JPH0474599A - Treatment of waste water and sludge - Google Patents
Treatment of waste water and sludgeInfo
- Publication number
- JPH0474599A JPH0474599A JP2185539A JP18553990A JPH0474599A JP H0474599 A JPH0474599 A JP H0474599A JP 2185539 A JP2185539 A JP 2185539A JP 18553990 A JP18553990 A JP 18553990A JP H0474599 A JPH0474599 A JP H0474599A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- treatment
- wastewater
- oxygen
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 94
- 239000002351 wastewater Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 67
- 239000007788 liquid Substances 0.000 claims abstract description 47
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 46
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000001301 oxygen Substances 0.000 claims abstract description 40
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 40
- 239000000203 mixture Substances 0.000 claims abstract description 23
- 239000007787 solid Substances 0.000 claims abstract description 23
- 238000000855 fermentation Methods 0.000 claims abstract description 22
- 230000004151 fermentation Effects 0.000 claims abstract description 22
- 239000003054 catalyst Substances 0.000 claims abstract description 20
- 239000010842 industrial wastewater Substances 0.000 claims abstract description 9
- 238000006864 oxidative decomposition reaction Methods 0.000 claims abstract description 8
- 239000010806 kitchen waste Substances 0.000 claims description 31
- 239000010865 sewage Substances 0.000 claims description 29
- 238000009279 wet oxidation reaction Methods 0.000 claims description 29
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 26
- 238000004065 wastewater treatment Methods 0.000 claims description 21
- 239000000126 substance Substances 0.000 claims description 19
- 229910021529 ammonia Inorganic materials 0.000 claims description 12
- 239000002002 slurry Substances 0.000 claims description 11
- 238000000354 decomposition reaction Methods 0.000 claims description 8
- 239000010840 domestic wastewater Substances 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 6
- 239000010953 base metal Substances 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 5
- 229910000510 noble metal Inorganic materials 0.000 claims description 5
- 239000004480 active ingredient Substances 0.000 claims description 3
- 238000010298 pulverizing process Methods 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 48
- 239000010813 municipal solid waste Substances 0.000 abstract description 10
- 230000001590 oxidative effect Effects 0.000 abstract 2
- 230000029142 excretion Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 44
- 230000003197 catalytic effect Effects 0.000 description 32
- 230000008569 process Effects 0.000 description 23
- 239000007789 gas Substances 0.000 description 18
- 239000007791 liquid phase Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000012141 concentrate Substances 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 239000010801 sewage sludge Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000004062 sedimentation Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 101100009643 Papaver somniferum CODM gene Proteins 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 239000003426 co-catalyst Substances 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- 239000002912 waste gas Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000002361 compost Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000010797 grey water Substances 0.000 description 2
- 239000010800 human waste Substances 0.000 description 2
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000005063 solubilization Methods 0.000 description 2
- 230000007928 solubilization Effects 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 241000219109 Citrullus Species 0.000 description 1
- 235000012828 Citrullus lanatus var citroides Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Treatment Of Sludge (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、廃水および汚泥の処理方法に関し、より詳し
くは、厨芥類(生ごみ、プラスチック類、紙類などを含
む)の破砕物を含む廃水および廃水に由来する汚泥を同
時に処理する方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for treating wastewater and sludge, and more specifically, the present invention relates to a method for treating wastewater and sludge. This invention relates to a method for simultaneously treating sludge derived from wastewater.
従来技術とその問題点
近時生活水準、特に食生活水準の向上とともに、他の家
庭ごみととも、:、・:1′に、厨芥類の量の増加が著
るしくなっている。現在厨芥類は、いわゆる生ゴミとし
て、他の家庭ごみとともに回収され、埋立て乃至焼却処
分されている。しかるに、厨芥類は、水分含有量が極め
て高いという特徴を有しているので、その処理には種々
の問題を呈している。例えば、家庭、集合住宅、ビルな
どでの保管に際して環境汚染問題を引き起こしたり、搬
出が煩雑であったり、埋立て地での腐敗により悪臭源と
なったり、蝿などの衛生害虫の発生源となったり、或い
は焼却が困難であったりする。また、厨芥類は、その高
い水分含有量のために、焼却により回収されるエネルギ
ーの増大を阻む一因ともなっている。BACKGROUND OF THE INVENTION BACKGROUND OF THE INVENTION BACKGROUND OF THE INVENTION BACKGROUND OF THE INVENTION BACKGROUND OF THE INVENTION BACKGROUND OF THE INVENTION In recent years, with the improvement of living standards, especially dietary standards, the amount of kitchen waste has increased significantly, along with other household waste. Currently, kitchen waste is collected as so-called raw garbage along with other household garbage and disposed of in landfills or incinerated. However, since kitchen waste is characterized by extremely high water content, its disposal poses various problems. For example, it may cause environmental pollution problems when stored in homes, apartment complexes, buildings, etc., it may be complicated to transport, it may become a source of bad odors due to rotting in landfills, and it may become a source of sanitary pests such as flies. or it may be difficult to incinerate. In addition, kitchen waste, due to its high water content, is also one of the factors that prevents an increase in the amount of energy recovered by incineration.
生ゴミを分別収集して、コンポスト化する試みもなされ
ているが、季節的な質的変動(例えば、夏期における含
水量の極めて高いスイカ皮の集中的廃棄)、分別収集に
対する一般市民の関心の低さ、堆肥としての市場性の不
安定などの問題点があり、広く普及するには至っていな
い。Attempts have been made to collect garbage separately and compost it, but due to seasonal qualitative changes (for example, intensive disposal of watermelon peels with extremely high water content in the summer), and lack of public interest in separate collection, It has not been widely used due to problems such as low cost and unstable marketability as compost.
したがって、厨芥類を効果的に処理することは、保管、
収集、輸送、焼却などの多くの点で、ごみ処理技術上の
重要課題の一つとなっている。Therefore, effective treatment of kitchen waste requires storage,
It is one of the important issues in waste treatment technology in many aspects such as collection, transportation, and incineration.
厨芥類の処理方法としては、欧米で行われているように
、ディスポーザーにより破砕して、排水とともに下水道
に排出し、下水とともに処理する方法も存在する。しか
しながら、わが国では、既存廃水処理設備に対する負荷
の増大、水質保全などの観点から、この様な処理方法は
、むしろ抑制されている。As a method for disposing of kitchen waste, there is also a method of crushing it with a disposer, discharging it into the sewer along with the wastewater, and disposing of it along with the sewage, as is done in Europe and the United States. However, in Japan, such treatment methods are rather discouraged from the viewpoint of increasing the load on existing wastewater treatment facilities and preserving water quality.
一方では、すでに現在においても、下水処理場などから
多量に発生する汚泥の処理も重大な問題となっており、
厨芥類の処理と下水処理及び汚泥処理とを経済的に行な
う技術の確立が切望されている。On the other hand, even today, the treatment of large amounts of sludge generated from sewage treatment plants has become a serious problem.
There is a strong desire to establish technology for economically processing kitchen waste, sewage, and sludge.
問題点を解決するための手段
本発明者は、厨芥類などの処理に関する上記の如き問題
点に鑑みて鋭意研究を進めた結果、ディスポーザーによ
り破砕泥状化された厨芥類を排水とともに下水道または
廃水処理設備に連絡された専用排水管に排出した後、下
水処理場における処理または廃水処理設備における処理
に先立って上記混合物中の固形物と液状成分とを分離し
、固形物と液状成分とを別個に処理する場合には、廃水
処理設備に対する負荷の増大、水質の悪化などの事態を
回避しつつ、厨芥類によりもたらされるごみ処理におけ
る種々の問題点をも軽減し得ることを見出した。Means for Solving the Problems The inventor of the present invention has carried out extensive research in view of the above-mentioned problems regarding the treatment of kitchen waste, etc., and as a result, the present inventor has discovered that the kitchen waste that has been crushed and turned into slurry by a disposer is discharged into a sewer or wastewater. After discharging into a dedicated drain pipe connected to the treatment equipment, the solids and liquid components in the mixture are separated before treatment at a sewage treatment plant or wastewater treatment equipment, and the solids and liquid components are separated. It has been found that when wastewater is treated, various problems in waste treatment caused by kitchen waste can be alleviated while avoiding situations such as an increase in the load on wastewater treatment equipment and deterioration of water quality.
特に、上記のようにして分離された固型物と下水処理場
などからの汚泥とを合わせて嫌気メタン醗酵処理法と湿
式酸化処理法との組合わせにより処理する場合には、経
済性にも優れた結果が得られることを見出した。In particular, when the solids separated as described above and sludge from a sewage treatment plant are combined and treated by a combination of an anaerobic methane fermentation treatment method and a wet oxidation treatment method, it is economical as well. It has been found that excellent results can be obtained.
すなわち、本発明は、下記の廃水および汚泥の処理方法
を提供するものである:
■廃水および汚泥の処理方法であって、(1)厨芥類を
粉砕泥状化し、生活廃水および/または産業廃水と混合
して下水道または廃水処理設備に連絡された専用排水管
に排出する工程、(2)下水処理場における処理または
廃水処理設備における処理に先立って上記混合物中の固
形物と液状成分とを分離する工程、
(3)上記(2)で分離された液状成分を活性汚泥処理
する工程、
(4)上記(2)で分離された固形物と下水処理場また
は廃水処理設備において発生するが或いは回収される固
形物とを下水または廃水に混合する工程、
(5)上記(4)で得られた混合物を嫌気メタン発酵処
理する工程、
(6)上記(5)で得られた処理液を酸素の存在下にp
H約1〜LL、5、温度1oo〜370℃テ湿式酸化分
解する工程、および
(7)上記(6)で得られた処理液を貴金属およ・:、
1
び卑金属の少なくとも一種を活性成分とする粒状担持触
媒の存在下且つ処理液中のアンモニア、有根性物資およ
び無機性物質を分解するに必要な理論酸素量の1〜1,
5倍量の酸素の存在下にpH約1〜11,5、温度10
0〜370℃で湿式酸化分解する工程
を備えたことを特徴とする廃水および汚泥の処理方法。That is, the present invention provides the following methods for treating wastewater and sludge: (1) A method for treating wastewater and sludge, which comprises: (1) crushing kitchen waste into slurry and turning it into domestic wastewater and/or industrial wastewater; (2) Separation of solids and liquid components in the mixture prior to treatment at a sewage treatment plant or wastewater treatment facility. (3) A step of treating the liquid component separated in (2) above with activated sludge; (4) A step of treating the liquid component separated in (2) above with the solid matter generated in a sewage treatment plant or wastewater treatment facility or recovering it. (5) A step of subjecting the mixture obtained in (4) above to anaerobic methane fermentation; (6) A step of subjecting the treated liquid obtained in (5) above to oxygen treatment. In the presence of p
H about 1 to LL, 5, a step of wet oxidative decomposition at a temperature of 10 to 370°C, and (7) the treatment liquid obtained in (6) above is treated with a noble metal.
