JPH0474535A - Exhaust gas purifying catalyst and preparation thereof - Google Patents

Exhaust gas purifying catalyst and preparation thereof

Info

Publication number
JPH0474535A
JPH0474535A JP2164698A JP16469890A JPH0474535A JP H0474535 A JPH0474535 A JP H0474535A JP 2164698 A JP2164698 A JP 2164698A JP 16469890 A JP16469890 A JP 16469890A JP H0474535 A JPH0474535 A JP H0474535A
Authority
JP
Japan
Prior art keywords
carrier
alumina
catalyst
vapor
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2164698A
Other languages
Japanese (ja)
Inventor
Naoki Takahashi
直樹 高橋
Hirobumi Shinjo
博文 新庄
Shinichi Matsumoto
伸一 松本
Toru Tanaka
徹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2164698A priority Critical patent/JPH0474535A/en
Publication of JPH0474535A publication Critical patent/JPH0474535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst suppressing the formation of H2S without lowering ternary activity by supporting a noble metal on an alumina carrier and subsequently bonding silica to the hydroxyl group bonded to the aluminum atom in alumina on the surface of the carrier through a covalent bond. CONSTITUTION:A noble metal such as platinum or rhodium is first supported on an alumina carrier composed of gamma-alumina or theta-alumina. Next, alkoxysilane or alkoxylalkylsilane is vapor-deposited on the surface of the alumina carrier to be heated. Whereupon, silica is bonded to the hydroxyl group bonded to the aluminum atom in alumina present on the surface of the carrier through a covalent bond. The catalyst thus obtained suppresses the formation of H2S without lowering ternary activity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排気ガス浄化用触媒に関し、詳しくは自動車エ
ンジンなどの内燃機関から排出される排気ガス中に含ま
れる一酸化炭素、炭化水素、窒素酸化物、を除去すると
ともに触媒に吸着されている硫黄酸化物が、水素および
炭化水素により還元されて硫化水素として排出されるの
を防ぐことができる排気ガス浄化用触媒およびその製造
方法に係るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a catalyst for purifying exhaust gas, and more specifically, the present invention relates to a catalyst for purifying exhaust gas. This invention relates to an exhaust gas purification catalyst that can remove sulfur oxides and prevent sulfur oxides adsorbed on the catalyst from being reduced by hydrogen and hydrocarbons and being emitted as hydrogen sulfide, and a method for producing the same. It is.

〔従来技術および問題点〕[Prior art and problems]

従来、排気ガス浄化用三元触媒は、一般に担体基材と、
担体基材の表面に形成されるアルミナ被覆囲からなる担
体と、該担体に担持される触媒金属とからなるものが知
られている。
Conventionally, three-way catalysts for exhaust gas purification generally consist of a carrier base material,
There is known a carrier consisting of an alumina coating formed on the surface of a carrier base material, and a catalyst metal supported on the carrier.

この排気ガス浄化用触媒は、内燃機関で排出されるガス
中に含まれる炭化水素(HC) 、−酸化炭素(CO)
を酸化し、窒素酸化物(No、)を還元により低減する
。しかしながら、燃料中の硫黄は燃焼して二酸化イオウ
(SO2)として排出されるか、走行中に排気ガスか酸
化雰囲気になると酸化され、三酸化イオウ(SO3)と
なりアルミナ担体に吸着され、硫酸塩を形成して蓄積さ
れる。しかし触媒床が約600°C以上の高温となり排
気ガス中に未燃焼の炭化水素や一酸化炭素か多く含まれ
る状態になると、貴金属触媒の作用により還元性の水素
か形成され、前記吸着されている硫酸塩が還元されて硫
化水素(H2S)を形成し、燃料中の硫黄量が多い場合
には、Has発生量か増大し、悪臭を有する排気ガスが
排出されることになる。このH2Sの排出・養防止する
ために、実公昭54−31210号公報には、三元触媒
以外にその下流側にH2S除去用の触媒を設けた例が開
示されている。しかしなから三元触媒に加えて別途、H
2Sを除去する専用の触媒を設置することは、コストの
上昇および重量増となり好ましくない。
This exhaust gas purification catalyst is used to reduce hydrocarbons (HC) and -carbon oxides (CO) contained in gases exhausted by internal combustion engines.
is oxidized and nitrogen oxides (No.) are reduced by reduction. However, the sulfur in the fuel is either burned and emitted as sulfur dioxide (SO2), or is oxidized when exposed to exhaust gas or an oxidizing atmosphere while driving, becomes sulfur trioxide (SO3), which is adsorbed on the alumina carrier, and converts sulfates into sulfur. formed and accumulated. However, when the catalyst bed reaches a high temperature of approximately 600°C or higher and the exhaust gas contains a large amount of unburned hydrocarbons and carbon monoxide, reducing hydrogen is formed by the action of the noble metal catalyst, and the adsorbed hydrogen is The sulfate present in the fuel is reduced to form hydrogen sulfide (H2S), and when the amount of sulfur in the fuel is large, the amount of Has generated increases, leading to the emission of foul-smelling exhaust gas. In order to prevent the discharge and storage of H2S, Japanese Utility Model Publication No. 54-31210 discloses an example in which, in addition to the three-way catalyst, a catalyst for H2S removal is provided downstream of the three-way catalyst. However, in addition to the three-way catalyst, H
Installing a dedicated catalyst for removing 2S is undesirable because it increases cost and weight.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に鑑みてなされたもので、三元活性
を低下させることなく、H2Sの生成を抑制する排気ガ
ス浄化用触媒を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an exhaust gas purifying catalyst that suppresses the production of H2S without reducing the three-way activity.

