JPH0474377B2 - - Google Patents

Info

Publication number
JPH0474377B2
JPH0474377B2 JP31424586A JP31424586A JPH0474377B2 JP H0474377 B2 JPH0474377 B2 JP H0474377B2 JP 31424586 A JP31424586 A JP 31424586A JP 31424586 A JP31424586 A JP 31424586A JP H0474377 B2 JPH0474377 B2 JP H0474377B2
Authority
JP
Japan
Prior art keywords
weight
resin composition
parts
present
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31424586A
Other languages
Japanese (ja)
Other versions
JPS63165448A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP31424586A priority Critical patent/JPS63165448A/en
Priority to US07/137,698 priority patent/US4898911A/en
Publication of JPS63165448A publication Critical patent/JPS63165448A/en
Publication of JPH0474377B2 publication Critical patent/JPH0474377B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は樹脂組成物に関する。さらに詳しく
は、本発明は熱可塑性樹脂、とくに分子中にエス
テル結合、カーボネート結合やアミド結合などを
有する熱可塑性樹脂にブレンドして該熱可塑性樹
脂の耐衝撃性を改善するのに用いうる軟質の樹脂
組成物に関する。 〔従来の技術およびその問題点〕 従来、熱可塑性樹脂の耐衝撃性を改善する方法
としては熱可塑性樹脂にゴム質をブレンドして改
質する方法が一般的である。また、エンジニアリ
ングプラスチツクスといわれる高性能の熱可塑性
樹脂についても同様であり、耐衝撃性を改善する
目的でゴム質を該熱可塑性樹脂にブレンドする方
法が、たとえば特公昭58−47419号公報や特公昭
59−28223号公報などに開示されている。 しかしながら、これらの方法にはどのようなゴ
ム質をブレンドしたときに耐衝撃性が向上される
のかについては充分に検討がなされておらず、実
際にはエンジニアリングプラスチツクスとゴム質
の種々の組み合わせを行なうことにより、耐衝撃
性を有する組み合わせを捜し出しているのが現状
である。 また高性能のエンジニアリングプラスチツクス
に弾性率が比較的小さいゴム質をブレンドしたば
あい、耐衝撃性は向上するが機械的強度、耐熱
性、化学的性質などのエンジニアリングプラスチ
ツクスが有する優れた性能が阻害されることがあ
る。 〔発明が解決しようとする問題点〕 そこで本発明者らは、上記のような従来技術の
問題点に鑑みて、かかる問題点を解決するべく鋭
意研究を重ねた結果、熱可塑性樹脂、とくにエン
ジニアリングプラスチツクスといわれる高性能の
熱可塑性樹脂にブレンドしたばあいに優れた熱可
塑性樹脂の機械的強度、耐熱性および化学的性質
を低下させることなく耐衝撃性を改善させうるま
つたく新しい樹脂組成物を見出し、本発明を完成
するに至つた。 〔問題点を解決するための手段〕 すなわち、本発明は(a)エポキシ基を1分子中に
1個以上有し、室温での曲げ弾性率が10000Kg/
cm2以下である、炭素数2〜20のα−オレフインま
たは炭素数2〜36の(メタ)アクリル酸アルキル
エステルと炭素数5〜40のグリシジル化合物との
共重合体5〜95重量部および(b)α−オレフイン
と、α、β−不飽和カルボン酸とからなる共重合
体で、該共重合体中に含有されているカルボキシ
ル基の5モル%以上がアルカリ金属塩に中和され
ており、室温での曲げ弾性率が10000Kg/cm2以下
である共重合体95〜5重量部を溶融混合してなる
樹脂組成物を関する。 〔実施例〕 本発明の樹脂組成物は、エポキシ基を1分子中
に1個以上有し、室温での曲げ弾性率が10000
Kg/cm2以下である樹脂(以下、(a)成分という)5
〜95重量部およびα−オレフインと、α,β−不
飽和カルボン酸とからなる共重合体で、該共重合
体中に含有されているカルボキシル基の5モル%
以上がアルカリ金属塩に中和されており、室温で
の曲げ弾性率が10000Kg/cm2以下である共重合体
(以下、(b)成分という)95〜5重量部を溶融混合
することによりえられる。 ここで本明細書でいう曲げ弾性率とは、弾性限
度内において材料が受けた曲げの応力を材料に生
じたひずみで除した値をいい、Kg/cm2の単位で示
す。この値の大きい材料ほど、一定荷重に対する