1 to 1 of the theoretical amount of oxygen necessary to decompose ammonia, rooted substances, and inorganic substances in the treatment liquid in the presence of a granular supported catalyst containing at least one of base metals as an active ingredient.
pH approximately 1-11,5, temperature 10 in the presence of 5 times the amount of oxygen
A method for treating wastewater and sludge, comprising a step of wet oxidative decomposition at 0 to 370°C.
■廃水および汚泥の処理方法であって、(1)厨芥類を
粉砕泥状化し、生活廃水および/または産業廃水と混合
して下水道または廃水処理設備に連絡された専用排水管
に排出する工程、(2)下水処理場または廃水処理設備
における処理に先立って上記混合物中の固形物と液状成
分とを分離する工程、
(3)上記(2)で分離された液状成分を活性汚泥処理
する工程、
(4)上記(2)で分離された固形物と下水処理場また
は廃水処理設備において発生するか或いは回収される固
形物とを下水または廃水に混合する工程、
(5)上記(4)で得られた混合物を嫌気メタン発酵処
理する工程、
(6)上記(5)で得られた混合物を酸素の存在下にp
H約1〜11.5、温度1oo〜370℃テ湿式酸化分
解する工程、
(7)上記(6)で得られた処理液を貴金属および卑金
属の少なくとも一種を活性成分とする粒状担持触媒の存
在下且つ処理液中のアンモニア、有機性物資および無機
性物質を分解するに必要な理論酸素量の1〜1.5倍量
の酸素の存在下にpH約1〜11.5、温度100〜3
70℃で湿式酸化分解する工程、
(8)上記(7)で得られた処理液を常圧又は加圧下に
活性汚泥処理する工程、および
(9)上記(5)および/または(8)がらの余剰汚泥
を前記(6)に返送する工程
を備えたことを特徴とする廃水および2ケ記の処理方法
。■ A method for treating wastewater and sludge, which includes (1) a process of pulverizing kitchen waste into slurry, mixing it with domestic wastewater and/or industrial wastewater, and discharging the mixture into a sewer or a dedicated drain pipe connected to wastewater treatment equipment; (2) a step of separating solids and liquid components in the mixture prior to treatment in a sewage treatment plant or wastewater treatment facility; (3) a step of treating the liquid component separated in (2) above with activated sludge; (4) A step of mixing the solids separated in (2) above and the solids generated or recovered in a sewage treatment plant or wastewater treatment facility with sewage or wastewater; (5) The solids obtained in (4) above; (6) subjecting the mixture obtained in step (5) to anaerobic methane fermentation in the presence of oxygen;
(7) The presence of a granular supported catalyst containing at least one of noble metals and base metals as an active ingredient in the treatment liquid obtained in (6) above. In the presence of oxygen in an amount of 1 to 1.5 times the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances in the treatment liquid, the pH is about 1 to 11.5, and the temperature is 100 to 3.
A step of wet oxidation decomposition at 70°C, (8) a step of treating the treated liquid obtained in (7) above with activated sludge under normal pressure or pressurization, and (9) a step of (5) and/or (8) above. Wastewater and the method for treating wastewater as described in item 2 above, comprising a step of returning excess sludge to the above (6).
以下においては、上記■および■項に示す発明をそれぞ
れ本願第一方法および本願第二方法といい、添付図面を
参照しつつ、それぞれを詳細に説明する。In the following, the inventions shown in the above sections (1) and (2) will be referred to as the first method of the present application and the second method of the present application, respectively, and each will be explained in detail with reference to the accompanying drawings.
■8本本願第一方
法1図に示すように、本願第一方法においては、まず、
家庭、飲食店などで発生する厨芥類(1)をディスポー
ザー(3)により粉砕泥状化(粉砕物とし゛て、5mm
以下、より好ましくは1mm以下)した後、し尿、浄化
槽汚泥水などを含む生活廃水(5)および/または産業
廃水(7)と併せて、専用排水管(9)により固形分(
以下SSという)分離機(11)に送る。ここで分離さ
れた液状成分は、活性汚泥槽(13)に送られ、常法に
従って、活性汚泥処理される。但し、液状成分からは、
SSが予め分離されているので、活性汚泥槽(13)の
容量は、従来のものに比して、小さくすることができる
。SS分離機(11)で形成された固形分(15)と活
性汚泥槽(13)からの余剰汚泥(17)とは、汚泥濃
縮機(19)に送られ、濃縮される。■8 First method of the present application As shown in Figure 1, in the first method of the present application, first,
Kitchen waste (1) generated at homes, restaurants, etc. is pulverized into slurry (5 mm as crushed material) by a disposer (3).
(more preferably 1 mm or less), the solid content (more preferably 1 mm or less) is collected together with domestic wastewater (5) and/or industrial wastewater (7) containing human waste, septic tank sludge, etc., through a dedicated drain pipe (9).
(hereinafter referred to as SS) is sent to a separator (11). The liquid components separated here are sent to an activated sludge tank (13) and subjected to activated sludge treatment according to a conventional method. However, from the liquid component,
Since the SS is separated in advance, the capacity of the activated sludge tank (13) can be made smaller than that of a conventional tank. The solid content (15) formed in the SS separator (11) and the excess sludge (17) from the activated sludge tank (13) are sent to the sludge thickener (19) and concentrated.
第1図に示す方法は、下水道未整備地域または下水処理
場以外の廃水処理設備(例えば、工場に付属する廃水処
理設備など)での実施に好適である。The method shown in FIG. 1 is suitable for implementation in areas without sewage systems or in wastewater treatment facilities other than sewage treatment plants (for example, wastewater treatment facilities attached to factories).
第2図に示す方法では、厨芥類(1)をディスポーザー
(3)により破砕した後、し尿、浄化槽汚泥水などを含
む生活廃水(5)および/または産業廃水(7)と併せ
て、下水道(21)に流す。In the method shown in Figure 2, kitchen waste (1) is crushed by a disposer (3) and then mixed with domestic wastewater (5) and/or industrial wastewater (7) containing human waste, septic tank sludge, etc. 21).
初沈槽(23)において混合液から粗大な固型物、砂な
どを沈降などにより分離した後、SS分離機(11)に
おいて廃水中のSSを回収する。SSを含まない液状成
分は、活性汚泥槽(13)に送り、常法にしたがって、
“活性汚泥処理する。この場合にも、液状成分からは、
SSが分離されているので、活性汚泥槽(13)の容量
は、従来のものに比して、小さくすることができる。次
いで、液状成分を終沈槽(25)に送り、沈降分離を行
なう。After coarse solid matter, sand, etc. are separated from the mixed liquid by sedimentation in the initial settling tank (23), SS in the wastewater is recovered in the SS separator (11). The liquid component not containing SS is sent to the activated sludge tank (13) and treated according to the usual method.
“Activated sludge treatment.In this case as well, from the liquid components,
Since the SS is separated, the capacity of the activated sludge tank (13) can be made smaller than that of a conventional tank. Next, the liquid component is sent to a final sedimentation tank (25) to perform sedimentation separation.
5S(27)、5S(15)、活性汚泥槽(13)から
の余剰汚泥(29)および終沈槽(25)からの5S(
31)は、汚泥濃縮機(19)に集められ、濃縮される
。5S (27), 5S (15), excess sludge (29) from the activated sludge tank (13) and 5S (from the final settling tank (25))
31) is collected in a sludge thickener (19) and concentrated.
第2図に示す方法は、下水道整備地域における実施に好
適である。The method shown in Figure 2 is suitable for implementation in areas with sewerage infrastructure.
第1図または第2図に示す処理工程において得られた濃
縮汚泥(水分含量90%以上)は、第3図に示すように
、嫌気メタン発酵槽(159)に送られて嫌気メタン発
酵処理された後、廃水・汚泥貯槽(101)に送られ、
ここで混合される。嫌気性メタン発酵の条件は、特に限
定されないが、通常温度35〜60°C程度、消化日数
0.5〜30日程度、汚泥濃度0.5〜5%程度である
。嫌気メタン発酵槽(159)で生成する余剰汚泥は、
例えば、ライン(105)上で廃水と混合されて、第1
の反応ゾーン(121’)に返送され、濃縮汚泥ととも
に処理される。次いで、濃縮汚泥は、ポンプ(103)
によりライン(105)を経て圧送され、圧縮機(10
7)により昇圧されてライン(109)から圧送される
酸素含有ガスと混合された後、ライン(ill ) 、
熱交換器(113)を経てライン(115)に至る。濃
縮汚泥は、熱交換器(113)における熱交換により所
定温度以上となっている場合には、ライン(117)及
び(119)を経て第1の反応ゾーン(121)に送給
され、所定温度に達していない場合には、ライン(12
3) 、加熱炉(125) 、ライン(127)及びラ
イン(119)を経て第1の反応ゾーン(121)に送
給される。濃縮汚泥には、必要に応じて、そのpHを1
〜11.5程度、より好ましくは、3〜9程度とするた
めに、通常水溶液の形態で、アルカリ物質または酸性物
質が、pH調整物質貯槽(129)からライン(131
’) 、ポンプ(133) 、ライン(135)及びラ
イン(137)を経て添加される。また、ライン(13
1)から分岐するライン(132)を経てpH調整物質
を廃水・汚泥貯槽(lot )に送り、予め濃縮汚泥の
pH調整を行なっても良い。第1の反応ゾーン(121
)内では、触媒を使用することなく、酸素含有ガスの存
在下に濃縮汚泥の液相酸化が行なわれる。使用する酸素
含有ガスとしては、空気、酸素富化ガス、酸素、さらに
はシアン化水素、硫化水素、アンモニア、硫黄酸化物、
有機硫黄化合物、窒素酸化物、炭化水素などの1種また
は2種以上を含有する酸素含有廃ガスなどがあげられる
。これ等ガスの供給量は、濃縮汚泥中のSS1有機物成
分(COD成分)、アンモニアなどを窒素、炭酸ガス、
水などに酸化分解するに必要な理論酸素量の1〜1.5
倍量、より好ましくは1.05〜1.2倍量の酸素が供
給される様にするのが良い。酸素含有廃ガスを酸素源と
する場合には、ガス中の有害成分も同時に処理し得ると
いう利点が得られる。酸素含有廃ガスを使用する場合に
酸素の絶対量が不足であれば、空気、酸素富化空気又は
酸素により不足量を補うのが良い。The thickened sludge (water content of 90% or more) obtained in the treatment process shown in Figure 1 or 2 is sent to the anaerobic methane fermentation tank (159) and subjected to anaerobic methane fermentation treatment, as shown in Figure 3. After that, it is sent to the wastewater/sludge storage tank (101),
It is mixed here. The conditions for anaerobic methane fermentation are not particularly limited, but are usually a temperature of about 35 to 60°C, a digestion period of about 0.5 to 30 days, and a sludge concentration of about 0.5 to 5%. Excess sludge generated in the anaerobic methane fermentation tank (159) is
For example, the first
The sludge is returned to the reaction zone (121') and treated together with the thickened sludge. Next, the thickened sludge is pumped (103)
is pumped through the line (105) by the compressor (10
7) and mixed with the oxygen-containing gas pumped from the line (109), the line (ill),
The heat exchanger (113) leads to the line (115). When the temperature of the thickened sludge is higher than a predetermined temperature due to heat exchange in the heat exchanger (113), the thickened sludge is sent to the first reaction zone (121) via lines (117) and (119), and is heated to a predetermined temperature. If the line (12
3) is fed to the first reaction zone (121) via the heating furnace (125), line (127) and line (119). For thickened sludge, if necessary, adjust its pH to 1.
