JPH0474375B2 - - Google Patents

Info

Publication number
JPH0474375B2
JPH0474375B2 JP17114285A JP17114285A JPH0474375B2 JP H0474375 B2 JPH0474375 B2 JP H0474375B2 JP 17114285 A JP17114285 A JP 17114285A JP 17114285 A JP17114285 A JP 17114285A JP H0474375 B2 JPH0474375 B2 JP H0474375B2
Authority
JP
Japan
Prior art keywords
weight
amount
crosslinking
parts
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17114285A
Other languages
Japanese (ja)
Other versions
JPS6232129A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17114285A priority Critical patent/JPS6232129A/en
Publication of JPS6232129A publication Critical patent/JPS6232129A/en
Publication of JPH0474375B2 publication Critical patent/JPH0474375B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は有機過酸化物と発泡剤を用いたエチレ
ン−酢酸ビニル共重合体系の架橋発泡体用組成物
に関するものであり、低比重(高発泡)、高硬度、
高引裂強度、耐衝撃性、弾性に優れたエチレン−
酢酸ビニル共重合体系架橋発泡体を短時間に製造
できるものである。 「従来の技術」 ゴム弾性を有する架橋発泡体としてエチレン−
酢酸ビニル共重合体(EVA)、天然ゴム、合成ゴ
ムなどを使用した架橋発泡体が知られている。こ
のうち天然ゴム及び合成ゴムを使用した架橋発泡
体では高発泡倍率が得難くまた架橋後の収縮が大
きいため寸法精度が悪い。更に型流れ性が悪いと
いう欠点を有している。 これに対しEVAを使用したEVA架橋発泡体は
一般に一段架橋のみで収縮の問題がない高発泡倍
率の発泡体が得られることが知られており、例え
ばスポーツシユーズのミツドソール、アウターソ
ール、インナーソールなど軽量化の必要な用途に
広く使用されている。 しかしEVA架橋発泡体を軽量化するためには、
3倍以上の発泡倍率にすることが不可欠であるが
反面得られる発泡体の硬度、引裂強度、引張強度
は低下し成形品変形、裂け、割れ等が発現する。
又、軽量化するためには、発泡剤を多く費し架橋
時間も長くなり生産性にも問題を有する。 ところが近年さらに軽量化の指向が強まつてお
り5倍以上の高発泡倍率の要求が強くなつている
ことより上記問題解決が更に望まれるようになつ
た。 発泡体の硬度、引裂強度、耐衝撃性については
接着強度と共にスポーツシユーズの底材としては
特に重要な特性であり、硬度、耐衝撃性の低い発
泡体を底材に用いると使用時にへたり(変形)な
どの異常現象をおこし、引裂強度の低い発泡体は
生産時、実使用(ランニング)時に割れなどの破
壊現象を起すので使用にあたつて大きな問題とな
り商品価値を低下させる。また、高発泡、高機能
を追求すると従来のEVA架橋発泡体の製法では
架橋剤、発泡剤を多く費し架橋時間も長くなり製
品のコストが高いものとなつてしまう。 「発明が解決しようとする問題点」 発明者らは前記問題を解決すべく種々検討を重
ねた結果EVAに特定量の1,2−ポリブタジエ
ン(以下1,2PBDと略す)を添加することによ
り、一段架橋のみで弾性に富み著しく軽量(比重
0.2以下)で優れた硬度、耐衝撃性、引裂強度を
有する発泡体を少量の架橋剤下に短時間で得るこ
とのできる高生産性のEVA系架橋発泡体を製造
できる組成物を見出し、この知見に基いてこの発
明を完成させるにいたつた。 「問題点を解決するための手段」 すなわち、本発明は(A)エチレン−酢酸ビニル共
重合体98〜60重量%、(B)ビニル結合含有量が70%
以上、結晶化度が5%以上で固有粘度〔η〕(ト
ルエン中30℃で測定)が0.5dl/g以上の1,2
−ポリブタジエン2〜30重量%および(C)天然ゴム
又はジエン系合成ゴム0〜30重量%からなる混合
物100重量部に(D)有機過酸化物0.05〜5重量部お
よび(E)発泡剤0.5〜30重量部を配合してなること
を特徴とするエチレン−酢酸ビニル共重合体系架
橋発泡体用組成物である。 以下に、本発明を更に詳しく説明する。 本発明に使用する(A)のEVAは高発泡、高硬度、
高引裂強度、耐衝撃性、弾性に優れた架橋発泡体
を得るために酢酸ビニル結合含有量5〜45%好ま
しくは10〜30%メルトフローインデツクス(190
℃、2160g)0.2〜50g/10min好ましくは0.5〜
20g/10minのものが好ましい。なお酢酸ビニル
結合含有量が5%未満であるとスポンジの柔軟
性、耐引裂性が損なわれると共に架橋剤の消費が
多くコストアツプの要因になるので好ましくな
い。酢酸ビニル結合含有量が46%以上であると架
橋発泡体硬度が低下するので好ましくない。メル
トフローインデツクス(以下MIと略す)が0.2
g/10min未満であると流動性不足により加工
性、発泡性が損なわれ好ましくない。51g/
10min以上であると引裂強度が低下するとともに
流動性過剰による混練加工トラブルが発現するの
で好ましくない。 本発明の組成物において、(A)のEVAの含有量
は、98〜60重量%、好ましくは97〜65重量%、更
に好ましくは95〜70重量%である。(A)が98重量%
を越えると弾性、耐へたりが損われ、また充分に
架橋させるためには架橋剤量を著しく増す必要が
あり好ましくない。また65重量%未満では、成形
品の硬さ、比重、外観(割れ)が目的とする範囲
をはずれ好ましくない。 本発明でEVAにブレンドされる(B)の1,
2PBDは高発泡化、硬度保持、架橋活性すなわち
架橋剤減量、架橋時間短縮の効果をもたらし、顕
著なコスト低下に結びつく等のきわめて重要な役
割をはたす。1,2PBDはビニル結合含有量が70
%以上好ましくは85%以上、結晶化度が5%以
上、好ましくは10〜40%の1,2PBである。な
お、ビニル結合含有量が70%より小さくなると、
発泡体の強度に悪影響を及ぼし、結晶化度が5%
未満になると発泡体の硬度を損なう。また分子量
は広い範囲にわたつて選択可能であるが本発明の
目的である架橋ゴム組成物を得るためには固有粘
度〔η〕(トルエン中30℃で測定)が0.5dl/g以
上であることが必要である。〔η〕は更に好まし
くは1.0〜3.0dl/gである。 (B)の1,2PBDの配合量は2〜30重量%である
が好ましくは3〜25重量%、更に好ましくは5〜
20重量%である。Bの1,2PBDの量が2重量%
未満では架橋活性すなわち架橋剤減量、架橋時間
短縮がはかれない。また弾性、耐へたりが損われ
好ましくない。また30重量部を越えると架橋発泡
体に亀裂が入つたり、比重、硬度と引裂強度のバ
ランスがくずれ、目的とする架橋発泡体が得られ
ず好ましくない。 (C)の天然ゴム、又はジエン系合成ゴムは主に高
発泡時の割れ防止、発泡セルの均一化のために用
いる。代表的なゴムは上記の天然ゴム(NR)、
シスポリイソプレンゴム(IR)、スチレンブタジ
エン共重合ゴム(SBR)、ポリブタジエンゴム
(BR)、アクリロニトリル−ブタジエンゴム
(NBR)及びクロロプレンゴム(CR)等のジエ
ン系合成ゴムなどが挙げられる。この内好ましい
ゴムはNR、IRである。(C)の配合量は、0〜30重
量%であるが好ましくは0〜25重量%、更に好ま
しくは0〜20重量%である。(C)の量が30重量%を
越えると架橋発泡体の硬度が低下し目的物が得ら
れず好ましくない。 本発明で使用する(D)の有機過酸化物とは分子内
に−O−O−結合を有しているもので具体的に
は、ケトンパーオキサイド、パーオキシケター
ル、ハイドロパーオキサイド、ジアルキルパーオ
キサイド、ジアシルパーオキサイド、パーオキシ
カーボネート、パーオキシエステル等である。こ
のうち作業性加工分解温度からジアルキルパーオ
キサイドが好ましい。 本発明の効果を得るために必要な有機過酸化物
の配合量は〔(A)+(B)+(C)〕100重量部に対して
0.05〜5重量部であり好ましくは0.1〜1重量部
である。有機過酸化物の配合量が0.05重量部未満
では架橋度が低すぎ圧縮変形、機械強度が損なわ
れ好ましくない。また5重量部を越えると架橋度
が高くなりすぎ弾性の乏しい脆い材料となる。こ
れらは発泡性が悪くたとえ発泡しても材料破壊を
伴う異常発泡の形態を呈する。有機過酸化物を用
いた架橋は、硫黄による架橋に比べEVAに対す
る架橋性に優れ、色調の鮮明度が優れているとい
う利点を有する。 本発明で使用する(E)の発泡剤には公知の無機ま
たは有機の発泡剤を使用することができる。発泡
剤の具体例としては、重炭酸ナトリウム、重炭酸
アンモニウム、炭酸ナトリウム、炭酸アンモニウ
ム、アゾジカルボンアミド、ジニトロソペンタメ