本発明者は、Environmental 5cien
ce & Technology Vol 13  (
1979) P、  321に硫酸塩の蓄積はアルミナ
上の水酸基に起因する酸・塩基点との相互作用によって
起こるという記載に基づき、上記水酸基に起因する酸・
塩基点を持たないシリカ(SiO□)を利用できないか
鋭意研究し、本発明を完成したものである。
The inventor is an Environmental
ce & Technology Vol 13 (
1979) P., 321, based on the statement that sulfate accumulation occurs due to interaction with acid/base sites originating from hydroxyl groups on alumina.
The present invention was completed after extensive research into the possibility of utilizing silica (SiO□), which has no base sites.

(第1発明の説明) 本第1発明は、ア)i、ミナ担体と、その担体表面に担
持された貴金属と、担体表面に存在しているアルミナ中
のアルミニウム原子と共有結合していろ水酸基と結合し
たSiO□とからなることを特徴とする排気ガス浄化用
触媒に関するものである。
(Description of the first invention) The first invention provides a) i. a Mina carrier, a noble metal supported on the surface of the carrier, and a hydroxyl group covalently bonded to an aluminum atom in alumina present on the surface of the carrier; The present invention relates to an exhaust gas purifying catalyst characterized by comprising SiO□ combined with SiO□.

本発明に係る触媒は、アルミナ担体表面に貴金属とSi
O2が共存するため、貴金属によってCOおよびHCの
酸化とNOxの還元を行ってこれらを除去でき、また5
iC)+が、担体であるアルミナ表面部の水酸基に結合
しているのでH,S発生の原因となるS03が水酸基と
結合することを防止でき、結果としてH2Sの発生を防
止することも可能となる。したがって本触媒を用いれば
、三元活性を低下させることなくH2Sの発生を抑制で
きる。また、前記5i02が結合している水酸基は、ア
ルミナ中のアルミニウム原子と共有結合している。した
がって通常の使用条件では5i02が担体から取れるこ
とはない。
The catalyst according to the present invention has noble metal and Si on the surface of the alumina carrier.
Since O2 coexists, noble metals can oxidize CO and HC and reduce NOx to remove them.
Since iC)+ is bonded to the hydroxyl group on the surface of the alumina support, it is possible to prevent S03, which causes the generation of H and S, from bonding with the hydroxyl group, and as a result, it is possible to prevent the generation of H2S. Become. Therefore, by using this catalyst, the generation of H2S can be suppressed without reducing the ternary activity. Further, the hydroxyl group to which 5i02 is bonded is covalently bonded to the aluminum atom in alumina. Therefore, under normal conditions of use, 5i02 cannot be removed from the carrier.

〔第1発明のその他の発明〕 触媒を担持する担体は、比表面積の大きなγアルミナ又
はθ−アルミナを用いる。形状はペレット状でもよいが
、粉末状のアルミナを水等に混合し、スラリー状とし基
材に塗布して層状に被覆一 形成したものが好ましい。この場合に用いる基材として
は、ハニカム形状のモノリス担体基材、あるいはペレッ
ト状の担体基材など、従来と同様のものを用いることか
できる。また担体基材の材質は、コージェライト、ムラ
イト、アルミナ、マグネシア、スピネルなどのセラミッ
クス、あるいはフェライト鋼などの耐熱性金属など公知
のものを用いることかできる。
[Other inventions of the first invention] As the carrier supporting the catalyst, γ alumina or θ-alumina having a large specific surface area is used. Although the shape may be in the form of pellets, it is preferable to mix powdered alumina with water or the like to form a slurry and apply it to a base material to form a layered coating. The base material used in this case may be the same as conventional ones, such as a honeycomb-shaped monolithic carrier base material or a pellet-shaped carrier base material. Further, as the material of the carrier base material, known materials such as ceramics such as cordierite, mullite, alumina, magnesia, and spinel, or heat-resistant metals such as ferritic steel can be used.

