 1−XMXABの液相エピタキシを例にとり、
従来技術の欠点を説明する。ただし、0<X<1である
。Taking liquid phase epitaxy of G a 1-XMXAB as an example,
The shortcomings of the prior art will be explained. However, 0<X<1.
Ga1XAIA’8の成長では、Mの実効偏析係数が1
より大きいことに起因して、成長に伴ない成長用溶液中
の濃度が急激に減少し、その結果エピタキシャル成長層
のM混晶比も急激に減少する。このため従来広のような
欠点及び不都合があった。In the growth of Ga1XAIA'8, the effective segregation coefficient of M is 1.
Due to the larger size, the concentration in the growth solution decreases rapidly with growth, and as a result, the M mixed crystal ratio of the epitaxially grown layer also decreases rapidly. For this reason, it has the same drawbacks and inconveniences as the conventional wide one.
(1) 成長層の厚さ方向に対して均一なM混晶比が
得られない。(冷却法の場合)
(2) 目的とする成長層表面のM混晶比を得るため
、成°長開始時のM混晶比を高く設定する必要がある。(1) A uniform M mixed crystal ratio cannot be obtained in the thickness direction of the grown layer. (In the case of cooling method) (2) In order to obtain the desired M mixed crystal ratio on the surface of the growth layer, it is necessary to set the M mixed crystal ratio at the start of growth to be high.
このため通常、基板に用いるGaAsとの格子定数の差
が大きくなり、ウェハが彎曲したり、数100μm厚い
成長では割れてしまうなど混−晶比および厚さに限界が
ある。For this reason, there is usually a large difference in lattice constant from GaAs used for the substrate, and there are limits to the mixed crystal ratio and thickness, such as wafer curvature or cracking when grown several hundred micrometers thick.
(3) A#混晶比の低下を伴わないエピタキシャル
成長法として温度差法があるがこの方法は成長用溶液上
部にGa1−xuxAsの多結晶を浮かべる必要がある
こと。しかもGa1−XMXABの多結晶は得難いこと
、及び成長速度が極め遅いことなど、工業的な目的には
適さない。(3) There is a temperature difference method as an epitaxial growth method that does not involve a decrease in the A# mixed crystal ratio, but this method requires floating a Ga1-xuxAs polycrystal above the growth solution. Furthermore, polycrystals of Ga1-XMXAB are difficult to obtain and the growth rate is extremely slow, making them unsuitable for industrial purposes.
本発明の目的は前記した従来技術の欠点を解消し、エピ
タキシャル成長層の成長方向の成分分布を成長過程で制
御することができる新規な液相エピタキシャル成長層を
提供することにある。An object of the present invention is to eliminate the drawbacks of the conventional techniques described above and to provide a novel liquid phase epitaxial growth layer in which the component distribution in the growth direction of the epitaxial growth layer can be controlled during the growth process.
本発明の要旨は成長用溶液とは別に溶質補給用溶液を用
意し、成長の進行過程で外部からの操作により、成長用
溶液に溶質補給用溶液を混入せしめ、所望の時に所望の
量だけ溶質を成長用溶液に補給し、エピタキシャル晟長
層の成分分布を制御することにある。The gist of the present invention is to prepare a solute replenishment solution separately from a growth solution, and to mix the solute replenishment solution into the growth solution by external operation during the growth process, so that a desired amount of solute can be delivered at a desired time. The purpose is to replenish the growth solution and control the component distribution of the epitaxial epitaxial layer.
化合物半導体のエピタキシ装置には一般にグラファイト
が用いられるが、それ以外の材料、例えば石英、窒化ホ
ウ素等であってもよく、またそれらの組合せたものでも
良い。Although graphite is generally used in compound semiconductor epitaxy equipment, other materials such as quartz, boron nitride, etc., or a combination thereof may also be used.
成長用溶液への溶質補給用溶液の混入方法は種々考えら
れるが、目的とするエビ、タキシ及び使用する装置構造
に適した方法を選ぶことができる。要は成長進行中に溶
液の混入が行なえる構造及び方法であればよい。Various methods of mixing the solute replenishment solution into the growth solution can be considered, and a method suitable for the target shrimp and shrimp and the structure of the apparatus to be used can be selected. In short, any structure and method may be used as long as the solution can be mixed during growth.