チレンテトラミン、ジニトロソテレフタルアミ
ド、アゾビスイソブチロニトリル、アゾジカルボ
ン酸バリウム、スルホニルヒドラジド、トルエン
スルホニルヒドラジド等を挙げることができる。
これら発泡剤は、尿素、尿素誘導体などの公知の
発泡剤と併用してもよい。発泡剤の使用量は混合
物〔(A)+(B)+(C)〕100重量部に対して0.5〜30重量
部、好ましくは1〜10重量部である。発泡剤が30
重量部より多いと発泡剤の分解によつて発生する
ガス量が多くなりガス圧が異常にあがり過ぎて得
られる発泡体に亀裂が生ずることがある。発泡剤
が0.5重量部未満であると目的とする高発泡体は
得られ難い。 本発明の架橋発泡体には前記(A)〜(E)のほかに一
般のゴム組成物に配合される他の配合剤、すなわ
ち補強剤、充填材、活性剤、老化防止剤、加工助
剤、軟化剤、調色剤などを適宜添加しても差支え
ない。前記(A)〜(E)及び他の配合剤を混合する方法
に特に制限はなくバンバリー型ミキサー、加圧ニ
ーダー、オープンロールなど一般のゴム配合物に
使用される混合法でよく70〜140℃の範囲の温度
で混合するのが好ましい。こうして得られる混合
物を金型中に供給し加圧下に好ましくは130〜200
℃、更に好ましくは140〜180℃の温度範囲でかつ
有機過酸化物、発泡剤の分解温度以上の温度に加
熱して配合物の架橋ならびに発泡剤の分解をおこ
なう。金型の型締圧は発泡剤の分解によつて発生
するガスの膨張を実質的に抑制する圧力が必要で
あり80Kg/cm2以上でおこなうのが好ましい。 従来EVA発泡体は、架橋剤0.6PHR以上と多く
費さないと目的とする架橋体は得られず、なおか
つ架橋時間は17mm厚モールドで30分以上を要する
不経済な材料である。また、物性は弾性に欠け、
耐へたりに乏しく、引裂強度も弱いもので、これ
らを総合するとEVA発泡体材料は決して満足で
きる発泡体材料ではない。 本発明は低比重(高発泡)、高硬度、高引裂強
度、耐衝撃性、弾性に優れた架橋組成物を少量の
架橋剤の存在下短時間に製造することのできる組
成物に関するものでEVA発泡体材料との差は明
確である。 本発明により製造される架橋発泡体は工業用
品、自動車部品、履物素材(アウトソール、ミツ
ドソール、インナーソール、サンダル)緩衝材
料、自動車や建築物の吸音材料、包装材料などに
好適に使用される。これらのうちでは、履物素材
に特に好適であり、中でもそのミツドソールに最
適である。 また本発明により製造される架橋発泡体は寸法
精度が優れ耐久性、クツシヨン性も優れており熱
成形スポンジにも応用できる。 「実施例」 つぎに実施例及び比較例を挙げてこの発明を具
体的に説明する。実施例及び比較例において引張
強度、伸びはJISK−6301に準拠した方法でスポ
ンジ層間引裂強度はASTMD1564に準拠した方
法で、また硬さはラバテスタータイプC(高分子
計器製スポンジ硬度計)により、比重は浮力法に
より測定した。耐衝撃性(へたり)は重さ20Kgの
重錘(試料より大きい面積を有する円板)を5cm
の高さから80回/分の頻度で60φmm×20mmのスポ
ンジ試料に10万回繰返し衝撃を与えた後の永久ひ
ずみを測定した。 へたり(%)=T0−T1/T0×100 T0:試験前の試料厚み(mm) T1:試料後の 〃 (〃) 実施例 1〜3 酢酸ビニル含量、メルトフローインデツクスの
異なるEVA((東洋曹達(株)製540、631、633))、
1,2PBD(日本合成ゴム(株)製JSR820ビニル結合
含有率92%、結晶化度24.5%〔η〕トルエン30℃
=1.25)、発泡剤AC# 3((永和化成(株)アゾジカル
ボンアミド分解温度205℃、発生ガス量220c.c./g
))、架橋剤((日本油脂(株)製パークミルD(98%)、
ジクミルパーオキサイド))と炭酸マグネシウム((
徳山曹達(株)製MgCO3−TT))、酸化チタン((石
原産業(株)製アナターゼ))、透明亜鉛華((堺化学工
業(株)製ZnCO3)を第1表に示す配合処方に従つて
加圧ニーダーにより混合し第1表に示した条件下
に架橋をおこなつた。その結果を第1表に示す。 実施例 4〜6 実施例1〜3の系にIR((日本合成ゴム(株)製
JSR IR2200))を加えた以外は実施例1〜3と同
様にして得た。 その結果を第1表に示した。実施例1〜6の結
果は比較例に対して 架橋剤量(DCP2500〜3000円/Kgで高価で
ありコスト面より5重量部以下を○、5重量部
を越える場合を×と判定した) 架橋時間(生産数ひいてはコストに大きく影
響を与えるものであり30分未満を○、30分以上
を×と判定した) 成形品割れ(架橋発泡体をモールドより取り
出した時に成形品に割れが入らないものを○、
割れが入るものを×と判定した) 比重(大手スポーツシユーズメーカーの規格
を基準に0.1〜0.2を○、この外を×と判定し
た) 硬さ(大手スポーツシユーズメーカーの規格
を基準に50〜60を○、この外を×と判定した) 衝撃へたり(スポーツシユーズの耐久性をは
かる重要な指標で15%未満を○、15%以上を×
と判定した) 引張強度(20Kg/cm2以上を○、20Kg/cm2未満
を×と判定した) 伸び(200%以上を○、200%未満を×と判定
した) 総合判定(〜の判定が全て○のものを◎、
×印が5以内のものを×、×印が5を越えるもの
を××と判定した) 以上の〜及び総合の判定の結果から優れて
いることが判る。特に1,2PBDをEVAに加え
ると架橋活性が著しく向上し架橋剤量、架橋時間
の短縮が図れる。さらに低比重でも硬さを含む物
性が満足されることによりスポーツシユーズ底材
の念願である軽量化とともに生産メーカーとして
はスポンジより製靴する際の取り数が向上するの
いう大きなメリツトがある。 比較例 1〜8 第1表に記した配合に従い、実施例と同様にし
て架橋発泡体を得た。その結果を第1表に示す。
比較例は特許請求の範囲外の系でその性能は、総
合判定に表現されているように満足できるもので
はない。 具体的には比較例1、2は架橋剤量が、比較例
3、4、5は1,2PBDが、比較例6、7は発泡
剤量が、比較例8はIRが特許請求の範囲をはず
れており、これらは実施例に比較していずれも劣
つていることが判る。比較例9は、硫黄加硫によ
る結果を示す。EVAは硫黄加硫ができず、所定
加硫時間後の取出し時発泡破壊溶融物飛散という
危険な状態を呈し本発明の範囲である実施例に比
し劣るものである。 比較例5−1、5−2、5−3は1,2PBD量
及び架橋剤量、架橋時間のいずれか2種又は3種
が本発明の範囲をはずれており実施例に比較し劣
つていることが判る。
"Field of Industrial Application" The present invention relates to a crosslinked foam composition of ethylene-vinyl acetate copolymer using an organic peroxide and a blowing agent, which has low specific gravity (high foaming), high hardness,
Ethylene with high tear strength, impact resistance, and elasticity
It is possible to produce crosslinked vinyl acetate copolymer foams in a short time. ``Prior art'' Ethylene is used as a crosslinked foam with rubber elasticity.
Crosslinked foams using vinyl acetate copolymer (EVA), natural rubber, synthetic rubber, etc. are known. Among these, crosslinked foams using natural rubber and synthetic rubber have difficulty achieving a high expansion ratio, and also suffer from large shrinkage after crosslinking, resulting in poor dimensional accuracy. Furthermore, it has the disadvantage of poor mold flowability. On the other hand, EVA cross-linked foams using EVA are generally known to be able to obtain foams with a high expansion ratio without shrinkage problems with only one step of cross-linking, such as the midsole, outer sole, and inner sole of sports shoe It is widely used in applications that require weight reduction. However, in order to reduce the weight of EVA cross-linked foam,