また、貴金属としては、白金(Pt)、ロジウム(Rh
)、パラジウム(Pd)、イリジウム(Ir)、ルテニ
ウム(Ru)、オスミウム(O8)等の1種以上を用い
る。担持量は通常三元触媒として用いられる量でよい。
In addition, noble metals include platinum (Pt) and rhodium (Rh).
), palladium (Pd), iridium (Ir), ruthenium (Ru), osmium (O8), and the like. The supported amount may be the amount normally used as a three-way catalyst.

また、SiO2はアルミナ担体表面の水酸基と結合して
いる。H2Sの発生量は第1図に示すように、SiO□
の量が増大するとともに減少し、4.3X10−’mo
A/V−Cat、でH2Sの発生をほぼ阻止できる。S
iO2量を増しても第2図に示すようにNOの50%浄
化温度はほとんど変化せず、良好な活性を示している。
Furthermore, SiO2 is bonded to hydroxyl groups on the surface of the alumina carrier. As shown in Figure 1, the amount of H2S generated is SiO□
decreases with increasing amount of 4.3X10-'mo
A/V-Cat can almost prevent the generation of H2S. S
As shown in FIG. 2, even if the amount of iO2 is increased, the 50% NO purification temperature hardly changes, indicating good activity.

(第2発明の説明) 第2発明は、アルミナ担体に貴金属を担持する工程と、
該アルミナ担体表面にアルコキシルシラン、アルコキシ
ルアルキルシラン、アルコキシルシリコーンの1種以上
を蒸着する工程と、該アルコキシルシラン等を蒸着した
担体を加熱する工程とからなることを特徴とする排気ガ
ス浄化用触媒の製造方法に関するものである。
(Description of the second invention) The second invention includes a step of supporting a noble metal on an alumina carrier,
An exhaust gas purifying catalyst comprising the steps of: depositing one or more of alkoxylsilanes, alkoxylalkylsilanes, and alkoxysilicone on the surface of the alumina carrier; and heating the carrier on which the alkoxylsilanes, etc. have been deposited. This relates to a manufacturing method.

本製造方法によれば、アルミナ担体に貴金属とと3iC
Lとが共存する触媒を容易に製造することができる。ま
た、本製造方法では、蒸着によってSiO□を形成する
前に貴金属を担持することができ、三元活性の低下がな
い。
According to this manufacturing method, noble metal and 3iC are added to the alumina carrier.
A catalyst in which L coexists can be easily produced. Furthermore, in this manufacturing method, noble metals can be supported before forming SiO□ by vapor deposition, and there is no reduction in ternary activity.

5i02か形成される際の反応は明確ではないが、次の
ようであると考えられる。
Although the reaction during the formation of 5i02 is not clear, it is thought to be as follows.

(第2発明のその他の発明の説明) 本発明の触媒は次のように製造することができる。(Explanation of other inventions of the second invention) The catalyst of the present invention can be manufactured as follows.

まず、担体基材を用意し、この表面部にアルミナ担体層
を形成する。アルミナ担体層はアルミナ粉末を含むアル
ミナスラリーを担体基材表面にウォッシュコートして形
成する。この後、該コート層を所定温度で焼成し、アル
ミナ層からなる担体を形成する。
First, a carrier base material is prepared, and an alumina carrier layer is formed on the surface of the carrier base material. The alumina carrier layer is formed by wash coating the surface of the carrier base material with an alumina slurry containing alumina powder. Thereafter, the coat layer is fired at a predetermined temperature to form a carrier made of an alumina layer.

次に、該アルミナ担体に触媒金属である貴金属を担持す
る。アルミナ担体を形成した担体基材を触媒金属を含む
水溶液中に浸漬し、該溶液を担体に含浸させ、その後所
定温度で焼成することにより触媒金属を担持する。
Next, a noble metal as a catalyst metal is supported on the alumina carrier. The carrier base material on which the alumina carrier is formed is immersed in an aqueous solution containing the catalytic metal, the solution is impregnated into the carrier, and then the catalytic metal is supported by firing at a predetermined temperature.

次に触媒金属を担持した基材を化学蒸着(CVD)装置
の中に挿入し、アルミナ担体表面にSiO□を形成する
。CVDは通常用いる装置で行えばよい。
Next, the base material carrying the catalytic metal is inserted into a chemical vapor deposition (CVD) device to form SiO□ on the surface of the alumina support. CVD may be performed using commonly used equipment.

アルコキシルシラン等の蒸気は、窒素をキャリアガスと
し、その量をフィーダーによって制御して装置内に所定
の量を供給する。蒸着温度は200〜400°C1処理
時間は1〜′2時間である。
The vapor of alkoxysilane or the like uses nitrogen as a carrier gas, and its amount is controlled by a feeder to supply a predetermined amount into the apparatus. The deposition temperature is 200 to 400°C and the processing time is 1 to 2 hours.