変形が小さい。 本発明に用いる(a)成分は、炭素数2〜20のα−
オレフインまたは炭素数2〜36の(メタ)アクリ
ル酸アルキルエステルと炭素数5〜40のグリシジ
ル化合物との共重合体であるグリシジル化合物と
してはα−オレフイン基とグリシジル基とを含有
するものであればいかなるものをも用いることが
できるが、通常炭素数6〜40のグリシジル基を含
有する(メタ)アクリル酸、(メタ)アクリル酸
エーテル、(メタ)アクリレートや(メタ)アク
リレートオリゴマーなどが用いられる。 前記(a)成分の具体例としては、エチレン−グリ
シジルメタクリレート共重合体、アクリル酸エチ
ル−グリシジルメタクリレート共重合体、アクリ
ル酸ブチル−アリルグリシジルエーテル共重合
体、エチレン−アリルグリシジルエーテル共重合
体、エチレン−グリシジルメタクリレート−酢酸
ビニル三元共重合体、両末端エポキシ化ポリブタ
ジエン、エポシキ化1,2−ポリブタジエンなど
があげられる。これらのなかでもエチレン、プロ
ピレン、1−ブテン、1−ヘキセン、1−オクテ
ンなどまたはこれら2種以上とアクリル酸グリシ
ジル、メタクリル酸グリシジル、シクロヘキセン
−4−カルボン酸グリシジルなどまたはこれらの
2種以上との共重合体を用いるのがとくに好まし
い。また共重合体に10重量%までの範囲でほかの
共重合可能な成分を添加し、共重合させてもよ
い。共重合可能な成分としては、たとえば酢酸ビ
ニル、アクリル酸メチル、メタクリル酸メチルな
どがあげられる。 前記(a)成分中には、エポシキ基が1分子中に1
個以上あれば本発明によつて熱可塑性樹脂の耐衝
撃性を向上させることができるが、好ましくは該
樹脂中に1モル%以上あるのが熱可塑性樹脂にブ
レンドしたときの耐衝撃性改善にとつてよい。10
モル%をこえると本発明の組成物は硬くなり、熱
可塑性樹脂にブレンドしても耐衝撃性の向上が小
さくなる傾向にある。 また、前記(a)成分は、室温(23℃)での曲げ弾
性率が10000Kg/cm2以下のものが用いられ、とく
に曲げ弾性率が100〜4000Kg/cm2のものが好まし
く用いられる。曲げ弾性率が10000Kg/cm2をこえ
るばあい、耐衝撃性を改善する効果がとくに小さ
いために好ましくない。 前記(a)成分は、本発明の樹脂組成物100重量部
中に5〜95重量部、好ましくは40〜90重量部、と
くに好ましくは50〜80重量部含有されるように調
製して用いられる。前記(a)成分は5重量部未満ま
たは95重量部をこえて本発明の樹脂組成物中に含
有されるばあい、本発明の樹脂組成物を熱可塑性
樹脂にブレンドしても耐衝撃性を改善する効果は
小さい。 前記(b)成分とは、α−オレフインとアクリル
酸、メタクリル酸、マレイン酸その他のα、β−
不飽和カルボン酸との共重合体であつて、該(b)成
分中のα−オレフインの好ましい含有量は50重量
%以上であり、かつ(b)成分中のカルボキシル基の
5モル%以上がアルカリ金属塩によつて中和され
ているものである。 前記α−オレフインとしては、エチレン、プロ
ピレン、1−ブテン、1−オクテン、1−ヘキセ
ンなどがあげられるが、これらのα−オレフイン
を2種以上併用してもよい。 さらに前記(b)成分中に10重量%をこえない範囲
内で他の共重合可能な成分を共重合させてもよ
い。共重合可能な成分としては、たとえばアクリ
ル酸メチル、メタクリル酸メチル、アクリル酸ブ
チルなどがあげられる。 前記(b)成分中に含有されているカルボキシル基
は5モル%以上がアルカリ金属塩に中和されてい
るが、好ましくは30モル%以上、とくに好ましく
は50モル%以上がアルカリ金属塩によつて中和さ
れているばあい、本発明の樹脂組成物を熱可塑性
樹脂にブレンドしたときの耐衝撃性が大きく改善
されるのでよい。好ましいアルカリ金属塩として
は、ナトリウム塩やカリウム塩があげられる。前
記(b)成分中のカルボキシル基がアルカリ金属塩に
よつて中和されていることによつて、本発明の樹
脂組成物は熱可塑性樹脂の耐衝撃性を大きく改善
することができる。とくにカルボキシル基の30モ
ル%以上がナトリウムによつて中和されているも
のは、熱可塑性樹脂の耐衝撃性を改善させる効果
がきわめて顕著である。 また、前記(b)成分は(a)成分と同様に、室温(23
℃)での曲げ弾性率が10000Kg/cm2以下のものが
用いられ、とくに曲げ弾性率が100〜4000Kg/cm2
のものが好ましく用いられる。曲げ弾性率が
10000Kg/cm2をこえるばあい、耐衝撃性を改善す
る効果がとくに小さいために好ましくない。 前記(b)成分は本発明の樹脂組成物100重量部中
に95〜5重量部、好ましくは60〜10重量部、とく
に好ましくは50〜20重量部含有されて用いられ
る。5重量部未満または95重量部をこえて本発明
の樹脂組成物中に含有されるばあい、本発明の樹
脂組成物を熱可塑性樹脂にブレンドしても耐衝撃
性を改善する効果は小さい。 本発明の樹脂組成物は(a)成分と(b)成分とを溶融
混合して反応させることによつてえられる。溶融
混合する温度は150〜280℃、好ましくは170〜200
℃がよい。150℃未満のばあい反応がすみやかに
行なわれず、280℃をこえるばあいゲル化をおこ