Although it is essential to increase the expansion ratio to 3 times or more, the hardness, tear strength, and tensile strength of the resulting foam decrease, resulting in deformation, tearing, cracking, etc. of the molded product.
In addition, in order to reduce the weight, a large amount of blowing agent is used, and the crosslinking time becomes long, which causes problems in productivity. However, in recent years, there has been an increasing trend toward weight reduction, and there has been a growing demand for a high expansion ratio of 5 times or more, making it even more desirable to solve the above problem. The hardness, tear strength, and impact resistance of the foam are particularly important properties for the sole material of sports shoes, along with the adhesive strength, and if a foam with low hardness and impact resistance is used as the sole material, it may sag during use. Foams with low tear strength can cause abnormal phenomena such as deformation (deformation), and breakage phenomena such as cracking during production and actual use (running), which poses a major problem in use and reduces commercial value. In addition, in pursuit of high foaming and high functionality, the conventional manufacturing method for EVA crosslinked foam requires a large amount of crosslinking agent and foaming agent, and takes a long time for crosslinking, resulting in a high product cost. "Problems to be Solved by the Invention" The inventors have conducted various studies to solve the above problems, and as a result, by adding a specific amount of 1,2-polybutadiene (hereinafter abbreviated as 1,2PBD) to EVA, With only one stage of cross-linking, it is highly elastic and extremely lightweight (specific gravity
We have discovered a composition that can produce a highly productive EVA-based crosslinked foam that can be obtained in a short time with a small amount of crosslinking agent, and has excellent hardness, impact resistance, and tear strength (0.2 or less). Based on this knowledge, we were able to complete this invention. "Means for Solving the Problems" That is, the present invention consists of (A) an ethylene-vinyl acetate copolymer of 98 to 60% by weight, and (B) a vinyl bond content of 70%.
1,2 with a crystallinity of 5% or more and an intrinsic viscosity [η] (measured at 30℃ in toluene) of 0.5dl/g or more.
- 100 parts by weight of a mixture consisting of 2 to 30% by weight of polybutadiene and (C) 0 to 30% by weight of natural rubber or diene-based synthetic rubber, (D) 0.05 to 5 parts by weight of organic peroxide, and (E) 0.5 to 0.5 parts by weight of a blowing agent. 30 parts by weight of an ethylene-vinyl acetate copolymer composition for a crosslinked foam. The present invention will be explained in more detail below. The EVA (A) used in the present invention has high foaming, high hardness,
To obtain a crosslinked foam with high tear strength, impact resistance, and elasticity, the vinyl acetate bond content should be 5 to 45%, preferably 10 to 30%, and the melt flow index (190
℃, 2160g) 0.2~50g/10min preferably 0.5~
20g/10min is preferable. It should be noted that if the vinyl acetate bond content is less than 5%, the flexibility and tear resistance of the sponge will be impaired, and the crosslinking agent will be consumed to a large extent, resulting in an increase in cost, which is not preferable. If the vinyl acetate bond content is 46% or more, the hardness of the crosslinked foam decreases, which is not preferable. Melt flow index (hereinafter abbreviated as MI) is 0.2
If it is less than g/10 min, processability and foamability will be impaired due to insufficient fluidity, which is not preferable. 51g/
If it is longer than 10 min, the tear strength decreases and troubles in kneading processing occur due to excessive fluidity, which is not preferable. In the composition of the present invention, the content of EVA (A) is 98 to 60% by weight, preferably 97 to 65% by weight, and more preferably 95 to 70% by weight. (A) is 98% by weight