加熱工程は、電気炉中、大気雰囲気において加熱する場
合と、車に搭載し、使用中に排気ガスの熱によってSi
O□を形成する場合を含む。
The heating process involves heating the silicon in an electric furnace or in the air, or heating it in the car and using the heat of the exhaust gas.
Including the case where O□ is formed.

加熱は、400〜600℃で短時間、例えば15分程度
行えばよい。
Heating may be performed at 400 to 600° C. for a short time, for example, about 15 minutes.

また、前記担体に酸化セリウムを担持してもよい。酸化
セリウムは助触媒作用を発揮し、三元触媒活性を高める
ことがきる。酸化セリウムは通常の方法、すなわち、水
溶性のセリウム塩を含む水溶液をアルミナ担体に含浸さ
せ、その後空気中、600°C以上の温度に加熱し、塩
を分解し、担持する。
Further, cerium oxide may be supported on the carrier. Cerium oxide can act as a cocatalyst and increase the three-way catalyst activity. Cerium oxide is prepared by a conventional method, that is, an alumina support is impregnated with an aqueous solution containing a water-soluble cerium salt, and then heated in air to a temperature of 600° C. or more to decompose and support the salt.

(第3発明の説明) 本第3発明は、アルミナ担体に貴金属を担持する工程と
、該アルミナ担体表面にアルコキシルシラン、アルコキ
シルアルキルシラン、アルコキシルシリコーンの1種以
上を蒸着する工程と、蒸着したアルコキシルシラン等を
加水分解とともにアルミナ担体に貴金属を担持する工程
と、該アルミナ担体表面にアルコキシルシラン、アルコ
キシルアルキルシラン、アルコキシルシリコーンの1種
以上を蒸着する工程と、蒸着したアルコキシルシラン等
を加水分解するとともに、アルコキシルシラン等を蒸着
すφ工程とを有し、さらに、該アルコキシルシラン等を
蒸着した担体を加熱する工程とからなることを特徴とす
る排気ガス浄化用触媒の製造方法に関するものである。
(Description of the Third Invention) The third invention includes a step of supporting a noble metal on an alumina carrier, a step of vapor depositing one or more of alkoxylsilane, alkoxylalkylsilane, and alkoxyl silicone on the surface of the alumina carrier, and a step of depositing alkoxylsilane, alkoxylalkylsilane, and alkoxyl silicone on the surface of the alumina carrier. A step of hydrolyzing silane, etc. and supporting a noble metal on an alumina carrier, a step of vapor depositing one or more of alkoxyl silane, alkoxylalkyl silane, and alkoxyl silicone on the surface of the alumina carrier, and hydrolyzing the vapor-deposited alkoxyl silane, etc. The present invention relates to a method for producing an exhaust gas purifying catalyst, which comprises a φ step of vapor depositing an alkoxyl silane or the like, and a step of heating a carrier on which the alkoxyl silane or the like is vapor deposited.

本第3発明の製造方法によれば、蒸着したアルコキシル
シラン等を加水分解する工程によって水酸基を形成し、
次の蒸着工程によって前記水酸基にテトラメトキシシラ
ン等を結合する。これらの加水分解工程と、蒸着工程と
を繰り返すと、加熱工程後にS io 2の量か増大し
、第1図に示すようにH2Sの発生を著しく減少させる
ことができる。
According to the manufacturing method of the third invention, hydroxyl groups are formed by the step of hydrolyzing the vapor-deposited alkoxylsilane, etc.
In the next vapor deposition step, tetramethoxysilane or the like is bonded to the hydroxyl group. By repeating these hydrolysis steps and vapor deposition steps, the amount of S io 2 increases after the heating step, and as shown in FIG. 1, the generation of H 2 S can be significantly reduced.

また、本製造方法は、第2発明の製造方法と同様な効果
を有する。
Moreover, this manufacturing method has the same effect as the manufacturing method of the second invention.

本製造方法によってSiO□が形成される際の反応は、
明確ではないか、次のようであると考えられる。
The reaction when SiO□ is formed by this manufacturing method is as follows:
It may not be clear, or it may be as follows.

例えば、テトラメトキシシランを使った場合は、第2発
明の製造方法によってアルミナ担体表面の水酸基に、テ
トラメトキシシランを蒸着し、結合させた後、テトラメ
トキシシランの加水分解を行う。
For example, when tetramethoxysilane is used, tetramethoxysilane is vapor-deposited and bonded to the hydroxyl groups on the surface of the alumina carrier by the production method of the second invention, and then the tetramethoxysilane is hydrolyzed.

該加水分解工程で、前記テトラメトキシシランを構成す
る珪素のまわりの官能基(−OMe)を水酸基に代え(
反応式(2))、再びテトラメトキシシランをアルミナ
担体上に結合して上記水酸基にテトラメトキシシランを
結合させる(反応式(3))。
In the hydrolysis step, the functional group (-OMe) around silicon constituting the tetramethoxysilane is replaced with a hydroxyl group (
Reaction formula (2)), tetramethoxysilane is bonded onto the alumina support again to bond the tetramethoxysilane to the hydroxyl group (reaction formula (3)).