し、熱可塑性樹脂にブレンドしても耐衝撃性を改
善する効果が小さい。 本発明の樹脂組成物は熱可塑性樹脂、とくに高
性能なエンジニアリングプラスチツクスにブレン
ドされたときに該熱可塑性樹脂(以下、ブレンド
樹脂という)の耐衝撃性を改善させる効果を呈す
る。そのようなブレンド樹脂としては分子中にエ
ステル結合、カーボネート結合またはアミド結合
を有する樹脂がとくに好ましく、その具体例とし
ては、ポリエチレンテレフタレート(PET)や
ポリブチレンテレフタレートなどのポリエステ
ル、ポリアミド、ポリカーボネート、ポリアクリ
レート、アクリル酸エステル系重合体、ポリスチ
レン、ポリ塩化ビニル(PVC)、アクリロニトリ
ル−ブタジエン−スチレン共重合体(ABS)、さ
らに本発明組成物をメタクリレート−ブタジエン
−スチレン共重合体(MBS)、メタクリレート−
アクリロニトリル−ブタジエン−スチレン共重合
体(MABS)などの他の強化剤とともにこれら
の樹脂に適用してもよい。さらに本発明の樹脂組
成物は、ガラス繊維で強化されたプラスチツクス
の耐衝撃強度を改善する効果も大きい。 本発明の樹脂組成物は、前述のようなブレンド
樹脂95〜50重量部に対して、5〜50重量部添加し
て用いるのが好ましい。本発明の樹脂組成物の添
加量が5重量部未満のばあい、ブレンド樹脂の耐
衝撃性を改善させる効果が小さく、また50重量部
をこえるばあい添加量を増しただけの耐衝撃性の
向上は望めない。 本発明の樹脂組成物には、樹脂組成物に一般的
に用いられる添加剤、たとえば安定剤、着色材、
帯電防止材、難熱剤や加工性改良剤などを配合す
ることもできる。さらにガラス繊維、炭素繊維な
どの強化材、タルク、マイカ、ガラスビーズ、炭
素カルシウムなどの充填材なども本発明の樹脂組
成物中に60重量%をこえない範囲内で配合してよ
い。 本発明の樹脂組成物を含有する樹脂は公知の
種々の方法、たとえば押出機を用いる方法などで
製造することができる。 本発明の樹脂組成物を含有する樹脂成形品は、
耐衝撃性に優れているので、弱電機器のハウジン
グ、自動車部品、電動工具ボデイなどに好適に使
用しうる。 つぎに本発明の樹脂組成物を実施例に基づいて
さらに詳細に説明するが、本発明はかかる実施例
のみに限定されるものではない。 実施例 1〜3 エチレン−グリシジルメタクリレート共重合体
(フローレイト:3.0g/10分(ASTM D−
1238Eに準じて測定)、グリシジルメタクリレー
ト含量:10重量%)(以下、EGMA−1という)
75重量部と、エチレン成分87重量%、メタクリル
酸成分6.5重量%およびメタクリル酸ナトリウム
成分6.5重量%からなるランダム共重合体(MI:
1.0g/10分(ASTM D−1238に準じて測定))
(以下、EMAMNAという)25重量部とを混合
し、二軸押出機(池具鉄工(株)製PCM−45)を用
いて205℃に加熱して溶融混合および混練押出を
行なつた。 えられた樹脂組成物を第1表に示されるように
ブレンド樹脂に配合し、前記二軸押出機で押出混
練し、射出成形によつてテストピースを作製し、
耐衝撃性を下記の方法で評価した。その結果を第
1表に示す。なお、えられた溶融混合物をキシレ
ン(還流で10時間)で押出したところ、実施例1
〜3のいずれの溶融混合物からの抽出物も5重量
%未満しかえられなかつた。 (曲げ弾性率) (a)成分および(b)成分の曲げ弾性率は、ASTM
D−790に準じて測定した。 (アイゾツト(IZOD)衝撃強度(ノツチ付)) ASTM D−256に準じて測定。 (落錘強度) 荷重500g、先端R3/8インチ、試料厚さ3mm
のばあいの半数破壊高さを表示。 実施例 4および5 第1表に示された実施例4および5の組成物
100重量部に安定剤としてチバ・ガイギー(株)製、
品番:イルガノツクス1010 0.2重量部およびシプ
ロ化成(株)製、品番:シーノツクス412S 0.2重量部
を添加し、溶融混合した配合物を80℃、24時間真
空下で乾燥したほかは実施例2と同様にしてテス
トピースを作製し、耐衝撃性を実施例1〜3と同
様にして測定した。その結果を第1表に示す。 比較例 1 実施例2でEGMA−1とEMAMNAとからな
る樹脂組成物をPETにブレンドするかわりに、
EGMA−1とEMAMNAをPETと同時にブレン
ドするほかは実施例2と同様にしてテストピース
を作製し、耐衝撃性を実施例2と同様にして測定
した。その結果を第2表に示す。 比較例 2および3 実施例4でBA−AGEとI−2とからなる樹脂
組成物をPETにブレンドするかわりに、BA−
AGEとI−2とをPETと同時にブレンドし、実
施例5でE−GMA−VAとI−2とからなる樹
脂組成物をPETにブレンドするかわりにE−
GMA−VAとI−2とをPETと同時にブレンド
するほかは、実施例4および5と同様にしてテス
トピースを作製し、耐衝撃性を実施例1〜3と同
様にして測定した。その結果を第2表に示す。