~11.5, more preferably about 3 to 9, an alkaline substance or an acidic substance, usually in the form of an aqueous solution, is added to the line (131) from the pH adjusting substance storage tank (129).
'), pump (133), line (135) and line (137). Also, line (13
The pH of the concentrated sludge may be adjusted in advance by sending a pH adjusting substance to the wastewater/sludge storage tank (lot) via a line (132) branching from 1). First reaction zone (121
), the liquid phase oxidation of thickened sludge is carried out in the presence of oxygen-containing gas without the use of catalysts. The oxygen-containing gas used includes air, oxygen-enriched gas, oxygen, hydrogen cyanide, hydrogen sulfide, ammonia, sulfur oxide,
Examples include oxygen-containing waste gas containing one or more of organic sulfur compounds, nitrogen oxides, and hydrocarbons. The supply amount of these gases is determined by converting the SS1 organic components (COD components), ammonia, etc. in the thickened sludge into nitrogen, carbon dioxide,
1 to 1.5 of the theoretical amount of oxygen required for oxidative decomposition into water, etc.
It is preferable to supply twice the amount of oxygen, more preferably 1.05 to 1.2 times the amount of oxygen. When oxygen-containing waste gas is used as the oxygen source, there is an advantage that harmful components in the gas can also be treated at the same time. If the absolute amount of oxygen is insufficient when using oxygen-containing waste gas, it is preferable to compensate for the deficiency with air, oxygen-enriched air, or oxygen.
なお、酸素含有ガスは、第1の反応ゾーンとしての本湿
式酸化工程に供給される濃縮汚泥に対して全量供給する
必要はなく、本湿式酸化工程と第2の反応ゾーンとして
の次工程とに分散して供給しても良い。例えば、第1の
反応ゾーンとしての本湿式酸化工程においては、通常S
Sの10〜90%程度が分解乃至可溶化され、COD成
分の10〜60%程度及びアンモニアの0〜15%程度
が分解されるので、理論酸素量の0.4〜0.8倍量に
相当する酸素含有ガスを供給し、残余を第2の反応ゾー
ンとしての次工程で供給しても良い。第1の反応ゾーン
としての本湿式酸化工程における反応時の温度は、通常
100〜370℃、より好ましくは200〜300℃程
度である。Note that it is not necessary to supply the entire amount of oxygen-containing gas to the thickened sludge supplied to the main wet oxidation process as the first reaction zone; It may be distributed and supplied. For example, in the present wet oxidation step as the first reaction zone, S
About 10 to 90% of S is decomposed or solubilized, about 10 to 60% of COD components and about 0 to 15% of ammonia are decomposed, so the amount of oxygen is 0.4 to 0.8 times the theoretical amount of oxygen. The corresponding oxygen-containing gas may be fed and the remainder may be fed in the next step as a second reaction zone. The temperature during the reaction in the main wet oxidation step as the first reaction zone is usually about 100 to 370°C, more preferably about 200 to 300°C.
反応時の温度が高い程、供給ガス中の酸素分率・分圧が
高い程、また操作圧力が高い程、SSの可溶化をも含め
た被処理成分の分解率が高くなり、反応器内での濃縮汚
泥滞留時間が短縮され且つ次工程での反応条件が緩和さ
れるが、反面において設備費が大となるので、濃縮汚泥
の種類、次工程における反応条件との兼ね合い、要求さ
れる処理の程度、全体としての運転費及び設備費等を総
合的に考慮して定めれば良い。反応時の圧力は、所定の
反応温度において濃縮汚泥が液相を保つ最低限の圧力以
上であれば良い。反応時間は、反応器の大きさ、濃縮汚
泥の水質、温度、圧力等により変り得るが、通常15〜
120分程度であり、好ましくは30〜60分程度であ
る。The higher the temperature during the reaction, the higher the oxygen fraction/partial pressure in the supplied gas, and the higher the operating pressure, the higher the decomposition rate of the components to be treated, including the solubilization of SS, and the more the reaction inside the reactor increases. This shortens the residence time of thickened sludge and eases the reaction conditions in the next process, but on the other hand, the equipment cost increases, so it is important to consider the type of thickened sludge, the reaction conditions in the next process, and the required treatment. It should be determined by comprehensively considering the extent of the damage, overall operating costs, equipment costs, etc. The pressure during the reaction may be at least the minimum pressure at which the thickened sludge maintains a liquid phase at a predetermined reaction temperature. The reaction time may vary depending on the size of the reactor, the water quality of the thickened sludge, temperature, pressure, etc., but is usually 15 to 30 minutes.
The time is about 120 minutes, preferably about 30 to 60 minutes.
次いで、本願第一方法では、第1の反応ゾーン(121
)からの処理水は、粒状担体上に触媒有効成分を担持さ
せた触媒体を充填する第2の反応ゾーン(139)に送
られζここで再度液相酸化に供される。触媒有効成分と
しては、貴金属および卑金属の少なくとも一種が使用さ
れる。貴金属系触媒活性成分としては、ルテニウム、ロ
ジウム、パラジウム、オスミウム、イリジウム、白金、
金などが例示される。卑金属系触媒活性成分としては、
鉄、銅、コバルト、マンガン、ニッケル、マグネシウム
、タングステンなどが挙げられる。また、必要に応じて
、これらの触媒活性成分には、テルル、ランタン、セリ
ウム、セレンなどの助触媒成分を併用することにより、
触媒活性成分の活性増大、触媒体の耐熱性、耐久性、機
械的強度の向上などを図ることができる。触媒有効成分
および助触媒成分は、常法に従って、アルミナ、シリカ
、シリカ−アルミナ、チタニア、ジルコニア、活性炭等
の粒状担体或いはニッケル、ニッケルークロム、ニッケ
ルークロム−鉄等の金属多孔粒状担体等に担持させた状
態で使用する。触媒活性成分の担持量は、通常担体重量
の0.05〜25%程度、好ましくは0.5〜3%程度
である。また、助触媒成分の使用量は、触媒活性成分に
対し、0.01〜30%程度である。触媒は、球状、ペ
レット状、円柱状、破砕片状、粉末状等の種々の形態の
粒状担体に担持した状態で使用する。反応塔容積は、固
定床の場合には、液の空間速度が0.5〜10’/hr
(空塔基準)、より好ましくは1〜5”/hr(空塔基
準)となる様にするのが良い。固定床で使用する触媒の
大きさは通常的3〜50IIIII11より好ましくは
約5〜25mmである。流動床の場合には、反応塔内で
触媒が流動床を形成し得る量、通常0.5〜20%、よ
り好ましくは0.5〜1%を廃水にスラリー状に懸濁さ
せ、使用する。流動床における実用上の操作に当っては
触媒を被処理液中にスラリー状に懸濁させた状態で反応
塔に供給し、反応終了後排出させた処理済廃水から触媒
を沈降、遠心分離等の適当な方法で分離回収し、再度使
用する。従って処理済水からの触媒分離の容易さを考慮
すれば、流動床に使用する触媒の粒度は約0.15〜約
0 、5mm程度とすることがより好ましい。Next, in the first method of the present application, the first reaction zone (121
The treated water from ) is sent to a second reaction zone (139) filled with a catalyst having a catalytic active component supported on a granular carrier, where it is again subjected to liquid phase oxidation. At least one of noble metals and base metals is used as the catalytic active component. The noble metal catalyst active components include ruthenium, rhodium, palladium, osmium, iridium, platinum,
Examples include gold. As a base metal catalyst active component,
Examples include iron, copper, cobalt, manganese, nickel, magnesium, and tungsten. In addition, if necessary, co-catalyst components such as tellurium, lanthanum, cerium, and selenium can be used in combination with these catalytic active components.
It is possible to increase the activity of the catalytic active component and improve the heat resistance, durability, and mechanical strength of the catalytic body. The catalytic active component and co-catalyst component are added to a granular carrier such as alumina, silica, silica-alumina, titania, zirconia, activated carbon, etc. or a porous granular metal carrier such as nickel, nickel-chromium, nickel-chromium-iron, etc. according to a conventional method. Use it in a supported state. The amount of the catalytically active component supported is usually about 0.05 to 25%, preferably about 0.5 to 3% of the weight of the carrier. Further, the amount of the co-catalyst component used is about 0.01 to 30% based on the catalytically active component. The catalyst is used in a state where it is supported on granular carriers in various forms such as spheres, pellets, cylinders, crushed pieces, and powders. In the case of a fixed bed, the reaction column volume is such that the space velocity of the liquid is 0.5 to 10'/hr.
(on an empty column basis), more preferably 1 to 5"/hr (on an empty column basis). The size of the catalyst used in the fixed bed is usually about 3 to 50"/hr, more preferably about 5 to 50"/hr. In the case of a fluidized bed, an amount of the catalyst that can form a fluidized bed in the reaction column, usually 0.5 to 20%, more preferably 0.5 to 1%, is suspended in waste water in the form of a slurry. In practical operation in a fluidized bed, the catalyst is suspended in the liquid to be treated in the form of a slurry and then supplied to the reaction tower, and after the reaction is completed, the catalyst is extracted from the treated wastewater discharged. It is separated and recovered by an appropriate method such as sedimentation or centrifugation, and used again.Considering the ease of catalyst separation from treated water, the particle size of the catalyst used in the fluidized bed is approximately 0.15 to approximately 0. , more preferably about 5 mm.
第2の反応ゾーン(139)における反応時の温度およ
び圧力条件は、第1の反応ゾーン(121)におけるそ
れらと同様で良い。The temperature and pressure conditions during the reaction in the second reaction zone (139) may be the same as those in the first reaction zone (121).