この点、成長を一旦停止して改めて異なる組成のエピタ
キシャル層を成長させる多層スライド成長法とは明確に
区別されるものである。In this respect, it is clearly distinguished from the multilayer slide growth method in which growth is temporarily stopped and an epitaxial layer of a different composition is grown again.
成長用溶液への溶質の補給手段としては、補給用溶液の
一部または全部を成長用溶液と混合しても良いし、単に
溶液どおしを接触させ溶質を拡散でエピタキシャル成長
界面まで供給しても良い。As a means of replenishing solute to the growth solution, part or all of the replenishment solution may be mixed with the growth solution, or the solutions may be simply brought into contact and the solute is supplied to the epitaxial growth interface by diffusion. Also good.
に二種類以上の溶質を補給しても良い。Two or more types of solutes may be supplemented.
溶質補給用溶液及びその収納部は複数であっても良く、
この場合は異なる溶質をそれぞれ別個に補給することが
可能となるわけで、用途は一段と拡大する。There may be a plurality of solute replenishment solutions and their storage parts,
In this case, different solutes can be supplied separately, further expanding the range of applications.
本発明のG、aAs基板上へのGa1−XAtXAθエ
ピタキシャル成長を以下実施例により具体的忙説明する
。The Ga1-XAtXAθ epitaxial growth on a G, aAs substrate according to the present invention will be specifically explained below with reference to Examples.
〔実施例1〕
第1図は本発明の実施に使用したグラファイト製のエピ
タキシ治具であり、15mX15mmのGaAs基板1
を収納する基板ホルダ2、およびGa 30 t%Ga
As 3.3f、 A15011v からなる成長用溶
液3を収納する容器4およびGa10r、M80■から
なる溶質補給用溶液5を収納する部分6および容器4を
外部から操作する操作棒7:r:構成されている。基板
を950℃、基板上方を高温に20℃/CrILの上下
方向の温度勾配を設定し、かかる温度条件に達した後、
容器4を操作棒7で第2図に示すように上方に7咽移動
する。その結果、容器4の底部に設けた溶液流入孔8か
ら成長用溶液3が流れ落ち一基板1をおおう。ここで上
記の温度勾配を保持したまま治具全体を0.1℃/Mの
速度で冷却し、成長を開始する。10分後容器4を第3
図に示すようにさらに上方311III+移動する。そ
の語用
果、溶質補給用溶液5は成へ容器4はトンネル9を介し
て混入される。この状態でさらに5時間冷却した。[Example 1] Figure 1 shows a graphite epitaxy jig used in the implementation of the present invention.
substrate holder 2 that accommodates Ga 30 t%Ga
A container 4 for storing a growth solution 3 made of As 3.3f and A15011v, a part 6 for storing a solute replenishment solution 5 made of Ga10r and M80, and an operating rod 7 for operating the container 4 from the outside: r: ing. After setting the substrate at 950°C and the temperature above the substrate at a high temperature of 20°C/CrIL in the vertical direction, and reaching these temperature conditions,
The container 4 is moved upward seven times using the operating rod 7 as shown in FIG. As a result, the growth solution 3 flows down from the solution inflow hole 8 provided at the bottom of the container 4 and covers the substrate 1 . Here, the entire jig is cooled at a rate of 0.1° C./M while maintaining the above temperature gradient, and growth is started. After 10 minutes, transfer container 4 to the third
Further move upward 311III+ as shown in the figure. As a result, the solute replenishment solution 5 is mixed into the container 4 via the tunnel 9. The mixture was further cooled in this state for 5 hours.
かかる成長で得られたGa l −XAffi X A
s成長層の厚さは約450゛μmであった。Gal-XAffi XA obtained by such growth
The thickness of the S growth layer was approximately 450 μm.
Ga I XMXAB層を表面から100μm ずつ
研磨除去し、各々の表面のM混晶比を測定した。測定は
フォトルミネセンスよりエネルギーギャップを測定し、
これをM混晶比に換算することで行なった。第4図はM
混晶比の分布を示す。曲線1゜は本発明により作成した
成長層の混晶比分應を示し、成長を通じてM混晶比の均
一性が保たれている。曲線11は従来のエピタキシャル
成長法によるもので成長層のM混晶比は急激に減少して
いる。The Ga I The measurement measures the energy gap using photoluminescence.