[Industrial Field of Application] The present invention relates to a resin composition. More specifically, the present invention provides a soft material that can be used to improve the impact resistance of thermoplastic resins by blending them with thermoplastic resins, particularly thermoplastic resins having ester bonds, carbonate bonds, amide bonds, etc. in their molecules. The present invention relates to a resin composition. [Prior Art and its Problems] Conventionally, a common method for improving the impact resistance of a thermoplastic resin is to blend a rubber substance into the thermoplastic resin to modify it. The same applies to high-performance thermoplastic resins called engineering plastics, and methods of blending rubber with thermoplastic resins for the purpose of improving impact resistance have been published, for example, in Japanese Patent Publication No. 58-47419 and Kimiaki
It is disclosed in Publication No. 59-28223, etc. However, in these methods, there has not been sufficient consideration as to what kind of rubber materials should be blended to improve impact resistance, and in reality, various combinations of engineering plastics and rubber materials have been used. At present, we are searching for a combination that has impact resistance. In addition, when high-performance engineering plastics are blended with a rubber material with a relatively low elastic modulus, impact resistance improves, but the superior performance of engineering plastics such as mechanical strength, heat resistance, and chemical properties is diminished. It may be inhibited. [Problems to be Solved by the Invention] In view of the problems of the prior art as described above, the inventors of the present invention have conducted extensive research to solve these problems, and have found that thermoplastic resins, especially engineering A new resin composition that, when blended with high-performance thermoplastic resins called plastics, can improve impact resistance without reducing the mechanical strength, heat resistance, and chemical properties of the thermoplastic resin. They discovered this and completed the present invention. [Means for Solving the Problems] That is, the present invention provides (a) a material having one or more epoxy groups in one molecule, and having a flexural modulus of 10,000 kg/molecular weight at room temperature.