Exceeding this is not preferable because the elasticity and resistance to set will be impaired and the amount of crosslinking agent will need to be significantly increased in order to achieve sufficient crosslinking. If it is less than 65% by weight, the hardness, specific gravity, and appearance (cracks) of the molded product will be out of the desired range, which is not preferable. 1 of (B) blended with EVA in the present invention,
2PBD plays extremely important roles, such as achieving high foaming, maintaining hardness, crosslinking activity, reducing the amount of crosslinking agent, and shortening crosslinking time, leading to significant cost reductions. 1,2 PBD has a vinyl bond content of 70
% or more, preferably 85% or more, and 1,2PB with a crystallinity of 5% or more, preferably 10 to 40%. Furthermore, when the vinyl bond content is less than 70%,
Adversely affects the strength of the foam, with a crystallinity of 5%
If it is less than that, the hardness of the foam will be impaired. Although the molecular weight can be selected over a wide range, in order to obtain a crosslinked rubber composition, which is the object of the present invention, the intrinsic viscosity [η] (measured in toluene at 30°C) must be 0.5 dl/g or more. is necessary. [η] is more preferably 1.0 to 3.0 dl/g. The blending amount of 1,2PBD in (B) is 2 to 30% by weight, preferably 3 to 25% by weight, more preferably 5 to 25% by weight.
It is 20% by weight. The amount of 1,2PBD in B is 2% by weight
If it is less than that, it is impossible to achieve crosslinking activity, that is, to reduce the amount of crosslinking agent and shorten crosslinking time. In addition, elasticity and resistance to fatigue are impaired, which is undesirable. If the amount exceeds 30 parts by weight, the crosslinked foam may crack or the balance between specific gravity, hardness and tear strength may be lost, making it impossible to obtain the desired crosslinked foam. (C) Natural rubber or diene-based synthetic rubber is mainly used to prevent cracking during high foaming and to make foam cells uniform. Typical rubbers are the natural rubber (NR) mentioned above,
Examples include diene-based synthetic rubbers such as cis-polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), acrylonitrile-butadiene rubber (NBR), and chloroprene rubber (CR). Among these, preferred rubbers are NR and IR. The blending amount of (C) is 0 to 30% by weight, preferably 0 to 25% by weight, and more preferably 0 to 20% by weight. If the amount of (C) exceeds 30% by weight, the hardness of the crosslinked foam decreases and the desired product cannot be obtained, which is not preferable. The organic peroxides (D) used in the present invention are those having an -O-O- bond in the molecule, and specifically include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide. These include oxide, diacyl peroxide, peroxy carbonate, peroxy ester, etc. Among these, dialkyl peroxide is preferred from the viewpoint of workability and processing decomposition temperature. The amount of organic peroxide required to obtain the effects of the present invention is based on 100 parts by weight of [(A) + (B) + (C)].
The amount is 0.05 to 5 parts by weight, preferably 0.1 to 1 part by weight. If the amount of organic peroxide added is less than 0.05 part by weight, the degree of crosslinking will be too low, resulting in loss of compressive deformation and mechanical strength, which is not preferable. If it exceeds 5 parts by weight, the degree of crosslinking will be too high, resulting in a brittle material with poor elasticity. These have poor foamability and even if they foam, they exhibit abnormal foaming accompanied by material destruction. Crosslinking using an organic peroxide has the advantage of superior crosslinking properties for EVA and excellent color clarity compared to crosslinking using sulfur. As the blowing agent (E) used in the present invention, any known inorganic or organic blowing agent can be used. Specific examples of blowing agents include sodium bicarbonate, ammonium bicarbonate, sodium carbonate, ammonium carbonate, azodicarbonamide, dinitrosopentamethylenetetramine, dinitrosoterephthalamide, azobisisobutyronitrile, barium azodicarboxylate, and sulfonyl. Examples include hydrazide, toluenesulfonyl hydrazide, and the like.