第1の反応ゾーン(121)からの処理水には、圧縮機
(107)からの酸素含有ガスをライン(141)を経
て供給しても良く、またpH調整物質貯槽(129)か
らのpH調整物質をライン(131’) 、ポンプ(1
33) 、ライン(135)及びライン(143’)を
経て第2の反応ゾーン(139)下部に添加しても良い
。尚、アルカリ物質は、第1の反応ゾーン(121)及
び第2の反応ゾーン(139)の適宜の位置(図示せず
)に供給しても良い。The treated water from the first reaction zone (121) may be supplied with oxygen-containing gas from a compressor (107) via line (141) and with pH adjustment from a pH adjustment substance storage tank (129). The substance is transferred to the line (131') and the pump (1
33), may be added to the lower part of the second reaction zone (139) via line (135) and line (143'). Note that the alkaline substance may be supplied to appropriate positions (not shown) in the first reaction zone (121) and the second reaction zone (139).
第2の反応ゾーン(139)において液相酸化された高
温の処理水は、ライン(145)を経て熱交換器(11
3)に入り、ここで未処理の濃縮汚泥に熱エネルギーを
与えた後、ライン(147)を経て冷却器(149)に
入り、冷却される。また、必要ならば、高温の処理水を
廃水・汚泥貯槽(101)に導き(図示せず)、熱交換
によって濃縮汚泥の予熱を行なってもよい。この予熱に
より、濃縮汚泥の粘度が大巾に低下するので、その処理
が容易となる。ライン(147)からの冷却水の温度が
50°C前後となっている場合には、冷却器(149)
を使用する必要はない。冷却器(149)を出た処理水
は、ライン(151)を経て気液分離器(153)にお
いてライン(155)からの気体とライン(157)か
らの液体とに分離される。第2の反応ゾーン(139)
で得られた処理水中に不燃性灰分が含まれている場合に
はライン(157)上に分離膜、重力沈降分離槽など(
図示せず)を設け、灰分の除去を行なっても良い。The high temperature treated water subjected to liquid phase oxidation in the second reaction zone (139) passes through the line (145) to the heat exchanger (11).
3), where the untreated thickened sludge is given thermal energy and then enters the cooler (149) via line (147) where it is cooled. Further, if necessary, high temperature treated water may be introduced into a wastewater/sludge storage tank (101) (not shown) and the concentrated sludge may be preheated by heat exchange. This preheating greatly reduces the viscosity of the thickened sludge, making it easier to treat it. If the temperature of the cooling water from the line (147) is around 50°C, the cooler (149)
There is no need to use . The treated water that has exited the cooler (149) passes through a line (151) and is separated into a gas from a line (155) and a liquid from a line (157) in a gas-liquid separator (153). Second reaction zone (139)
If non-flammable ash is contained in the treated water obtained in step (157), a separation membrane, gravity sedimentation separation tank, etc. (
(not shown) may be provided to remove ash.
ライン(157)からの液体は、その清浄度の度合いに
応じて、中水としてそのまま利用したり、河川などに直
接放流したり、活性汚泥槽(13)に返送して更に処理
したり、或いは廃水・汚泥貯槽(lot )に返送して
更に処理したりする。Depending on the degree of cleanliness, the liquid from the line (157) can be used as gray water, directly discharged into a river, etc., returned to the activated sludge tank (13) for further treatment, or It is returned to the wastewater/sludge storage tank (lot) for further treatment.
■0本本願第一方
法願第二方法における厨芥類の処理は、本願第一方法と
同様にして第1図または第2図に示すフローにしたがっ
て、行なえば良い。■0 The first method of the present invention The processing of kitchen waste in the second method of the present invention may be carried out in accordance with the flow shown in FIG. 1 or FIG. 2 in the same manner as the first method of the present invention.
また、本願第二方法における濃縮汚泥の処理も、本願第
一方法とほぼ同様にして行なわれる。但し、本願第二方
法においては、第4図に示すように、ライン(157)
からの暖かい液体成分が、公知の好気性処理槽(163
)に送られ、効率の高い高温条件下に経済的に有利に好
気処理された後、ライン(165)から処理水が取り出
される。好気性処理の条件は、特に限定されないが、通
常温度20〜40℃程度、滞留時間2〜24時間程度、
pHは中性付近である。Furthermore, the treatment of thickened sludge in the second method of the present application is carried out in substantially the same manner as in the first method of the present application. However, in the second method of the present application, as shown in FIG.
The warm liquid component from the well-known aerobic treatment tank (163
) and is subjected to economically advantageous aerobic treatment under efficient high temperature conditions, after which the treated water is removed from line (165). Conditions for aerobic treatment are not particularly limited, but usually include a temperature of about 20 to 40°C, a residence time of about 2 to 24 hours,
The pH is around neutral.
好気性処理槽(163)で生成する余剰汚泥は、例えば
、ライン(105)上で廃水と混合されて、第1の反応
ゾーン(121”)に返送され、濃縮汚泥とともに処理
される。Excess sludge produced in the aerobic treatment tank (163) is mixed with wastewater on the line (105), for example, and returned to the first reaction zone (121''), where it is treated together with the thickened sludge.
また、ライン(155)からの気体を圧力調整した後、
好気性処理槽(163)に供給し、常圧下又は加圧下に
酸素源の少なくとも一部として利用することができる。Also, after adjusting the pressure of the gas from the line (155),
It can be supplied to the aerobic treatment tank (163) and used as at least a part of the oxygen source under normal pressure or pressurization.
また、好気処理槽(183)からの処理液も、中水とし
て利用したり、直接河川に放流したり、活性汚泥槽(1
3)または廃水・汚泥槽(101)に返送することがで
きる。The treated liquid from the aerobic treatment tank (183) can also be used as gray water, directly discharged into rivers, or activated sludge tank (183).
3) or can be returned to the wastewater/sludge tank (101).
発明の効果
本発明によれば、ごみ処理と廃水処理において以下のよ
うな効果が達成される。Effects of the Invention According to the present invention, the following effects can be achieved in garbage treatment and wastewater treatment.
(1)厨芥類のディポーザーによる粉砕泥状化により、
生ごみ類の処理を衛生的、経済的且つ効率的に行うこと
が出来る。より具体的には、以下のような成果が得られ
る。(1) By crushing kitchen waste into slurry using a deposer,
Garbage can be disposed of hygienically, economically and efficiently. More specifically, the following results can be obtained.
(a)厨房およびその近辺における清潔さが確保される
。(a) Cleanliness is ensured in the kitchen and its surroundings.
(b)家事労働及び厨房での作業が軽減される。(b) Housework and kitchen work are reduced.
(C)ごみ収集時の清潔さの維持及び悪臭の防止が達成
され、収集作業が容易となる。(C) Maintaining cleanliness and preventing bad odors during garbage collection is achieved, making collection work easier.
(d)ごみ収集量及び輸送量が減少する。(d) The amount of garbage collected and transported will decrease.
(e)ごみ焼却場におけるエネルギー回収量か増加する
。(e) The amount of energy recovered at waste incineration plants will increase.
(f)生ごみを埋め立てる際に発生する二次公害が軽減
される。(f) Secondary pollution generated when garbage is landfilled is reduced.
(2)また、粉砕泥状化した厨芥類と廃水中のSSとを
分離回収した後、廃水処理を行なうので、SSを含んだ
状態で廃水処理を行なう従来技術とは異なって、可溶化
されたBOD成分およびCOD成分などを処理すること
になり、ディスポーザーの導入によっても、廃水処理設
備に対する負荷の増大、水質の悪イ、ヒなどの問題は生
じない。(2) Furthermore, since the wastewater is treated after separating and collecting the crushed kitchen waste and SS in the wastewater, unlike the conventional technology in which wastewater is treated in a state containing SS, solubilized Since the wastewater BOD and COD components are treated, even with the introduction of a disposer, problems such as an increase in the load on wastewater treatment equipment and poor water quality will not occur.
例えば、下水処理場での処理に際し、従来好気性処理で
の曝気容量が、建設省基準により、下水通水量に対し6
〜8時間必要とされていたのに対し、厨芥類粉砕泥状物
と廃水中のSSとをさらに生成する余剰汚泥とともに本
発明方法により処理する場合には、処理時間を約1/3
程度に短縮することができる。For example, when processing at a sewage treatment plant, the aeration capacity of conventional aerobic treatment is 6 times higher than the amount of sewage water flowing, according to the standards of the Ministry of Construction.
In contrast, when the crushed slurry of kitchen waste and the SS in the wastewater are treated together with the surplus sludge produced by the method of the present invention, the treatment time is reduced to about 1/3.
It can be shortened to a certain extent.
(3)また、廃水から分離した厨芥類粉砕物を含む懸濁
物と廃水処理系からの余剰汚泥とを同時処理することに
より、アンモニア、COD成分のみならず、懸濁成分を
も効率よく処理することができる。(3) In addition, by simultaneously treating suspended matter containing crushed kitchen waste separated from wastewater and surplus sludge from the wastewater treatment system, not only ammonia and COD components but also suspended components can be efficiently treated. can do.
即ち、本発明においては、汚泥の脱水工程を必要とする
ことなく、まず嫌気メタン発酵処理を行うことにより、
液中又は濃縮汚泥中の成分のうち、生物学的易分解性物
質が消化処理される。次いで、嫌気メタン発酵処理で処
理されなかった液中又は濃縮汚泥中の成分は、触媒の不
存在下且つ酸素含有ガスの存在下に液相状態で行われる
濃縮汚泥の第一段階酸化により、濃縮汚泥中のSSの可
溶化が進行する。次いで、触媒の存在下且つ酸素含有ガ
スの存在下に行われる第二段階の液相酸化により、アン
モニアなどの含窒素酸化物の分解が行なわれ、またSS
成分を含むCOD成分も反応条件の選定により完全に分
解されるか又は一部分前されるとともに、高分子物質の
大部分が触媒の作用により、酢酸などの低級脂肪族カル
ボン酸に変換される。そして、上記の如く液相酸化分解
処理された被処理液中の低分子量の生物学的に易分解性
の生成物は、好気性処理により、極めて効率よく分解さ
れる。That is, in the present invention, by first performing anaerobic methane fermentation treatment without requiring a sludge dehydration step,
Among the components in the liquid or thickened sludge, easily biodegradable substances are digested. Next, the components in the liquid or thickened sludge that have not been treated in the anaerobic methane fermentation treatment are concentrated by the first stage oxidation of the thickened sludge, which is carried out in the liquid phase in the absence of a catalyst and in the presence of an oxygen-containing gas. Solubilization of SS in sludge progresses. A second stage of liquid phase oxidation, carried out in the presence of a catalyst and an oxygen-containing gas, then decomposes nitrogen-containing oxides such as ammonia, and also decomposes SS
Depending on the selection of reaction conditions, the COD components containing the COD components are either completely decomposed or partially decomposed, and most of the polymeric substances are converted into lower aliphatic carboxylic acids such as acetic acid by the action of the catalyst. The low molecular weight biologically easily degradable products in the liquid to be treated that have been subjected to the liquid phase oxidative decomposition treatment as described above are very efficiently decomposed by the aerobic treatment.