5 to 95 parts by weight of a copolymer of an α-olefin having 2 to 20 carbon atoms or a (meth)acrylic acid alkyl ester having 2 to 36 carbon atoms and a glycidyl compound having 5 to 40 carbon atoms, and ( b) A copolymer consisting of α-olefin and α, β-unsaturated carboxylic acid, in which 5 mol% or more of the carboxyl groups contained in the copolymer are neutralized with an alkali metal salt. The present invention relates to a resin composition prepared by melt-mixing 95 to 5 parts by weight of a copolymer having a flexural modulus of 10,000 Kg/cm 2 or less at room temperature. [Example] The resin composition of the present invention has one or more epoxy groups in one molecule, and has a flexural modulus of 10,000 at room temperature.
Kg/cm 2 or less resin (hereinafter referred to as component (a)) 5
A copolymer consisting of ~95 parts by weight and α-olefin and α,β-unsaturated carboxylic acid, 5 mol% of the carboxyl groups contained in the copolymer.
By melt-mixing 95 to 5 parts by weight of a copolymer (hereinafter referred to as component (b)) which has been neutralized with an alkali metal salt and has a flexural modulus of 10,000 Kg/cm 2 or less at room temperature, It will be done. Here, the flexural modulus as used herein refers to a value obtained by dividing the bending stress that a material receives within its elastic limit by the strain generated in the material, and is expressed in units of Kg/cm 2 . The larger the value of the material, the smaller the deformation under a constant load. Component (a) used in the present invention is α- having 2 to 20 carbon atoms.
Glycidyl compounds that are copolymers of olefin or (meth)acrylic acid alkyl esters having 2 to 36 carbon atoms and glycidyl compounds having 5 to 40 carbon atoms are those containing an α-olefin group and a glycidyl group. Although any material can be used, (meth)acrylic acid, (meth)acrylic acid ether, (meth)acrylate, and (meth)acrylate oligomer containing a glycidyl group having 6 to 40 carbon atoms are usually used. Specific examples of the component (a) include ethylene-glycidyl methacrylate copolymer, ethyl acrylate-glycidyl methacrylate copolymer, butyl acrylate-allyl glycidyl ether copolymer, ethylene-allyl glycidyl ether copolymer, and ethylene. Examples include -glycidyl methacrylate-vinyl acetate terpolymer, polybutadiene with epoxidized ends, and 1,2-polybutadiene with epoxidation. Among these, ethylene, propylene, 1-butene, 1-hexene, 1-octene, etc., or combinations of two or more of these with glycidyl acrylate, glycidyl methacrylate, glycidyl cyclohexene-4-carboxylate, etc., or two or more of these Particular preference is given to using copolymers. Further, other copolymerizable components may be added to the copolymer in an amount of up to 10% by weight and copolymerized. Examples of copolymerizable components include vinyl acetate, methyl acrylate, and methyl methacrylate. In the component (a), there is one epoxy group per molecule.