These blowing agents may be used in combination with known blowing agents such as urea and urea derivatives. The amount of blowing agent used is 0.5 to 30 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the mixture [(A)+(B)+(C)]. Foaming agent is 30
If the amount is more than 1 part by weight, the amount of gas generated by the decomposition of the blowing agent will increase, and the gas pressure will become abnormally high, which may cause cracks in the resulting foam. If the amount of the blowing agent is less than 0.5 part by weight, it will be difficult to obtain the desired highly foamed product. In addition to the above-mentioned (A) to (E), the crosslinked foam of the present invention may also contain other compounding agents that are blended into general rubber compositions, such as reinforcing agents, fillers, activators, anti-aging agents, and processing aids. , a softener, a toning agent, etc. may be added as appropriate. There are no particular restrictions on the method of mixing the above (A) to (E) and other compounding agents, and any mixing method used for general rubber compounds such as a Banbury mixer, pressure kneader, or open roll may be used at 70 to 140°C. Preferably, the mixing is carried out at a temperature in the range of . The mixture thus obtained is fed into a mold and heated under pressure, preferably from 130 to 200
C., more preferably 140 to 180.degree. C., and at a temperature higher than the decomposition temperature of the organic peroxide and the blowing agent to crosslink the compound and decompose the blowing agent. The clamping pressure of the mold needs to be a pressure that substantially suppresses the expansion of gas generated by decomposition of the blowing agent, and is preferably 80 kg/cm 2 or more. Conventional EVA foam is an uneconomical material that requires a large amount of cross-linking agent (0.6 PHR or more) to obtain the desired cross-linked product, and requires cross-linking time of 30 minutes or more in a 17 mm thick mold. In addition, the physical properties lack elasticity,
The EVA foam material has poor fatigue resistance and low tear strength, and when taken together, EVA foam material is by no means a satisfactory foam material. The present invention relates to a crosslinked composition with low specific gravity (high foaming), high hardness, high tear strength, impact resistance, and elasticity that can be produced in a short time in the presence of a small amount of crosslinking agent. The difference with foam materials is clear. The crosslinked foam produced according to the present invention is suitably used for industrial goods, automobile parts, footwear materials (outsoles, midsoles, innersoles, sandals), cushioning materials, sound absorbing materials for automobiles and buildings, packaging materials, and the like. Among these, it is particularly suitable for footwear materials, especially for its midsoles. Furthermore, the crosslinked foam produced by the present invention has excellent dimensional accuracy, durability, and cushioning properties, and can be applied to thermoformed sponges. "Examples" Next, the present invention will be specifically explained with reference to Examples and Comparative Examples. In the Examples and Comparative Examples, tensile strength and elongation were measured according to JISK-6301, sponge interlayer tear strength was measured according to ASTMD1564, and hardness was measured using Lava Tester Type C (Kobunshi Keiki sponge hardness tester). Specific gravity was measured by the buoyancy method. Impact resistance (settling) is measured by applying a 20 kg weight (a disc with a larger area than the sample) to 5 cm.
The permanent strain was measured after impacting a 60φmm x 20mm sponge sample 100,000 times at a frequency of 80 times/minute from a height of . Settling (%) = T 0 - T 1 / T 0 × 100 T 0 : Sample thickness before test (mm) T 1 : After sample 〃 (〃) Examples 1 to 3 Vinyl acetate content, melt flow index different EVA ((Toyo Soda Co., Ltd. 540, 631, 633)),