従って、ディスポーザーの導入により、廃水中の汚濁成
分量が一時的に増大しても、廃水処理設備自体の負荷を
増大させることなく、廃水を効果的に処理することがで
きる。Therefore, by introducing a disposer, even if the amount of pollutant components in wastewater increases temporarily, the wastewater can be effectively treated without increasing the load on the wastewater treatment equipment itself.
実施例
以下に参考例および実施例を示し、本発明の特徴とする
ところをより一層明らかにする。EXAMPLES Reference examples and examples are shown below to further clarify the features of the present invention.
参考例1
厨芥類の発生量とその組成の把握とを目的として、50
世帯の厨芥類を2日分収集し、分析を行なった。分析に
際しては、全厨芥を四分法により調整し、組成分析用の
試料とディスポーザー処理用の試料とに分けた後、分析
を行なった。Reference example 1 For the purpose of understanding the amount of kitchen waste generated and its composition,
Household kitchen waste was collected for two days and analyzed. For the analysis, the entire kitchen waste was prepared by the quartering method and divided into a sample for compositional analysis and a sample for disposer processing, and then analyzed.
ディスポーザー処理用の試料は、厨芥類1 kgを継続
的に投入破砕し、これに水道水を加えて、液量を1(l
とした。次いで、液の濃度から厨芥100g当りの負荷
量を求めた。その結果を第1表に示す。なお、粉砕泥状
物の粒径分布は、0.15mm未満=47%、0.15
〜lmm=40%、1〜5mm−残余であった。Samples for disposer processing are made by continuously adding 1 kg of kitchen waste to crushing, adding tap water to the sample, and bringing the liquid volume to 1 (l).
And so. Next, the load amount per 100 g of kitchen waste was determined from the concentration of the liquid. The results are shown in Table 1. In addition, the particle size distribution of the crushed mud is less than 0.15 mm = 47%, 0.15
~lmm=40%, 1-5mm-remainder.
また、分析の結果から、1日−人当たりの厨芥発生量は
、平均的240gであると推定され、これに基いて、1
日−人当たりの負荷量を求めた。In addition, from the analysis results, it is estimated that the average amount of kitchen waste generated per person per day is 240g, and based on this, 1
The daily load per person was calculated.
結果を第2表に示す。The results are shown in Table 2.
なお、以下の各表において、“T−N”とあるのは、 全窒素量を意味する。In addition, in each table below, "T-N" means: Refers to total nitrogen content.
最大(g) 平均(g) 最小(g) 第1表 BODCODM。Maximum (g) Average (g) minimum (g) Table 1 BODCODM.
14.08.25
9.56.3
6.64.0
SS
18.5
12.4
0.45
BOD
最大(g ) 33.6
平均(g )22.8
最小(g)16.6
第2表
CODMnSS
19.8 44.4
15.1 29.8
9.6 10.8
−N
O194
0,77
0,55
−N
2.26
1.85
1.32
上記の結果に基いて、1日25万人当たりの負荷量を求
めた。結果を第3表に示す。14.08.25 9.56.3 6.64.0 SS 18.5 12.4 0.45 BOD Maximum (g) 33.6 Average (g) 22.8 Minimum (g) 16.6 Table 2 CODMnSS 19.8 44.4 15.1 29.8 9.6 10.8 -N O194 0.77 0.55 -N 2.26 1.85 1.32 Based on the above results, 250,000 per day The amount of load per person was calculated. The results are shown in Table 3.
なお、ディポーザー使用による1日25万人当たりの下
水増加量は、約4%、即ち、約5000m3 (19Ω
/人・日)と推定される。Furthermore, the increase in the amount of sewage per 250,000 people per day due to the use of deposers is about 4%, or about 5000m3 (19Ω
/person/day).
第3表
BOD CODMnSS T N
最大(g) 8400 4950 11100 5
65平均(g) 5700 3775 7450
462.5最小Cg) 4150 ’24C10
2700330さらに、上記第1〜3表の平均値を用い
て、既存の終末下水処理場(処理人ロ25万人:下水処
理量125000m3/日)におけるディスポーザーの
使用前後における各成分の濃度および負荷の状況につい
て試算した結果を第4表に示す。Table 3 BOD CODMnSS T N Maximum (g) 8400 4950 11100 5
65 average (g) 5700 3775 7450
462.5 min Cg) 4150 '24C10
2700330 Furthermore, using the average values in Tables 1 to 3 above, calculate the concentration and load of each component before and after use of the disposer in an existing final sewage treatment plant (250,000 people: 125,000 m3/day of sewage treatment). Table 4 shows the results of the trial calculations regarding the situation.
第4表 ディスポーザー 使用前 使用後 増加率 (%) 濃度(■/R) BOD ODMn SS −N 負荷(kg /日) BOD CODM。Table 4 disposer Before use After use Increase rate (%) Concentration (■/R) BOD ODMn S.S. -N Load (kg/day) BOD CODM.
SS
−N
注:SSは、
140 179 27.9
87 113 29.9
125 178 42.4
27 29.8 9.8
17430 23130 32.71083
0 14605 34.920000 2
7500 37.83360 3823
13.8生物処理槽での生成汚泥を含む。SS -N Note: SS is 140 179 27.9 87 113 29.9 125 178 42.4 27 29.8 9.8 17430 23130 32.71083
0 14605 34.920000 2
7500 37.83360 3823
13.8 Includes sludge produced in biological treatment tanks.
第4表に示す結果から、ディスポーザーの使用により、
BODおよびCODM、、で約30〜35%程度、SS
で約38%程度、全窒素成分で約15%程度の負荷の増
大が予測される。From the results shown in Table 4, by using a disposer,
BOD and CODM, about 30-35%, SS
It is predicted that the load will increase by about 38% in total nitrogen content and about 15% in total nitrogen content.
実施例1
第2図に示すフローに従って、初沈槽(23)および終
沈槽(25)から回収した懸濁物ならびに活性処理槽(
13)からの余剰汚泥の混合物1部に対し、厨芥類をデ
ィポーザーで破砕した泥状物0.38部(いずれも乾燥
重量)を加えた混合物を下水と併せ、下水汚泥濃縮液と
して、下記の処理に供した。Example 1 According to the flow shown in FIG. 2, the suspension collected from the initial settling tank (23) and the final settling tank (25) and the activation treatment tank (
13) To 1 part of the mixture of surplus sludge from step 13), 0.38 parts of slurry (all dry weight) obtained by crushing kitchen waste with a deposer was added, and the mixture was combined with sewage to form a sewage sludge concentrate as follows. It was subjected to processing.
該下水汚泥濃縮液の組成および性状は、以下の通りであ
る。The composition and properties of the sewage sludge concentrate are as follows.
第5表
pH,6,7
CODMn(mg/Q) 18000CODc、
(mg/R) 3800ONH3−N (■
/R) 600T−N、(■/R)
3200BOD (mg/Q)
13000SS (mg/Q)
40000VSS (mg/R) 28
000TOD (mg/Q) 64000
TOC(mg/E2) 13300次いで
、第5表に示す組成の下水汚泥濃縮液を第3図に示すフ
ローにしたがって、嫌気メタン発酵槽(159)に送入
した。嫌気メタン発酵槽は、流動床形式のものであり、
粒径300μmの多孔ノ・1□1
質セラミック粒子に菌体を付着させ、循環ポンプにより
流動床を形成させた。滞留時間は、10時間(35°C
)とした。Table 5 pH, 6,7 CODMn (mg/Q) 18000CODc,
(mg/R) 3800ONH3-N (■
/R) 600T-N, (■/R)
3200BOD (mg/Q)
13000SS (mg/Q)
40000VSS (mg/R) 28
000TOD (mg/Q) 64000
TOC (mg/E2) 13300 Next, the sewage sludge concentrate having the composition shown in Table 5 was fed into the anaerobic methane fermentation tank (159) according to the flow shown in FIG. The anaerobic methane fermenter is of the fluidized bed type,
Bacterial cells were attached to porous ceramic particles having a particle size of 300 μm, and a fluidized bed was formed using a circulation pump. Residence time is 10 hours (35°C
).
嫌気性消化後の消化液の水質は、第6表に示す通りであ
る。The water quality of the digestive fluid after anaerobic digestion is as shown in Table 6.
第 6 表
pH6,8
CODM、、(mg/Q)10800
CODc=<mg/Q) 1900ONH3−N (
mg/&) 550
T−N (mg/Q) 3100
BOD (D/Q) −4550
SS([I1g/Q)23000
TOD (mg/Q) 25600
TOC(mg/Q) 5980
次いで、上記嫌気メタン発酵槽からの処理水を空間速度
1. 01/Hr (空塔基準)及び質量速度7、 9
6 t /m2Hrで第3図に示す装置の第1の反応ゾ
ーン(121)の下部に供給した。一方、空開速度22
71/Hr (空塔基準、標準状態換算)で空気を第1
の反応ゾーン(121)の下部に供給した。この状態で
温度250℃、圧力90kg/cm” ・Gの条件下に
廃水の無触媒液相酸化処理を行なった。Table 6 pH6.8 CODM, (mg/Q) 10800 CODc=<mg/Q) 1900ONH3-N (
mg/&) 550 TN (mg/Q) 3100 BOD (D/Q) -4550 SS ([I1g/Q) 23000 TOD (mg/Q) 25600 TOC (mg/Q) 5980 Then, the above anaerobic methane fermentation The treated water from the tank has a space velocity of 1. 01/Hr (sky tower basis) and mass velocity 7, 9
It was fed to the lower part of the first reaction zone (121) of the apparatus shown in FIG. 3 at a rate of 6 t/m2Hr. On the other hand, the open speed 22
71/Hr (sky tower standard, standard state conversion)
was fed into the lower part of the reaction zone (121). In this state, the wastewater was subjected to non-catalytic liquid phase oxidation treatment under the conditions of a temperature of 250° C. and a pressure of 90 kg/cm”·G.
本工程で得られた処理水の組成を第7表に示す。Table 7 shows the composition of the treated water obtained in this step.