The impact resistance of the thermoplastic resin can be improved by the present invention if the amount is 1 mol% or more, but it is preferable that the resin contains 1 mol% or more to improve the impact resistance when blended with the thermoplastic resin. Very good. Ten
When the amount exceeds mol%, the composition of the present invention becomes hard, and even when blended with a thermoplastic resin, the improvement in impact resistance tends to be small. Further, as the component (a), those having a bending elastic modulus of 10,000 Kg/cm 2 or less at room temperature (23° C.) are used, and those having a bending elastic modulus of 100 to 4,000 Kg/cm 2 are particularly preferably used. If the flexural modulus exceeds 10,000 Kg/cm 2 , it is not preferable because the effect of improving impact resistance is particularly small. The component (a) is used in such a manner that it is contained in 5 to 95 parts by weight, preferably 40 to 90 parts by weight, and particularly preferably 50 to 80 parts by weight in 100 parts by weight of the resin composition of the present invention. . If the component (a) is contained in the resin composition of the present invention in an amount less than 5 parts by weight or more than 95 parts by weight, the resin composition of the present invention may not have impact resistance even when blended with a thermoplastic resin. The improvement effect is small. Component (b) above refers to α-olefin, acrylic acid, methacrylic acid, maleic acid, and other α,β-
A copolymer with an unsaturated carboxylic acid, the preferable content of α-olefin in the component (b) is 50% by weight or more, and 5% by mole or more of the carboxyl groups in the component (b). It is neutralized by an alkali metal salt. Examples of the α-olefin include ethylene, propylene, 1-butene, 1-octene, and 1-hexene, and two or more of these α-olefins may be used in combination. Furthermore, other copolymerizable components may be copolymerized with the component (b) within a range not exceeding 10% by weight. Examples of copolymerizable components include methyl acrylate, methyl methacrylate, and butyl acrylate. At least 5 mol% of the carboxyl groups contained in component (b) are neutralized with an alkali metal salt, preferably at least 30 mol%, particularly preferably at least 50 mol%. If the thermoplastic resin is neutralized, the impact resistance when the resin composition of the present invention is blended with a thermoplastic resin is greatly improved. Preferred alkali metal salts include sodium salts and potassium salts. By neutralizing the carboxyl group in the component (b) with an alkali metal salt, the resin composition of the present invention can greatly improve the impact resistance of the thermoplastic resin. In particular, those in which 30 mol% or more of the carboxyl groups are neutralized with sodium have a very remarkable effect on improving the impact resistance of thermoplastic resins. In addition, the above component (b) is similar to component (a) at room temperature (23
Those with a bending elastic modulus of 10,000 Kg/cm 2 or less at temperature (℃) are used, especially those with a bending elastic modulus of 100 to 4,000 Kg/cm 2
Those are preferably used. The bending modulus is
If it exceeds 10,000 Kg/cm 2 , it is not preferable because the effect of improving impact resistance is particularly small. Component (b) is used in an amount of 95 to 5 parts by weight, preferably 60 to 10 parts by weight, particularly preferably 50 to 20 parts by weight, per 100 parts by weight of the resin composition of the present invention. If it is contained in the resin composition of the present invention in an amount less than 5 parts by weight or more than 95 parts by weight, the effect of improving impact resistance is small even if the resin composition of the present invention is blended with a thermoplastic resin. The resin composition of the present invention can be obtained by melt-mixing and reacting components (a) and (b). Melt mixing temperature is 150-280℃, preferably 170-200℃
℃ is better. If the temperature is less than 150°C, the reaction will not occur quickly, and if it exceeds 280°C, gelation will occur, and even if blended with a thermoplastic resin, the effect of improving impact resistance will be small. When the resin composition of the present invention is blended with a thermoplastic resin, particularly a high-performance engineering plastic, it exhibits the effect of improving the impact resistance of the thermoplastic resin (hereinafter referred to as blended resin). As such a blend resin, a resin having an ester bond, carbonate bond, or amide bond in the molecule is particularly preferable, and specific examples include polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate, polyamides, polycarbonates, and polyacrylates. , acrylic acid ester polymer, polystyrene, polyvinyl chloride (PVC), acrylonitrile-butadiene-styrene copolymer (ABS), and the composition of the present invention, methacrylate-butadiene-styrene copolymer (MBS), methacrylate-
These resins may also be applied with other toughening agents such as acrylonitrile-butadiene-styrene copolymers (MABS). Furthermore, the resin composition of the present invention is also highly effective in improving the impact strength of plastics reinforced with glass fibers. The resin composition of the present invention is preferably used by adding 5 to 50 parts by weight to 95 to 50 parts by weight of the above-mentioned blend resin. If the amount of the resin composition of the present invention added is less than 5 parts by weight, the effect of improving the impact resistance of the blended resin is small, and if it exceeds 50 parts by weight, the impact resistance will be reduced by increasing the amount added. There is no hope for improvement. The resin composition of the present invention contains additives commonly used in resin compositions, such as stabilizers, colorants,
Antistatic materials, heat retardants, processability improvers, etc. can also be added. Further, reinforcing materials such as glass fibers and carbon fibers, fillers such as talc, mica, glass beads, carbon calcium, etc. may also be incorporated into the resin composition of the present invention within a range not exceeding 60% by weight. A resin containing the resin composition of the present invention can be produced by various known methods, such as a method using an extruder. The resin molded article containing the resin composition of the present invention is
Since it has excellent impact resistance, it can be suitably used for housings of light electrical equipment, automobile parts, power tool bodies, etc. Next, the resin composition of the present invention will be explained in more detail based on Examples, but the present invention is not limited only to these Examples. Examples 1 to 3 Ethylene-glycidyl methacrylate copolymer (flow rate: 3.0 g/10 min (ASTM D-
1238E), glycidyl methacrylate content: 10% by weight) (hereinafter referred to as EGMA-1)
A random copolymer (MI:
1.0g/10 minutes (measured according to ASTM D-1238)
(hereinafter referred to as EMAMNA) and heated to 205° C. using a twin screw extruder (PCM-45 manufactured by Ikegu Tekko Co., Ltd.) to perform melt mixing and kneading extrusion. The resulting resin composition was blended into a blend resin as shown in Table 1, extrusion kneaded using the twin screw extruder, and a test piece was produced by injection molding.