1,2PBD (JSR820 manufactured by Japan Synthetic Rubber Co., Ltd. Vinyl bond content 92%, crystallinity 24.5% [η] Toluene 30℃
= 1.25), blowing agent AC# 3 ((Eiwa Kasei Co., Ltd.) azodicarbonamide decomposition temperature 205℃, amount of gas generated 220c.c./g
)), crosslinking agent ((Nippon Oil & Fats Corporation) Permil D (98%),
dicumyl peroxide)) and magnesium carbonate ((
Tokuyama Soda Co., Ltd.'s MgCO 3 -TT)), titanium oxide (Ishihara Sangyo Co., Ltd.'s Anatase)), and transparent zinc white (Sakai Chemical Industry Co., Ltd.'s ZnCO 3 ) are listed in Table 1. were mixed in a pressure kneader and crosslinked under the conditions shown in Table 1.The results are shown in Table 1. Examples 4 to 6 The systems of Examples 1 to 3 were mixed by IR (Japanese Made by Synthetic Rubber Co., Ltd.
It was obtained in the same manner as Examples 1 to 3 except that JSR IR2200)) was added. The results are shown in Table 1. The results of Examples 1 to 6 are compared to the comparative examples.Amount of crosslinking agent (DCP is expensive at 2500 to 3000 yen/Kg, and from a cost perspective, less than 5 parts by weight was judged as ○, and more than 5 parts by weight was judged as ×) Crosslinking Time (This has a large impact on production volume and cost, so less than 30 minutes was judged as ○, and 30 minutes or more was judged as ×) Molded product cracking (No cracks appear in the molded product when the crosslinked foam is removed from the mold) ○,
Items with cracks were judged as ×) Specific gravity (0.1 to 0.2 were judged as ○ based on the standards of major sports shoe manufacturers, and those outside this were judged as ×) Hardness (50 based on the standards of major sports shoe manufacturers) ~60 was judged as ○, outside of this was judged as ×) Impact wear (an important indicator for measuring the durability of sports shoes; less than 15% was judged as ○, and 15% or more was judged as ×)
) Tensile strength (20Kg/cm 2 or more was judged as ○, less than 20Kg/cm 2 was judged as ×) Elongation (200% or more was judged as ○, less than 200% was judged as ×) Overall judgment (~ was judged as All ○ items ◎,
Those with an x mark of 5 or less were judged as x, and those with an x mark of more than 5 were judged as xx.) It can be seen that the results of the above ~ and overall judgments are excellent. In particular, when 1,2PBD is added to EVA, the crosslinking activity is significantly improved, and the amount of crosslinking agent and crosslinking time can be reduced. Furthermore, since it satisfies physical properties including hardness even with a low specific gravity, it has the great advantage of reducing the weight of the sole material for sports shoes, which is a long-awaited goal, and allowing manufacturers to use more material when making shoes than with sponge. Comparative Examples 1 to 8 Crosslinked foams were obtained in the same manner as in Examples according to the formulations shown in Table 1. The results are shown in Table 1.
The comparative example is a system outside the scope of the claims, and its performance is not satisfactory as expressed in the comprehensive evaluation. Specifically, Comparative Examples 1 and 2 have a crosslinking agent amount, Comparative Examples 3, 4, and 5 have a 1,2 PBD, Comparative Examples 6 and 7 have a blowing agent amount, and Comparative Example 8 has an IR that exceeds the scope of the claims. It can be seen that these are all inferior to the examples. Comparative Example 9 shows the results obtained by sulfur vulcanization. EVA cannot be vulcanized with sulfur, and when taken out after a predetermined vulcanization time, it presents a dangerous situation of foaming and molten material scattering, and is inferior to the examples within the scope of the present invention. Comparative Examples 5-1, 5-2, and 5-3 are inferior to Examples because two or three of the 1,2 PBD amount, crosslinking agent amount, and crosslinking time are outside the scope of the present invention. I understand that.