第 7 表
pH6,5
CODMn([l1g/Q)162
CODc、(Il1g/Q) 623NH3N (m
g/Q) 240
T−N (mg/R) 280
BOD (mg/R) 230
SS (mg/Q) 1190
VSS (mg/9) 29
TOD (mg/R) 934
TOC(mg/Q) 215
第6表と第7表との対比から明らかな如く、無触媒液相
酸化によるCODM、、、C0Do、、TOD及びTO
Cの分解率は、それぞれ85.0%、67.2%、63
.5%および64.0%である。Table 7 pH6.5 CODMn ([l1g/Q) 162 CODc, (Il1g/Q) 623NH3N (m
g/Q) 240 T-N (mg/R) 280 BOD (mg/R) 230 SS (mg/Q) 1190 VSS (mg/9) 29 TOD (mg/R) 934 TOC (mg/Q) 215 As is clear from the comparison between Table 6 and Table 7, CODM, C0Do, TOD and TO by non-catalytic liquid phase oxidation
The decomposition rates of C were 85.0%, 67.2%, and 63%, respectively.
.. 5% and 64.0%.
また、含窒素化合物がアンモニアに転化されたことによ
り、アンモニア濃度は、約4倍となっている。Furthermore, since the nitrogen-containing compounds were converted to ammonia, the ammonia concentration was approximately four times higher.
次いで、チタニア担体に担体重量の2%のルテニウムを
担持させた球形(4〜6nunφ)触媒体を前工程での
空塔容積量の1/4量(触媒層での反応時間として15
分)となる様に充填した第2の反応ゾーン(139)に
上記無触媒湿式酸化工程からの処理水及び空気を供給し
、液相酸化を行なった。反応温度は270℃とし、圧力
は、上記無触媒湿式酸化工程と同様とした。Next, a spherical (4 to 6 nunφ) catalyst body in which 2% of the carrier weight of ruthenium was supported on a titania carrier was added in an amount of 1/4 of the empty column volume in the previous step (15 times as reaction time in the catalyst layer).
The treated water and air from the above non-catalytic wet oxidation process were supplied to the second reaction zone (139) filled to a temperature of 100 mL (min) to perform liquid phase oxidation. The reaction temperature was 270°C, and the pressure was the same as in the non-catalytic wet oxidation process.
本工程で得られた処理水の組成を第8表に示す。Table 8 shows the composition of the treated water obtained in this step.
第 8 表
pH2,7
COI)vo(mg/Q) 300CO
Dc=(mg/R) 3010NH3N(m
g/(り 12T−N(mg/Q)
20BOD (mg/R) 4
200SS (mg/R) 9000
VSS’(mg/Q’) ’ 109TO
D (mg/Q) 3700TOC(mg
/Q)’ 、860第6表と第8表との対比
から明らかな如く、C0DC,およびTODの廃水IQ
当りの分解量は、それぞれ15990mgおよび219
00mgである。Table 8 pH2,7 COI)vo(mg/Q) 300CO
Dc=(mg/R) 3010NH3N(m
g/(ri 12T-N(mg/Q)
20BOD (mg/R) 4
200SS (mg/R) 9000
VSS'(mg/Q')' 109TO
D (mg/Q) 3700TOC (mg
/Q)', 860 As is clear from the comparison between Table 6 and Table 8, the wastewater IQ of C0DC and TOD
The amount of decomposition per unit is 15990 mg and 219 mg, respectively.
00mg.
これら成分の分解による反応熱とアンモニア成分の分解
による反応熱とにより、反応は、外部からの熱供給なし
に行なうことができた。即ち、第3図に示すフローにお
いて、加熱炉(125)を使用する必要はなかった。The reaction could be carried out without external heat supply due to the reaction heat due to the decomposition of these components and the reaction heat due to the decomposition of the ammonia component. That is, in the flow shown in FIG. 3, there was no need to use the heating furnace (125).
実施例2〜4
触媒湿式酸化工程における処理水滞留時間を変える以外
は、実施例1と同様にして下水汚泥濃縮液の処理を順次
行なった後、触媒湿式酸化工程からの処理水を熱交換器
(113)及び冷却器(149)により冷却し、さらに
気液分離器(153)に送り、排気ガスと処理水とに分
離した。Examples 2 to 4 After sequentially treating the sewage sludge concentrate in the same manner as in Example 1 except for changing the residence time of the treated water in the catalytic wet oxidation process, the treated water from the catalytic wet oxidation process was transferred to a heat exchanger. (113) and a cooler (149), and was further sent to a gas-liquid separator (153), where it was separated into exhaust gas and treated water.
触媒湿式酸化工程からの処理水の水質を第9表に示す。The quality of the treated water from the catalytic wet oxidation process is shown in Table 9.
第
表
反応時間(分)
COD Mo(mg/ Q )
CODc−(mg/R)
N H3N (mg/ Q )
T−NCmg/Q)
BOD(mg/Q)
SS (mg/Q)
VSS(mg/Q)
TOD(mg/R)
TOC(mg/Q)
1.9
14.0
未検出
14.0
未検出
13.9
0.9
未検出
4.0
なお、嫌気性消化後の余剰汚泥は、最初の無触媒湿式酸
化工程に返送して、処理した。Table Reaction time (min) COD Mo (mg/Q) CODc- (mg/R) NH3N (mg/Q) T-NCmg/Q) BOD (mg/Q) SS (mg/Q) VSS (mg/ Q) TOD (mg/R) TOC (mg/Q) 1.9 14.0 Not detected 14.0 Not detected 13.9 0.9 Not detected 4.0 The surplus sludge after anaerobic digestion is The sample was returned to the non-catalytic wet oxidation process for processing.
実施例5〜8
無触媒湿式酸化工程における空間速度を2.01/hr
とするとともに触媒湿式酸化工程における処理水滞留時
間を変える以外は、実施例1と同様にして下水汚泥濃縮
液の処理を順次行なった後、触媒湿式酸化工程からの処
理水を熱交換器(113)及び冷却器(149)により
冷却し、さらに気液分離器(153)に送り、排気ガス
と処理水とに分離した。Examples 5 to 8 Space velocity in non-catalytic wet oxidation process is 2.01/hr
The sewage sludge concentrate was sequentially treated in the same manner as in Example 1 except that the residence time of the treated water in the catalytic wet oxidation process was changed, and then the treated water from the catalytic wet oxidation process was transferred to the heat exchanger ( ) and a cooler (149), and was further sent to a gas-liquid separator (153) to separate it into exhaust gas and treated water.
無触媒湿式酸化工程からの処理水の水質を第10表に示
す。The quality of the treated water from the non-catalytic wet oxidation process is shown in Table 10.
また、触媒湿式酸化工程からの処理水の水質を第11表
に示す。Table 11 also shows the quality of the treated water from the catalytic wet oxidation process.
第 10
COD10C0D/Q)
CODc、(mg/12 )
NH3N (mg/Q )
T−N(ff1g/Q)
BOD(mg/R)
SS (mg/Q)
VSS(mg/&)
TOD(n+g/Q)
rOc(mg/Q)
表
部
表
反応時間(分)
CODyJmg/Q )
COD c−(mg/ Q )
N H3N (mg/ Q
T−N(mg/R)
BOD(mg/Q)
SS Cmg/Q)
VSS(mg/Q)
TOD(mg/Q)
TOC(mg/R)
) 15 1.4
23 15.1
1210 B2O
未検出 未検出
14.6 12.5
62 1.5
81 5.0
実施例9
触媒湿式酸化工程における処理水滞留時間を30分に変
える以外は、実施例1と同様にして下水汚泥濃縮液の処
理を順次行なった後、第4図に示すフローにしたがって
触媒湿式酸化工程からの処理水を10%水酸化ナトリウ
ム溶液によりpH約7.1に調整した後、活性汚泥槽(
163)において好気処理した。好気処理は、温度35
℃、圧力2 kg / c♂の条件下に行ない、曝気に
必要な酸素含有気体は、触媒湿式酸化工程からの排ガス
を圧力制御して使用した。10th COD10C0D/Q) CODc, (mg/12) NH3N (mg/Q) TN (ff1g/Q) BOD (mg/R) SS (mg/Q) VSS (mg/&) TOD (n+g/Q ) rOc (mg/Q) Surface reaction time (min) CODyJmg/Q ) COD c- (mg/ Q ) N H3N (mg/ Q TN (mg/R) BOD (mg/Q) SS Cmg/ Q) VSS (mg/Q) TOD (mg/Q) TOC (mg/R) ) 15 1.4 23 15.1 1210 B2O Not detected Not detected 14.6 12.5 62 1.5 81 5.0 Implemented Example 9 Sewage sludge concentrate was sequentially treated in the same manner as in Example 1 except that the residence time of treated water in the catalytic wet oxidation step was changed to 30 minutes, and then the catalytic wet oxidation step was carried out according to the flow shown in FIG. After adjusting the pH of the treated water to approximately 7.1 with a 10% sodium hydroxide solution, it was transferred to an activated sludge tank (
163) was subjected to aerobic treatment. Aerobic treatment is at a temperature of 35
The process was carried out under the conditions of temperature and pressure of 2 kg/c♂, and the pressure-controlled exhaust gas from the catalytic wet oxidation process was used as the oxygen-containing gas necessary for aeration.
好気処理後の水質を第12表に示す。Table 12 shows the water quality after aerobic treatment.
第 12 表
pH
CODMo(mg/Q)
NH3N (mg/Q
T−N(mg/Q)
BOD(mg/&)
SS (mg/R)
TOD (mg/Q)
実施例10
第4図に示すフローにしたがって本願第二方法により、
実施例1で使用したと同様の組成の下水汚泥濃縮液を処
理した。Table 12 pH CODMo (mg/Q) NH3N (mg/Q TN (mg/Q) BOD (mg/&) SS (mg/R) TOD (mg/Q) Example 10 Flow shown in Figure 4 According to the second method of the present application,
A sewage sludge concentrate having the same composition as that used in Example 1 was treated.
(イ) 先ず、実施例1と同様にして、嫌気メタン発酵
処理を行なった後、反応温度を260℃とし且つ圧力を
95kg/crFlとする以外は実施例1と同様にして
、嫌気メタン発酵処理工程からの処理水の無触媒湿式酸
化処理を行なった。(b) First, anaerobic methane fermentation treatment was performed in the same manner as in Example 1, and then anaerobic methane fermentation treatment was performed in the same manner as in Example 1, except that the reaction temperature was 260°C and the pressure was 95 kg/crFl. The treated water from the process was subjected to non-catalytic wet oxidation treatment.
(ロ) 次いで、反応温度を280℃とし且つ圧力を9
5kg/cJとする以外は実施例1と同様にして、無触
媒湿式酸化処理工程からの処理水を触媒湿式酸化処理工
程に供した。(b) Next, the reaction temperature was set to 280°C and the pressure was set to 9.
The treated water from the non-catalytic wet oxidation process was subjected to the catalytic wet oxidation process in the same manner as in Example 1 except that the amount was 5 kg/cJ.