Impact resistance was evaluated by the following method. The results are shown in Table 1. In addition, when the obtained molten mixture was extruded with xylene (refluxed for 10 hours), Example 1
Less than 5% by weight of extractables were obtained from any of the molten mixtures. (Flexural modulus) The flexural modulus of component (a) and (b) is ASTM
Measured according to D-790. (IZOD impact strength (notched)) Measured according to ASTM D-256. (Falling weight strength) Load 500g, tip radius 3/8 inch, sample thickness 3mm
Displays the half-failure height in the case of . Examples 4 and 5 Compositions of Examples 4 and 5 as shown in Table 1
Ciba Geigy Co., Ltd. product, as a stabilizer to 100 parts by weight.
The procedure was the same as in Example 2, except that 0.2 parts by weight of product number: Irganox 1010 and 0.2 parts by weight of product number: Seanox 412S manufactured by Cipro Kasei Co., Ltd. were added, and the melt-mixed mixture was dried under vacuum at 80 ° C. for 24 hours. A test piece was prepared, and its impact resistance was measured in the same manner as in Examples 1 to 3. The results are shown in Table 1. Comparative Example 1 Instead of blending the resin composition consisting of EGMA-1 and EMAMNA with PET in Example 2,
A test piece was prepared in the same manner as in Example 2, except that EGMA-1 and EMAMNA were simultaneously blended with PET, and the impact resistance was measured in the same manner as in Example 2. The results are shown in Table 2. Comparative Examples 2 and 3 Instead of blending the resin composition consisting of BA-AGE and I-2 with PET in Example 4, BA-AGE
AGE and I-2 were blended simultaneously with PET, and instead of blending the resin composition consisting of E-GMA-VA and I-2 with PET in Example 5, E-
Test pieces were prepared in the same manner as in Examples 4 and 5, except that GMA-VA and I-2 were blended simultaneously with PET, and the impact resistance was measured in the same manner as in Examples 1 to 3. The results are shown in Table 2.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の樹脂組成物を熱可塑性樹脂に添加する
ことにより添加された熱可塑性樹脂の耐衝撃性を
大きく改善することができる。 とくに本発明の樹脂組成物は、エンジニアリン
グプラスチツクスといわれる高性能の熱可塑性樹
脂にブレンドされても、エンジニアリングプラス
チツクスの機械的強度、耐熱性、化学的性質など
の優れた性能を阻害することなく耐衝撃性を改善
させるという効果を奏す。
By adding the resin composition of the present invention to a thermoplastic resin, the impact resistance of the added thermoplastic resin can be greatly improved. In particular, even when the resin composition of the present invention is blended with high-performance thermoplastic resins called engineering plastics, it does not inhibit the excellent mechanical strength, heat resistance, chemical properties, etc. of engineering plastics. It has the effect of improving impact resistance.