【表】【table】

【表】 業(株)製
[Table] Manufactured by Gyo Co., Ltd.

【表】【table】

【表】 「発明の効果」 以上から明らかな如く本発明のエチレン−酢酸
ビニル共重合体系架橋発泡体用組成物は、従来得
ることのできなかつた高発泡倍率(低比重)でか
つ適度な硬さを有し、引裂強度、繰返し応力に対
する耐久性、架橋活性(架橋剤量低減、架橋時間
短縮)が優れた架橋発泡体が得られるのでこの優
れた特性を生かして履物底材(アウターソール、
インナーソール、ミツドソール、ビーチサンダル
など、特にミツドソール)、工業用品、緩衝材料、
包装材料、シール材料、自動車部品、吸音材料な
どに好適に使用される。 本発明の組成物から得られる架橋発泡体は寸法
精度が優れかつ耐久性、クツシヨン性そして流動
性に優れるのでシユーズのアウトソールとミツド
ソールを同時に架橋、成形する如き一体成形スポ
ンジや熱成形スポンジ等に好適に使用できる。
[Table] "Effects of the Invention" As is clear from the above, the ethylene-vinyl acetate copolymer crosslinked foam composition of the present invention has a high expansion ratio (low specific gravity) and moderate hardness that could not be obtained conventionally. It is possible to obtain a crosslinked foam with excellent tear strength, durability against repeated stress, and crosslinking activity (reduced amount of crosslinking agent, shortened crosslinking time).Using these excellent characteristics, it can be used as a material for footwear soles (outer soles,
Inner soles, midsoles, beach sandals (especially midsoles), industrial supplies, cushioning materials,
Suitable for use in packaging materials, sealing materials, automobile parts, sound absorbing materials, etc. The crosslinked foam obtained from the composition of the present invention has excellent dimensional accuracy, durability, cushioning properties, and fluidity, so it can be used as an integrally molded sponge, thermoformed sponge, etc. in which the outsole and midsole of Shoes are crosslinked and molded at the same time. It can be used suitably.