このようにしてアルミナ担体上に蒸着されたテトラメト
キシシラン同士を結合して、SiO□を形成する。すな
わち、(3)式の反応によって生成したAA O3i 
(O3i (OMe) 3 )−中のメトキシ基(−O
Me)が蒸着工程後の加熱工程において酸素と化合し、
SiO□を生成する。
The tetramethoxysilane thus deposited on the alumina support is bonded to form SiO□. That is, AA O3i produced by the reaction of formula (3)
(O3i (OMe) 3 )- in methoxy group (-O
Me) is combined with oxygen in the heating step after the vapor deposition step,
Generate SiO□.

AAO3i (OMe)3 +3H20→AffO3i
 (OH) 3+3MeOHAAO8i (OH)3 
+3Si (OMe)4→AA’O3i  (O3i 
 (OMe) 2) 3十3 M e OH(3) (第3発明のその他の発明の説明) 加水分解工程前の貴金属の担持工程ならびにアルコキシ
ルシラン等の蒸着工程は第2発明の場合と同様である。
AAO3i (OMe)3 +3H20→AffO3i
(OH)3+3MeOHAAO8i (OH)3
+3Si (OMe)4→AA'O3i (O3i
(OMe) 2) 313 M e OH (3) (Description of other inventions of the third invention) The step of supporting the noble metal before the hydrolysis step and the step of vaporizing alkoxylsilane etc. are the same as in the case of the second invention. be.

加水分解はアルコキシルシラン等の供給を停止した後、
窒素ガスによって水をバブリングさせ、窒素をキャリヤ
ーガスとして水蒸気を装置内に導入し、200〜400
℃で20〜40分加熱して行う。
For hydrolysis, after stopping the supply of alkoxylsilane, etc.
Water is bubbled with nitrogen gas, water vapor is introduced into the device using nitrogen as a carrier gas, and 200 to 400
This is done by heating at ℃ for 20 to 40 minutes.

本加水分解工程後の蒸着工程、加熱工程は、第2発明の
場合と同様である。
The vapor deposition step and heating step after the main hydrolysis step are the same as in the case of the second invention.

(実施例) 以下実施例により具体的に説明する。(Example) This will be explained in detail below using examples.

〔実施例触媒Nα1〜Nα4の調製〕 γ−アルミナ粉末(平均粒径5μm)100重量部、ベ
ーマイト粉末(A A 203  ・H2O)(粒径5
μm)3重量部を114部の蒸留水に添加、混合してス
ラリーを調製した。容量35ccのコージェライト質の
ハニカム担体基材を、前記の如く作成したスラリー中に
浸漬、取り出した後余分のスラリーを拭き払った。20
0℃で2時間乾燥した後650°Cで1時間焼成して、
該基材にアルミナ被覆層からなる担体を形成した。
[Preparation of Example Catalysts Nα1 to Nα4] 100 parts by weight of γ-alumina powder (average particle size 5 μm), boehmite powder (A A 203 ・H2O) (particle size 5
μm) was added to 114 parts of distilled water and mixed to prepare a slurry. A cordierite honeycomb carrier base material having a capacity of 35 cc was immersed in the slurry prepared as described above, and after taking it out, the excess slurry was wiped off. 20
After drying at 0℃ for 2 hours, baking at 650℃ for 1 hour,
A carrier consisting of an alumina coating layer was formed on the base material.

次に前記した如く担体を形成した基材を硝酸セリウム(
Ce (No3)= )の水溶液に浸漬し、200°C
で3時間乾燥した後600°Cで5時間焼成してセリウ
ム酸化物を形成した。
Next, the base material on which the carrier was formed as described above was mixed with cerium nitrate (
Immerse in an aqueous solution of Ce (No3)= ) and heat at 200°C.
After drying for 3 hours at 600° C. for 5 hours, cerium oxide was formed.

次にジニトロジアンミン白金水溶液、塩化ロジウム水溶
液に順次1時間浸漬後、乾燥しPt、Rhをそれぞれア
ルミナからなる担体に担持した。
Next, after being sequentially immersed in a dinitrodiammine platinum aqueous solution and a rhodium chloride aqueous solution for 1 hour, it was dried, and Pt and Rh were each supported on a carrier made of alumina.

担持量はPt 1.2g/(!、Rh0.4g/j7で
ある。
The supported amount is Pt 1.2 g/(!, Rh 0.4 g/j7.

SiO□の形成は第3図に示したCVD装置の中で行っ
た。
The formation of SiO□ was carried out in the CVD apparatus shown in FIG.