This was done by converting this into an M mixed crystal ratio. Figure 4 is M
The distribution of the mixed crystal ratio is shown. The curve 1° shows the distribution of the mixed crystal ratio of the grown layer produced according to the present invention, and the uniformity of the M mixed crystal ratio is maintained throughout the growth. Curve 11 is obtained by the conventional epitaxial growth method, and the M mixed crystal ratio of the grown layer decreases rapidly.
従来法の場合厚さ400μm の所のM混晶比を0.3
にしようとすると成長開始時の混晶比を約0.5まで高
めなければならず、GaAS基板との格子定数の差が大
きくなりウェハは割れてしまつ友。In the conventional method, the M mixed crystal ratio at a thickness of 400 μm is set to 0.3.
In order to achieve this, the mixed crystal ratio at the start of growth must be increased to about 0.5, which increases the difference in lattice constant from the GaAS substrate, leading to cracking of the wafer.
本発明においては、高M濃度の補給用溶液からMを成長
用−溶液に拡散により補給したものであり、Mの減少分
に相当する量が補給されていることが成長層の混晶比分
布から理解される。゛なお本発明で得iGa1−XMX
AS成長層は発光ダイオードの光透過層として極めて有
用であった。In the present invention, M is replenished from the replenishment solution with a high M concentration into the growth solution by diffusion, and the mixed crystal ratio distribution of the growth layer indicates that M is replenished in an amount corresponding to the decrease in M. be understood from.゛The present invention provides iGa1-XMX
AS grown layers have been extremely useful as light-transmitting layers in light-emitting diodes.
〔実施例2〕
ドラピング不純物の補給により、GaAs基板の上に第
5図に示すキャリア濃度分布をもつGaAsエピタキシ
ャル成長層を得ることができる。治具は実施例1に用い
たものとほぼ同じであるが、トンネル9の直径を5mに
拡大した。容器4にGa20f、 GaAs5f、 T
e2.511vを収納し、補給用溶液部6にGIQ?、
GaA’s 6.8 t、Te5.5”lFを収納した
。温度条件は実施例1と全く同じにした。溶質補給のた
めの容器4の移動操作は成長開始後20分を経過したと
きに行ない、その後10分間で成長を停止した。その結
果第5図に示すキャリア濃度分布のGaAsエピタキシ
ャル成長層を得た。これはn十層を連続的に成長する上
で非常に有効な手段となった。[Example 2] By replenishing doping impurities, a GaAs epitaxial growth layer having a carrier concentration distribution shown in FIG. 5 can be obtained on a GaAs substrate. The jig was almost the same as that used in Example 1, but the diameter of the tunnel 9 was expanded to 5 m. Container 4 contains Ga20f, GaAs5f, T
Store e2.511v and add GIQ? to the replenishment solution section 6. ,
GaA's 6.8 t and Te 5.5"lF were stored. The temperature conditions were exactly the same as in Example 1. The operation of moving the container 4 for solute replenishment was carried out 20 minutes after the start of growth. The growth was then stopped for 10 minutes.As a result, a GaAs epitaxial growth layer with the carrier concentration distribution shown in Figure 5 was obtained.This was a very effective means for continuously growing n10 layers. .
以上説明したように、本発明の最も大きな効果はエピタ
キシャル成長中に目的とする溶質を任意の時に補給する
ことにより、厚さ方向について所望の混晶組成分布もし
くは不純物濃度のエピタキシャル成長嘆が得られる点に
ある。最も効果的な応用例としてG a 1− X A
N X A 8の厚膜エピタキシにおいて数100μm
にわ之るM混晶化の均一な成長層を、しかも短時間で再
現良く得られることを上げることができる。As explained above, the most significant effect of the present invention is that by replenishing the desired solute at any time during epitaxial growth, epitaxial growth with a desired mixed crystal composition distribution or impurity concentration can be obtained in the thickness direction. be. The most effective application example is Ga 1-
Several hundred μm in thick film epitaxy of N x A 8
It is possible to obtain a uniformly grown layer with M mixed crystals in a short time and with good reproducibility.