Claims (1)

【特許請求の範囲】 1 (A)エチレン−酢酸ビニル共重合体98〜60重量
%、(B)ビニル結合含有量が70%以上、結晶化度が
5%以上で固有粘度〔η〕(トルエン中30℃で測
定)が0.5dl/g以上の1,2−ポリブタジエン
2〜30重量%および(C)天然ゴム又はジエン系合成
ゴム0〜30重量%からなる混合物100重量部に(D)
有機過酸化物0.05〜5重量部および(E)発泡剤0.5
〜30重量部を配合してなることを特徴とするエチ
レン−酢酸ビニル共重合体系架橋発泡体用組成
物。
[Scope of Claims] 1 (A) ethylene-vinyl acetate copolymer 98 to 60% by weight, (B) vinyl bond content of 70% or more, crystallinity of 5% or more, and intrinsic viscosity [η] (toluene 100 parts by weight of a mixture consisting of 2-30% by weight of 1,2-polybutadiene (measured at 30°C) of 0.5 dl/g or more and (C) 0-30% by weight of natural rubber or diene-based synthetic rubber (D)
0.05 to 5 parts by weight of organic peroxide and (E) 0.5 parts by weight of blowing agent
A composition for a crosslinked foam based on ethylene-vinyl acetate copolymer, characterized in that the composition contains 30 parts by weight of ethylene-vinyl acetate copolymer.
JP17114285A 1985-08-05 1985-08-05 Composition for crosslinked ethylene/vinyl acetate copolymer foam Granted JPS6232129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17114285A JPS6232129A (en) 1985-08-05 1985-08-05 Composition for crosslinked ethylene/vinyl acetate copolymer foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17114285A JPS6232129A (en) 1985-08-05 1985-08-05 Composition for crosslinked ethylene/vinyl acetate copolymer foam

Publications (2)

Publication Number Publication Date
JPS6232129A JPS6232129A (en) 1987-02-12
JPH0474375B2 true JPH0474375B2 (en) 1992-11-26

Family

ID=15917763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17114285A Granted JPS6232129A (en) 1985-08-05 1985-08-05 Composition for crosslinked ethylene/vinyl acetate copolymer foam

Country Status (1)

Country Link
JP (1) JPS6232129A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085983B2 (en) * 1987-02-17 1996-01-24 株式会社ブリヂストン Shock absorbing foam
WO2015019490A1 (en) * 2013-08-09 2015-02-12 株式会社アシックス Sole for shoes, and shoes
WO2016021023A1 (en) * 2014-08-07 2016-02-11 株式会社アシックス Sole for shoes, and shoes
KR102458609B1 (en) * 2017-06-26 2022-10-26 다우 글로벌 테크놀로지스 엘엘씨 Composite with direct bond between rubber and foam

Also Published As

Publication number Publication date
JPS6232129A (en) 1987-02-12

Similar Documents

Publication Publication Date Title
EP3415027B1 (en) Insert for a sole assembly and article of footwear with lightweight sole assembly
EP1872924A1 (en) Process for producing crosslinked molded foam
KR20020064176A (en) Elastomeric composition for preparing olefinic elastomer crosslinked foam and use thereof
KR101217692B1 (en) Composition for outsole and shoes manufactured by the same
US9179735B2 (en) Climbing shoes outsole having good adhesive and non-slip properties and method for manufacturing thereof
CN109796668A (en) A kind of EVA composition, foam and preparation method thereof
WO2008083451A1 (en) Polymer composition, microporous rubber-like foamed vulcanizate, and microporous rubber-like foamed shoe sole
KR100868885B1 (en) Composition for out sole by using hollow silica
JP2012213615A (en) Shoe-sole foamed body rubber composition and outsole
CN114573904A (en) Light high-elastic compression-resistant foaming material for shoes
KR0154397B1 (en) Out-sole
JPH0474375B2 (en)
US20190092922A1 (en) Thermoplastic vulcanizate composition, method of forming the same and product thereof
JP2006016518A (en) Composition for foam
JPH0449860B2 (en)
KR100220077B1 (en) Preparation process of rubberish foam
JP2929129B2 (en) Thermoplastic elastomer composition
JP3474178B2 (en) Vibration damping crosslinked resin foam and method for producing the same
EP2104440B1 (en) Outsole for an article of footwear
KR100357907B1 (en) Composite of sponge foam for outsole
JPS60163944A (en) Rubber composition
KR102223789B1 (en) Manufacturing method of midsole with air bubble system
JP2006152058A (en) Rubber composition
TWI780526B (en) High-functional foaming resin composition and manufacturing method thereof
KR20100121922A (en) Ethylene vinyl acetate copolymer composition for footbed utilizing silicon oil and the method for manufacturing footbed sponge

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term