前記したようにアルミナ担体にPtおよびRhを担持し
た基材を炉3の中に配置した。炉3を300°Cに加熱
した後、窒素を質量流量調節器lによって150ml/
min、の速度で、またテトラメトキシシラン(S i
 (OMe) 4)を0.88m1/min、の速度で
マイクロフィーダー2より供給した。
As described above, a base material in which Pt and Rh were supported on an alumina carrier was placed in the furnace 3. After heating the furnace 3 to 300°C, nitrogen was pumped in at 150 ml/by mass flow regulator l.
min, and also tetramethoxysilane (S i
(OMe) 4) was fed from the microfeeder 2 at a rate of 0.88 ml/min.

75分間蒸着処理を行い、触媒NcLlを得た。次に触
媒Nα1と同様の操作によってアルミナ担体層の形成、
セリウム酸化物、Pt、Rhの担持および蒸着処理を行
った後、そのままCVD装置中に保持し、窒素ガスによ
って水をバブリングさせ窒素をキャリヤーガスとして水
蒸気を炉内に供給し、300°Cで30分間加水分解処
理を行った後、さらに触媒N(11の場合と同様の蒸着
処理を行い、触媒Nα2を得た。また、触媒Nα2の場
合と同様の操作によって蒸着処理まで行った試料に、触
媒Nα2と同様の加水分解処理、蒸着処理を行い、触媒
Nα3を得た。また、触媒Nα3と同様の操作によって
蒸着処理まで行った試料に触媒Nα3と同様の加水分解
処理、蒸着処理を施し、触媒Nα4を得た。
A vapor deposition process was performed for 75 minutes to obtain a catalyst NcLl. Next, form an alumina carrier layer by the same operation as catalyst Nα1,
After supporting and vapor-depositing cerium oxide, Pt, and Rh, the cerium oxide, Pt, and Rh were kept in the CVD apparatus, water was bubbled with nitrogen gas, and water vapor was supplied into the furnace using nitrogen as a carrier gas. After hydrolysis treatment for 1 minute, the same vapor deposition treatment as in the case of catalyst N (11) was performed to obtain catalyst Nα2. The same hydrolysis treatment and vapor deposition treatment as for catalyst Nα2 were performed to obtain catalyst Nα3.In addition, the same hydrolysis treatment and vapor deposition treatment as for catalyst Nα3 were performed on a sample that had been subjected to vapor deposition treatment in the same manner as for catalyst Nα3. Nα4 was obtained.

(比較例触媒NCLCIの調製) 触媒Nα1と同様の操作でPtおよびRhを担持した後
の蒸着処理を行わずに得た触媒を比較例触媒NCLCI
とした。
(Preparation of Comparative Example Catalyst NCLCI) Comparative Example Catalyst NCLCI was obtained by carrying Pt and Rh in the same manner as the catalyst Nα1 without performing the vapor deposition treatment.
And so.

〔比較例触媒N11C2の調製〕 実施例Nα1〜Nα4の調製法において、γ−アルミナ
粉末の代わりに市販のアモルファスSiO□(アエロジ
ルTT200)をベーマイト粉末の代わりにシリカゾル
を用いて担体基材に担体であるシリカ被覆層を形成した
[Preparation of Comparative Example Catalyst N11C2] In the preparation method of Examples Nα1 to Nα4, commercially available amorphous SiO□ (Aerosil TT200) was used instead of γ-alumina powder and silica sol was used instead of boehmite powder to coat the carrier base material. A certain silica coating layer was formed.

次に前記の担体を形成した基材を硝酸セリウム(Ce 
(NO3)−)の水溶液に浸漬することなく、実施例N
α1〜Nα4との同様の原料を用いてPtおよびRhを
吸水担持した。このようにして得た触媒を比較例触媒N
(lC2とした。
Next, the base material on which the carrier was formed was made of cerium nitrate (Ce).
Example N without immersion in an aqueous solution of (NO3)-)
Pt and Rh were supported by water absorption using the same raw materials as α1 to Nα4. The catalyst obtained in this manner was used as comparative example catalyst N.
(It was set as 1C2.

〔比較例触媒No、C3の調製〕 実施例触媒Nα1〜Nα4の調製法において、活性アル
ミナ被覆層からなる担体を形成した後、セリウム酸化物
を担持することなくPt、Rhを担持させて得た触媒を
比較例触媒NαC3とした。
[Preparation of Comparative Example Catalyst No., C3] In the preparation method of Example Catalysts Nα1 to Nα4, after forming a carrier consisting of an activated alumina coating layer, Pt and Rh were supported without supporting cerium oxide. The catalyst was a comparative example catalyst NαC3.

〔実施例触媒Nα5の調製〕 比較例触媒No、C3に実施例触媒Nα4と同様に蒸着
処理を4回行い、実施例触媒Nα5を得た。
[Preparation of Example Catalyst Nα5] Comparative Example Catalyst No. C3 was subjected to vapor deposition treatment four times in the same manner as Example Catalyst Nα4 to obtain Example Catalyst Nα5.