第1図、第2図及び第3図は本発明成長法の一実施例に
おける各過程を示す説明図であり、第4図はM混晶比の
分布を示す線図であり、第5図はキャリア濃度分布を示
す線図である。
1:基板、2:基板ホルダ、3:成長用溶液、4:成長
用溶液を収納する容器、
5:溶質補給用溶液、
6:溶質補給用溶液を収納する部分、
7:操作棒、8:溶液流入孔、9二トンネル、10:本
発明で得られたM混晶比分布、11:従来得られていた
M混晶比分布。1, 2, and 3 are explanatory diagrams showing each process in an embodiment of the growth method of the present invention, FIG. 4 is a diagram showing the distribution of the M mixed crystal ratio, and FIG. is a diagram showing carrier concentration distribution. 1: Substrate, 2: Substrate holder, 3: Growth solution, 4: Container for storing the growth solution, 5: Solute replenishment solution, 6: Part for storing the solute replenishment solution, 7: Operation rod, 8: Solution inflow hole, 9 two tunnels, 10: M mixed crystal ratio distribution obtained by the present invention, 11: M mixed crystal ratio distribution obtained conventionally.
Claims (1)
溶液を接触させる第1工程と、エピタキシャル層成長過
程においてエピタキシャル層成長用溶液に溶質補給用溶
液を混入する第2工程とを有することを特徴とする液相
エピタキシャル成長法。 2、上下可能な容器にエピタキシャル層成長用溶液を収
納し、前記容器を上げたとき溶質補給用溶液がエピタキ
シャル層成長用溶液に混入するようにトンネル及び溶質
補給用溶液を配置し、第2工程において前記容器を上げ
ることを特徴とする液相エピタキシャル成長法。[Claims] 1. A first step of bringing an epitaxial layer growth solution into contact with a compound semiconductor substrate crystal, and a second step of mixing a solute replenishment solution into the epitaxial layer growth solution during the epitaxial layer growth process. A liquid phase epitaxial growth method characterized by: 2. Store the epitaxial layer growth solution in a container that can be raised and lowered, arrange the tunnel and the solute replenishment solution so that when the container is raised, the solute replenishment solution mixes with the epitaxial layer growth solution, and perform the second step. A liquid phase epitaxial growth method, characterized in that the container is raised.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13802081A JPS5841798A (en) | 1981-09-02 | 1981-09-02 | Liquid-phase epitaxial crystal growth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13802081A JPS5841798A (en) | 1981-09-02 | 1981-09-02 | Liquid-phase epitaxial crystal growth |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5841798A true JPS5841798A (en) | 1983-03-11 |
Family
ID=15212173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13802081A Pending JPS5841798A (en) | 1981-09-02 | 1981-09-02 | Liquid-phase epitaxial crystal growth |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5841798A (en) |
-
1981
- 1981-09-02 JP JP13802081A patent/JPS5841798A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3933538A (en) | Method and apparatus for production of liquid phase epitaxial layers of semiconductors | |
Chevy et al. | Large InSe monocrystals grown from a non-stoichiometric melt | |
US3632431A (en) | Method of crystallizing a binary semiconductor compound | |
JPH03122097A (en) | Preparation of single crystal ii-vi group or iii-v group compound and product made of it | |
US4315796A (en) | Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure | |
US3715245A (en) | Selective liquid phase epitaxial growth process | |
US3729348A (en) | Method for the solution growth of more perfect semiconductor crystals | |
US3585087A (en) | Method of preparing green-emitting gallium phosphide diodes by epitaxial solution growth | |
JPS5841798A (en) | Liquid-phase epitaxial crystal growth | |
US3981764A (en) | III-V Compound semi-conductor crystal growth from a liquid phase on a substract including filtering liquid phase | |
US3785884A (en) | Method for depositing a semiconductor material on the substrate from the liquid phase | |
US5047112A (en) | Method for preparing homogeneous single crystal ternary III-V alloys | |
US3785885A (en) | Epitaxial solution growth of ternary iii-v compounds | |
US3810794A (en) | Preparation of gap-si heterojunction by liquid phase epitaxy | |
US3694275A (en) | Method of making light emitting diode | |
Freyhardt et al. | Growth of binary III–V semiconductors from metallic solutions | |
US3589336A (en) | Horizontal liquid phase epitaxy apparatus | |
US3891478A (en) | Deposition of epitaxial layer from the liquid phase | |
Freyhardt | III–V Semiconductors | |
JP2008300603A (en) | Semiconductor production apparatus | |
JPS5853826A (en) | Liquid epitaxial growing method | |
JP2533760B2 (en) | Mixed crystal manufacturing method | |
JPS63144191A (en) | Production of compound semiconductor single crystal and apparatus therefor | |
Dawson | Liquid Phase Epitaxy (LPE) Techniques For Compound Semiconductor Growth | |
JP2610034B2 (en) | Single crystal growth method |