Claims (1)

【特許請求の範囲】 1 (a) エポキシ基を1分子中に1個以上有し、
室温での曲げ弾性率が10000Kg/cm2以下である、
炭素数2〜20のα−オレンフインまたは炭素数
2〜36の(メタ)アクリル酸アルキルエステル
と炭素数5〜40のグリシジル化合物との共重合
体5〜95重量部および (b) α−オレフインと、α,β−不飽和カルボン
酸とからなる共重合体で、該共重合体中に含有
されているカルボキシル基の5モル%以上がア
ルカリ金属塩に中和されており、室温での曲げ
弾性率が10000Kg/cm2以下である共重合体95〜
5重量部を溶融混合してなる樹脂組成物。 2 前記アルカリ金属塩がナトリウム塩またはカ
リウム塩である特許請求の範囲第1項記載の樹脂
組成物。
[Claims] 1 (a) having one or more epoxy groups in one molecule;
Flexural modulus at room temperature is 10000Kg/ cm2 or less,
5 to 95 parts by weight of a copolymer of an α-olefin having 2 to 20 carbon atoms or a (meth)acrylic acid alkyl ester having 2 to 36 carbon atoms and a glycidyl compound having 5 to 40 carbon atoms, and (b) α-olefin and , α,β-unsaturated carboxylic acid, in which 5 mol% or more of the carboxyl groups contained in the copolymer are neutralized with an alkali metal salt, and the flexural elasticity at room temperature is Copolymer 95~ with a rate of 10000Kg/ cm2 or less
A resin composition obtained by melt-mixing 5 parts by weight. 2. The resin composition according to claim 1, wherein the alkali metal salt is a sodium salt or a potassium salt.
JP31424586A 1986-11-20 1986-12-26 Resin composition Granted JPS63165448A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31424586A JPS63165448A (en) 1986-12-26 1986-12-26 Resin composition
US07/137,698 US4898911A (en) 1986-11-20 1987-12-24 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31424586A JPS63165448A (en) 1986-12-26 1986-12-26 Resin composition

Publications (2)

Publication Number Publication Date
JPS63165448A JPS63165448A (en) 1988-07-08
JPH0474377B2 true JPH0474377B2 (en) 1992-11-26

Family

ID=18051034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31424586A Granted JPS63165448A (en) 1986-11-20 1986-12-26 Resin composition

Country Status (1)

Country Link
JP (1) JPS63165448A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774264B2 (en) * 1988-03-31 1995-08-09 三井・デュポンポリケミカル株式会社 Method for producing heat-resistant ionomer
JP2521805B2 (en) * 1988-08-04 1996-08-07 三井・デュポンポリケミカル株式会社 Ionomer composition and method for producing crosslinked ionomer using the same
JP2521806B2 (en) * 1989-01-31 1996-08-07 三井・デュポンポリケミカル株式会社 Ionomer composition
JP2521807B2 (en) * 1989-01-31 1996-08-07 三井・デュポンポリケミカル株式会社 Ionomer composition

Also Published As

Publication number Publication date
JPS63165448A (en) 1988-07-08

Similar Documents

Publication Publication Date Title
EP0268287B1 (en) Polyester resin composition
US7858678B2 (en) Phosphonium flow enhancers for blends of polycarbonate and polyester
US4898911A (en) Resin composition
KR20000057261A (en) Polycarbonate blend compositions
JP2611383B2 (en) Method for producing graft copolymer
JPS5966448A (en) Thermoplastic resin composition
JPH0474377B2 (en)
KR100523915B1 (en) Blends Composition of Polycarbonate and Polyolefin
JPH0726007B2 (en) Method for producing polyester resin composition
JPH0480262A (en) Pps-containing resin composition
JPH0481464A (en) Resin composition containing pps
JPH02502195A (en) flexible thermoplastic composition
JPS63245427A (en) Impact-resistant polyester resin composition
JPH0480263A (en) Pps-containing resin composition
JP2583231B2 (en) Impact resistant polyester resin composition
JP3228819B2 (en) Thermoplastic resin composition and method for producing the same
JP3070982B2 (en) Impact resistant polyester resin composition
JPH0125502B2 (en)
JPS63301250A (en) Tough polyester resin composition
JP3320555B2 (en) Polyolefin resin composition
JPS63113056A (en) Thermoplastic resin composition
JPS62243646A (en) Polyamide resin composition
JPS62280227A (en) Production of molded article
JPH0790144A (en) Polyolefin resin composition
JPH07118508A (en) Thermoplastic resin composition and its production