〔触媒活性の評価〕[Evaluation of catalyst activity]

前記本実施例触媒Nα1〜Nα4、比較例触媒NαC1
−N(lc2について硫化水素ならびに三元活性の評価
を行った。硫化水素の発生量の測定は、第1表に示す温
度、時間、ガス組成下にて行った。すなわち、450°
Cまて昇温後300°Cまで降温し、昇温ステップ時と
降温ステップ時では自動車の排気ガスを模したモデルガ
スの組成を変えた。硫化水素発生はステップ3でピーク
状に発生した硫化水素の量で評価した。
The present example catalysts Nα1 to Nα4, the comparative example catalyst NαC1
-N(lc2) was evaluated for hydrogen sulfide and ternary activity. The amount of hydrogen sulfide generated was measured at the temperature, time, and gas composition shown in Table 1. That is, 450°
After increasing the temperature, the temperature was lowered to 300°C, and the composition of a model gas imitating automobile exhaust gas was changed during the temperature increase step and the temperature decrease step. Hydrogen sulfide generation was evaluated by the amount of hydrogen sulfide generated in a peak shape in step 3.

また、三元活性の評価は硫化水素発生量を測定した場合
の昇温時のガスと同一組成のモデルガスを触媒に流通し
て15°C/min、で昇温し、N01C0、HCそれ
ぞれの50%浄化温度を測定して行った。
In addition, to evaluate the three-way activity, a model gas with the same composition as the gas at the time of heating when measuring the amount of hydrogen sulfide generated was passed through the catalyst and heated at 15°C/min, and each of N01C0 and HC was The 50% purification temperature was measured.

重量法から求めたSiO2の蒸着量と共に、それぞれの
結果を第2表に示す。比較例触媒NcLC1は従来のア
ルミナ担体触媒であるため、三元活性に優れるものの、
硫化水素発生量が多い。
The results are shown in Table 2 along with the amount of SiO2 deposited using the gravimetric method. Comparative Example Catalyst NcLC1 is a conventional alumina supported catalyst, so although it has excellent three-way activity,
A large amount of hydrogen sulfide is generated.

第2表 比較例触媒N(lC2はS i O2担体触媒であるた
め、硫化水素は発生しないか、三元活性が低い。
Table 2 Comparative Example Catalyst N (lC2 is a SiO2 supported catalyst, so hydrogen sulfide is not generated or the ternary activity is low.

実施例触媒Nα1〜4では三元活性を低下させることな
く、硫化水素発生量を低減することができた。
In the example catalysts Nα1 to Nα4, the amount of hydrogen sulfide generated could be reduced without reducing the three-way activity.

特に、実施例触媒Nα4では硫化水素が全く発生しなか
った。S i O2の蒸着により硫酸塩の蓄積が抑制さ
れたためと考えられる。
In particular, with the example catalyst Nα4, no hydrogen sulfide was generated. This is thought to be because the accumulation of sulfate was suppressed by the vapor deposition of S i O2.

また、同様の評価法により比較例触媒NO,C3および
実施例触媒Nα5の硫化水素発生量を測定したところ、
蒸着処理を行っていないNo、C3ては硫化水素が発生
したのに対し、蒸着処理を行ったNα5ては硫化水素か
発生しなかった。
In addition, when the amount of hydrogen sulfide generated for Comparative Example Catalysts NO, C3 and Example Catalyst Nα5 was measured using the same evaluation method,
Hydrogen sulfide was generated in No. and C3 samples which were not subjected to vapor deposition treatment, whereas no hydrogen sulfide was generated in Nα5 sample which was subjected to vapor deposition treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシリカ蒸着量とH2S生成量の関係を、第2図
はシリカ蒸着量とNOの50%浄化温度との関係を示し
た図である。第3図は本発明に係る排気ガス浄化用触媒
を製造するための化学蒸着装置を示した図である。 質量流量調節器 マイクロフィーダー 炉 試料 熱電対 温度調節器
FIG. 1 is a diagram showing the relationship between the amount of silica vapor deposited and the amount of H2S produced, and FIG. 2 is a diagram showing the relationship between the amount of silica vapor deposit and the 50% NO purification temperature. FIG. 3 is a diagram showing a chemical vapor deposition apparatus for manufacturing the exhaust gas purifying catalyst according to the present invention. Mass flow regulator Micro feeder furnace Sample thermocouple temperature regulator

Claims (3)