(ハ) 次いで、触媒湿式酸化処理工程で得られた処理
水を限外濾過膜を用いて濾過し、SSを除去した後、水
酸化ナトリウム水溶液によりpH6゜8に調整し、温度
約35°Cで好気性処理に供した。(c) Next, the treated water obtained in the catalytic wet oxidation treatment step was filtered using an ultrafiltration membrane to remove SS, and then adjusted to pH 6.8 with an aqueous sodium hydroxide solution and heated at a temperature of about 35°C. and subjected to aerobic treatment.
分離されたSSの99%は、不燃性の灰分てあったので
、系外に取り出した。Since 99% of the separated SS contained nonflammable ash, it was taken out of the system.
上記工程(イ)、(ロ)および(ハ)終了時のにおける
処理水の水質を第13表に示す。Table 13 shows the quality of the treated water at the end of the above steps (a), (b) and (c).
部
pH
COD Ml(mg/ Q )
NH3N (mg/Q)
T−N(mg/Q)
BOD(mg/Q)
SS (mg/R)
VSS(mg/Q)
TOD(n+g/R)
TOC(mg/Q)
6.2
表
2.0
トレース
6、6
なお、気液分離器(153)からの排気中には、NH3
、So、およびNo、は、検知されなかった。pH COD Ml (mg/Q) NH3N (mg/Q) TN (mg/Q) BOD (mg/Q) SS (mg/R) VSS (mg/Q) TOD (n+g/R) TOC (mg /Q) 6.2 Table 2.0 Traces 6, 6 Note that NH3 is present in the exhaust from the gas-liquid separator (153).
, So, and No were not detected.
また、実施例1で処理したと同様の高濃度のSSを含む
下水汚泥濃縮液の処理を4000時間行なった後にも、
各工程での各成分の分解率の低下は認められず、廃水処
理を引続き支障なく行なうことができた。Furthermore, even after 4000 hours of treatment of sewage sludge concentrate containing a high concentration of SS, similar to that treated in Example 1,
No decrease in the decomposition rate of each component was observed in each step, and wastewater treatment could be continued without any problems.
実施例11〜20
第4図に示すフローにしたがって本願第二方法により、
実施例1で使用したと同様の組成の下水汚泥濃縮液を処
理した。Examples 11 to 20 According to the second method of the present invention according to the flow shown in FIG.
A sewage sludge concentrate having the same composition as that used in Example 1 was treated.
(イ) 先ず、実施例1と同様にして、嫌気メタン発酵
処理を行なった後、嫌気メタン発酵処理工程からの処理
水の無触媒湿式酸化処理を行なった。(a) First, in the same manner as in Example 1, anaerobic methane fermentation treatment was performed, and then non-catalytic wet oxidation treatment of the treated water from the anaerobic methane fermentation treatment step was performed.
ここで得られた処理液は、COD 10108O0/
Q 、 NH3N 550mg/ Qてあった。The treatment liquid obtained here is COD 10108O0/
Q, NH3N 550mg/Q.
(ロ) 次いで、液空間速度を1. 01/hr (空
塔基準)とするともに触媒活性成分を変更する以外は実
施例1と同様にして、無触媒湿式処理工程からの処理水
の触媒湿式酸化処理を行なった。(b) Next, the liquid hourly space velocity is set to 1. The catalytic wet oxidation treatment of the treated water from the non-catalytic wet treatment step was carried out in the same manner as in Example 1 except that the oxidation rate was 01/hr (empty column basis) and the catalytic active component was changed.
(ハ) 次いで、触媒湿式酸化処理工程で得られた処理
水を限外濾過膜を用いて濾過し、SSを除去した後、水
酸化ナトリウム水溶液によりpH6,8に調整し、温度
約35℃で好気性処理に供した。分離されたSSの99
%は、不燃性の天分であったので、系外に取り出した。(c) Next, the treated water obtained in the catalytic wet oxidation treatment step was filtered using an ultrafiltration membrane to remove SS, and then adjusted to pH 6.8 with an aqueous sodium hydroxide solution at a temperature of about 35°C. It was subjected to aerobic treatment. 99 of separated SS
% was a nonflammable substance, so it was taken out of the system.
上記工程(ロ)および(ハ)終了時における処理水の水
質を第14表に示す。Table 14 shows the quality of the treated water at the end of the above steps (b) and (c).
実施例21および比較例1〜2
前記第4表に示すディスポーザー使用後の下水の水質に
対応するように、下水に厨芥類の破砕物を加えて、処理
試料を調製した。Example 21 and Comparative Examples 1 to 2 Treated samples were prepared by adding crushed kitchen waste to sewage so as to correspond to the water quality of sewage after use of the disposer shown in Table 4 above.
この様に調製された処理試料からSS成分を分離した後
、温度35℃、滞留時間2時間の条件下に活性汚泥法に
より、好気処理を行なった。After separating the SS component from the treated sample thus prepared, aerobic treatment was performed using an activated sludge method under conditions of a temperature of 35° C. and a residence time of 2 hours.
また、SS成分は、嫌気メタン醗酵を行わない以外は実
施例1と同様にして二段階の湿式酸化処理に供して、同
様の結果を得た。Further, the SS component was subjected to a two-step wet oxidation treatment in the same manner as in Example 1, except that anaerobic methane fermentation was not performed, and similar results were obtained.
なお、比較のために、SS成分を分離すること無く、直
接温度35℃、滞留時間2時間の条件下に(比較例1)
、或いは直接温度35℃、滞留時間8時間の条件下に(
比較例2)活性汚泥法により好気処理を行なった。For comparison, the SS component was not separated, but directly under the conditions of a temperature of 35°C and a residence time of 2 hours (Comparative Example 1).
, or directly under the conditions of a temperature of 35°C and a residence time of 8 hours (
Comparative Example 2) Aerobic treatment was performed using an activated sludge method.
好気処理による。、結果を第15表に示す。By aerobic treatment. , the results are shown in Table 15.
第 15 表
試料 実施例 比較 比較
水質 21 fi3i 例2
SS(mg/R) 178 < 1 12.
1 8.9BOD (mg/Q) 179 7
18.0 10.5T−N (mg/Q) 2
9.6 13 16.7 1B、5CODMo(mg
/R) 113 8 15.0 11.0実施
例22
実施例1〜4及び実施例5〜8の触媒湿式酸化工程から
の各処理水を第2図に示す当初の下水処理系の生物処理
槽(13)に返送し、それぞれ好気性汚泥処理(常圧、
温度35°C1滞留時間2時間)を行なった。返送量は
、下水量に対して、0.53%であった。Table 15 Sample Example Comparison Comparative water quality 21 fi3i Example 2 SS (mg/R) 178 < 1 12.
1 8.9BOD (mg/Q) 179 7
18.0 10.5T-N (mg/Q) 2
9.6 13 16.7 1B,5CODMo (mg
/R) 113 8 15.0 11.0 Example 22 Each treated water from the catalytic wet oxidation process of Examples 1 to 4 and Examples 5 to 8 was transferred to the biological treatment tank of the original sewage treatment system shown in FIG. (13) for aerobic sludge treatment (normal pressure,
The temperature was 35° C. and the residence time was 2 hours). The amount returned was 0.53% of the amount of sewage.
好気性処理後のそれぞれの水質は、第16表に示す範囲
内にあった。The quality of each water after aerobic treatment was within the range shown in Table 16.
第 16 表
SS(mg/Q)1〜7
BOD(mg/9) 5〜8
T−N(II1g/Q)5〜25
CODMn (+ng/R) 3〜17参考例2
本願実施例の結果を参考として、1日25万人当りの厨
芥類を下水とともに本発明方法により処理した場合のエ
ネルギー収支を算出したところ、第17表に示す結果が
得られた。現状による結果を(I)として示し、本発明
方法による結果を(II)として示し、両者の差を(m
)として示す。Table 16 SS (mg/Q) 1-7 BOD (mg/9) 5-8 TN (II1g/Q) 5-25 CODMn (+ng/R) 3-17 Reference Example 2 Results of Examples of the present application For reference, we calculated the energy balance when kitchen waste and sewage were treated by the method of the present invention per 250,000 people per day, and the results shown in Table 17 were obtained. The results according to the current situation are shown as (I), the results according to the method of the present invention are shown as (II), and the difference between the two is expressed as (m
).
第17表に示す結果は、ギガカロリー7年で表しである
。The results shown in Table 17 are expressed in gigacalories over 7 years.
(17)・・・余剰汚泥
(19)・・・汚泥濃縮機
(21)・・・下水道
(23)・・・初沈槽
(25)・・・終沈槽
(27)・・・5S
(29)・・・余剰汚泥
(31)・・・5S
(101)・・・廃水・汚泥貯槽、
(103)・・・ポンプ、
(107)・・・圧縮機、
(113)・・・熱交換器、
(121)・・・第1の反応ゾーン、
(125)・・・加熱炉、
(129’)・・・pH調整物質貯槽、(133)・・
・ポンプ、
(139)・・・第2の反応ゾーン、
(149)・・・冷却器、
第17表において、△を付した数値は、処理のために消
費されるエネルギーを表わし、十を付した数値は、処理
により得られる回収エネルギーを表わす。(17)... Surplus sludge (19)... Sludge thickener (21)... Sewer (23)... Initial settling tank (25)... Final settling tank (27)... 5S ( 29)...Excess sludge (31)...5S (101)...Wastewater/sludge storage tank, (103)...Pump, (107)...Compressor, (113)...Heat exchange (121)...First reaction zone, (125)...Heating furnace, (129')...pH adjusting substance storage tank, (133)...
・Pump, (139)...Second reaction zone, (149)...Cooler In Table 17, the numbers with △ represent the energy consumed for processing, and the numbers with 10 are added. The numerical value represents the recovered energy obtained by the process.
第17表に示す結果から、本発明方法によれば、全体と
して大幅な省エネルギーが達成されることが明らかであ
る。From the results shown in Table 17, it is clear that the method of the present invention achieves significant overall energy savings.
第1図乃至第6図は、本発明の実施態様を示すフローチ
ャートである。
(1)・・・厨芥類
(3)・・・ディスポーザー
(5)・・・生活排水
(7)・・・産業排水
(9)・・・専用排水管
(11)・・・SS分離機1
(13)・・・活性汚泥槽
(15)・・・SS
(153)・・・気液分離器、
(159)・・・嫌気メタン発酵槽、
(165)・・・好気処理槽。
(以 −ヒ)
ト
ー′−
へ邑
] −
二
手続補正書動式)
平成2年10月17日
補正の内容
1 明細書第52頁第9行「第1図乃至第6図」とある
のを「第1図乃至第4図」と訂正する。
(以 上)
事件の表示
平成2年特許願第185539号
発明の名称
廃水および汚泥の処理方法
補正をする者
事件との関係 特許出願人
(028)大阪瓦斯株式会社1 to 6 are flowcharts illustrating embodiments of the present invention. (1)...Kitchen waste (3)...Disposer (5)...Domestic wastewater (7)...Industrial wastewater (9)...Special drain pipe (11)...SS separator 1 (13)... activated sludge tank (15)... SS (153)... gas-liquid separator, (159)... anaerobic methane fermentation tank, (165)... aerobic treatment tank. Contents of the amendment dated October 17, 1990 1 The statement ``Figures 1 to 6'' on page 52, line 9 of the specification. be corrected to "Figures 1 to 4." (Above) Display of the case Patent Application No. 185539 of 1990 Name of the invention Person who amends wastewater and sludge treatment method Relationship to the case Patent applicant (028) Osaka Gas Co., Ltd.