【特許請求の範囲】[Claims] (1)アルミナ担体と、その担体表面に担持された貴金
属と、担体表面に存在しているアルミナ中のアルミニウ
ム原子と共有結合している水酸基と結合したシリカとか
らなることを特徴とする排気ガス浄化用触媒。
(1) Exhaust gas characterized by being composed of an alumina carrier, a noble metal supported on the carrier surface, and silica bonded to a hydroxyl group covalently bonded to an aluminum atom in the alumina present on the carrier surface. Purification catalyst.
(2)アルミナ担体に貴金属を担持する工程と、該アル
ミナ担体表面にアルコキシルシラン、アルコキシルアル
キルシラン、アルコキシルシリコーンの1種以上を蒸着
する工程と、該アルコキシルシラン等を蒸着した担体を
加熱する工程とからなることを特徴とする排気ガス浄化
用触媒の製造方法。
(2) a step of supporting a noble metal on an alumina carrier; a step of vapor-depositing one or more of alkoxylsilanes, alkoxylalkylsilanes, and alkoxyl silicones on the surface of the alumina carrier; and a step of heating the carrier on which the alkoxylsilanes, etc. have been vapor-deposited. A method for producing an exhaust gas purifying catalyst, comprising:
(3)アルミナ担体に貴金属を担持する工程と、該アル
ミナ担体表面にアルコキシルシラン、アルコキシルアル
キルシラン、アルコキシルシリコーンの1種以上を蒸着
する工程と、蒸着したアルコキシルシラン等を加水分解
するとともに、アルコキシルシラン等を蒸着する工程と
を有し、さらに、該アルコキシルシラン等を蒸着した担
体を加熱する工程とからなることを特徴とする排気ガス
浄化用触媒の製造方法。
(3) A step of supporting a noble metal on an alumina carrier, a step of vapor depositing one or more of alkoxysilane, alkoxylalkylsilane, and alkoxyl silicone on the surface of the alumina carrier, and hydrolyzing the vapor-deposited alkoxylsilane, etc. 1. A method for producing an exhaust gas purifying catalyst, comprising a step of vapor-depositing alkoxylsilane, etc., and a step of heating a carrier on which the alkoxylsilane or the like is vapor-deposited.
JP2164698A 1990-06-21 1990-06-21 Exhaust gas purifying catalyst and preparation thereof Pending JPH0474535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2164698A JPH0474535A (en) 1990-06-21 1990-06-21 Exhaust gas purifying catalyst and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2164698A JPH0474535A (en) 1990-06-21 1990-06-21 Exhaust gas purifying catalyst and preparation thereof

Publications (1)

Publication Number Publication Date
JPH0474535A true JPH0474535A (en) 1992-03-09

Family

ID=15798172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2164698A Pending JPH0474535A (en) 1990-06-21 1990-06-21 Exhaust gas purifying catalyst and preparation thereof

Country Status (1)

Country Link
JP (1) JPH0474535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955089A1 (en) * 1998-05-07 1999-11-10 Institut Francais Du Petrole Catalyst based on a group VIII noble metal containing silicium, possibly with boron, and its use for hydrotreating hydrocarbon feeds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955089A1 (en) * 1998-05-07 1999-11-10 Institut Francais Du Petrole Catalyst based on a group VIII noble metal containing silicium, possibly with boron, and its use for hydrotreating hydrocarbon feeds
FR2778341A1 (en) * 1998-05-07 1999-11-12 Inst Francais Du Petrole CATALYST BASED ON NOBLE GROUP VIII METAL CONTAINING BORON AND / OR SILICON AND ITS USE IN HYDROCARBON CHARGE HYDROTREATMENT

Similar Documents

Publication Publication Date Title
JP2553167B2 (en) Method for producing catalyst for simultaneously converting carbon monoxide hydrocarbon and nitrogen oxide from exhaust gas of internal combustion engine
CN109745974B (en) Catalyst for exhaust gas purification
JPH0899034A (en) Catalyst for purifying exhaust gas
JPH0838897A (en) Production of exhaust gas purifying catalyst
JP5982987B2 (en) Exhaust gas purification catalyst containing exhaust gas purification catalyst material
JPH09500570A (en) Layered catalyst composite
JPH10151353A (en) Exhaust gas purifying catalyst
JP3409894B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2000015097A (en) Production of catalyst
JPH08266865A (en) Exhaust gas purification catalyst for diesel engine
JP3216858B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH07108172A (en) Exhaust gas purifying catalyst and production therefor
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JPH0474535A (en) Exhaust gas purifying catalyst and preparation thereof
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JPS6178439A (en) Catalyst for purifying exhaust gas
JP6167834B2 (en) Exhaust gas purification catalyst
JPH07132226A (en) Catalyst for purifying exhaust gas
JPH115035A (en) Waste gas purification material and method for purifying waste gas
JPH1176819A (en) Catalyst for cleaning of exhaust gas
JPH0857314A (en) Catalyst for purification of exhaust gas
JPH02237643A (en) Production of catalyst for cleaning exhaust gas
JP3695654B2 (en) Method for producing exhaust gas purifying catalyst
JP2000246103A (en) Production of catalyst for cleaning exhaust gas
JPS6260937B2 (en)