Claims (1)
産業廃水と混合して下水道または廃水処理設備に連絡さ
れた専用排水管に排出する工程、 (2)下水処理場における処理または廃水処理設備にお
ける処理に先立って上記混合物中の固形物と液状成分と
を分離する工程、 (3)上記(2)で分離された液状成分を活性汚泥処理
する工程、 (4)上記(2)で分離された固形物と下水処理場また
は廃水処理設備において発生するか或いは回収される固
形物とを下水または廃水に混合する工程、 (5)上記(4)で得られた混合物を嫌気メタン発酵処
理する工程、 (6)上記(5)で得られた処理液を酸素の存在下にp
H約1〜11.5、温度100〜370℃で湿式酸化分
解する工程、および (7)上記(6)で得られた処理液を貴金属および卑金
属の少なくとも一種を活性成分とする粒状担持触媒の存
在下且つ処理液中のアンモニア、有機性物資および無機
性物質を分解するに必要な理論酸素量の1〜1.5倍量
の酸素の存在下にpH約1〜11.5、温度100〜3
70℃で湿式酸化分解する工程 を備えたことを特徴とする廃水および汚泥の処理方法。 [2]廃水および汚泥の処理方法であって、 (1)厨芥類を粉砕泥状化し、生活廃水および/または
産業廃水と混合して下水道または廃水処理設備に連絡さ
れた専用排水管に排出する工程、 (2)下水処理場または廃水処理設備における処理に先
立って上記混合物中の固形物と液状成分とを分離する工
程、 (3)上記(2)で分離された液状成分を活性汚泥処理
する工程、 (4)上記(2)で分離された固形物と下水処理場また
は廃水処理設備において発生するか或いは回収される固
形物とを下水または廃水に混合する工程、 (5)上記(4)で得られた混合物を嫌気メタン発酵処
理する工程、 (6)上記(5)で得られた混合物を酸素の存在下にp
H約1〜11.5、温度100〜370℃で湿式酸化分
解する工程、 (7)上記(6)で得られた処理液を貴金属および卑金
属の少なくとも一種を活性成分とする粒状担持触媒の存
在下且つ処理液中のアンモニア、有機性物資および無機
性物質を分解するに必要な理論酸素量の1〜1.5倍量
の酸素の存在下にpH約1〜11.5、温度100〜3
70℃で湿式酸化分解する工程、 (8)上記(7)で得られた処理液を常圧又は加圧下に
活性汚泥処理する工程、および (9)上記(5)および/または(8)からの余剰汚泥
を前記(6)に返送する工程 を備えたことを特徴とする廃水および汚泥の処理方法。[Claims] [1] A method for treating wastewater and sludge, which comprises: (1) crushing kitchen waste into slurry, mixing it with domestic wastewater and/or industrial wastewater, and conveying the mixture to a sewer or wastewater treatment facility; (2) a step of separating the solids and liquid components in the above mixture prior to treatment at a sewage treatment plant or wastewater treatment facility; (3) a step of discharging the solids and liquid components in the above mixture into a dedicated drainage pipe; (4) A step of mixing the solids separated in (2) above with solids generated or recovered in a sewage treatment plant or wastewater treatment facility into sewage or wastewater. , (5) anaerobic methane fermentation treatment of the mixture obtained in (4) above, (6) plating the treated liquid obtained in (5) above in the presence of oxygen.
a step of wet oxidative decomposition at a temperature of 100 to 370° C. and a temperature of 100 to 370° C.; In the presence of oxygen in an amount of 1 to 1.5 times the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances in the treatment liquid, the pH is approximately 1 to 11.5, and the temperature is 100 to 100. 3
A method for treating wastewater and sludge, comprising a step of wet oxidative decomposition at 70°C. [2] A method for treating wastewater and sludge, comprising: (1) Pulverizing kitchen waste into slurry, mixing it with domestic wastewater and/or industrial wastewater, and discharging the mixture into a sewer or a dedicated drain pipe connected to wastewater treatment equipment. (2) a step of separating solids and liquid components in the mixture prior to treatment in a sewage treatment plant or wastewater treatment facility; (3) treating the liquid component separated in (2) above with activated sludge treatment; (4) A step of mixing the solids separated in (2) above and the solids generated or recovered in a sewage treatment plant or wastewater treatment facility with sewage or wastewater, (5) (4) above. (6) subjecting the mixture obtained in (5) to anaerobic methane fermentation in the presence of oxygen;
a step of wet oxidative decomposition at a temperature of 100 to 370° C. at a temperature of about 1 to 11.5; (7) the presence of a granular supported catalyst containing at least one of a noble metal and a base metal as an active ingredient; In the presence of oxygen in an amount of 1 to 1.5 times the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances in the treatment liquid, the pH is about 1 to 11.5, and the temperature is 100 to 3.
A step of wet oxidation decomposition at 70 ° C., (8) a step of treating the treated liquid obtained in (7) above with activated sludge under normal pressure or pressurization, and (9) from (5) and/or (8) above. A method for treating wastewater and sludge, comprising the step of returning excess sludge to the above (6).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2185539A JPH0763719B2 (en) | 1990-07-13 | 1990-07-13 | Wastewater and sludge treatment methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2185539A JPH0763719B2 (en) | 1990-07-13 | 1990-07-13 | Wastewater and sludge treatment methods |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0474599A true JPH0474599A (en) | 1992-03-09 |
JPH0763719B2 JPH0763719B2 (en) | 1995-07-12 |
Family
ID=16172578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2185539A Expired - Lifetime JPH0763719B2 (en) | 1990-07-13 | 1990-07-13 | Wastewater and sludge treatment methods |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0763719B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100274534B1 (en) * | 1997-11-21 | 2000-12-15 | 한상배 | Nitrogen and phosphorus removal methods with using fermented organic wastes |
KR100311986B1 (en) * | 1998-10-01 | 2002-02-19 | 장기훈 | Method for treating garbage and sludge simultaneously |
KR100311987B1 (en) * | 1998-10-22 | 2002-02-28 | 장기훈 | Combined treatment method for treating garbage and sludge in sewage |
KR100354968B1 (en) * | 1999-11-15 | 2002-10-05 | 주식회사 제오텍 | Annexation disposal method of food waste and sewage |
KR20020095486A (en) * | 2001-06-14 | 2002-12-27 | (주)동명기술공단종합건축사사무소 | United treatment system of food waste and sewage sludge on anaerobic digestion |
JP2006142165A (en) * | 2004-11-17 | 2006-06-08 | Ebara Corp | Method and apparatus for treating organic waste |
JP2012214634A (en) * | 2011-03-31 | 2012-11-08 | Osaka Gas Co Ltd | Hydrothermal gasification reactor vessel |
-
1990
- 1990-07-13 JP JP2185539A patent/JPH0763719B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100274534B1 (en) * | 1997-11-21 | 2000-12-15 | 한상배 | Nitrogen and phosphorus removal methods with using fermented organic wastes |
KR100311986B1 (en) * | 1998-10-01 | 2002-02-19 | 장기훈 | Method for treating garbage and sludge simultaneously |
KR100311987B1 (en) * | 1998-10-22 | 2002-02-28 | 장기훈 | Combined treatment method for treating garbage and sludge in sewage |
KR100354968B1 (en) * | 1999-11-15 | 2002-10-05 | 주식회사 제오텍 | Annexation disposal method of food waste and sewage |
KR20020095486A (en) * | 2001-06-14 | 2002-12-27 | (주)동명기술공단종합건축사사무소 | United treatment system of food waste and sewage sludge on anaerobic digestion |
JP2006142165A (en) * | 2004-11-17 | 2006-06-08 | Ebara Corp | Method and apparatus for treating organic waste |
JP4600921B2 (en) * | 2004-11-17 | 2010-12-22 | 荏原エンジニアリングサービス株式会社 | Organic waste treatment method and apparatus |
JP2012214634A (en) * | 2011-03-31 | 2012-11-08 | Osaka Gas Co Ltd | Hydrothermal gasification reactor vessel |
Also Published As
Publication number | Publication date |
---|---|
JPH0763719B2 (en) | 1995-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2628089B2 (en) | Wastewater treatment method | |
CN106830544A (en) | Light electrolysis Fenton EGSB A/O BCO BAF coagulating treatment pharmacy waste water systems | |
WO2006017415A2 (en) | Waste activated sludge anaerobic contact waste stream treatment process-recycle | |
JPH0474599A (en) | Treatment of waste water and sludge | |
JP5020490B2 (en) | Organic sludge treatment method and organic sludge treatment equipment | |
JP2655007B2 (en) | Wastewater and sludge treatment methods | |
JPH0466200A (en) | Treatment of waste water and sludge | |
JP2003024972A (en) | Biological treatment method for organic sewage and apparatus therefor | |
JP3447028B2 (en) | How to reduce organic sludge | |
JP2696146B2 (en) | Wastewater and sludge treatment methods | |
JP2655006B2 (en) | Wastewater and sludge treatment methods | |
JP2696145B2 (en) | Wastewater and sludge treatment methods | |
JP3528023B2 (en) | How to treat wet waste | |
US6921486B2 (en) | Waste activated sludge anaerobic contact waste stream treatment process | |
CN113087336B (en) | Method for treating sludge based on iron-based catalyst wet oxidation method | |
JP4004766B2 (en) | Excess sludge biological treatment method using hydrothermal reaction | |
JP2007021367A (en) | Method and apparatus for treating organic sludge | |
JP4600921B2 (en) | Organic waste treatment method and apparatus | |
CN110170501A (en) | A kind of integrated processing system of house refuse | |
JP2627953B2 (en) | Wastewater treatment method | |
JP3528022B2 (en) | How to treat wet waste | |
JP2001271079A (en) | Method for producing fuel gas | |
JP2003071411A (en) | Method for treating organic wastes | |
JP2002273391A (en) | Method and apparatus for treating organic solid waste | |
JPH1142472A (en) | Garbage waste water treating device and its operation |