JPH047391B2 - - Google Patents

Info

Publication number
JPH047391B2
JPH047391B2 JP24829183A JP24829183A JPH047391B2 JP H047391 B2 JPH047391 B2 JP H047391B2 JP 24829183 A JP24829183 A JP 24829183A JP 24829183 A JP24829183 A JP 24829183A JP H047391 B2 JPH047391 B2 JP H047391B2
Authority
JP
Japan
Prior art keywords
mixture
block copolymer
monomer
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24829183A
Other languages
Japanese (ja)
Other versions
JPS60141755A (en
Inventor
Masaharu Nakayama
Kyosuke Fukushi
Yasuo Morya
Shinkichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP24829183A priority Critical patent/JPS60141755A/en
Publication of JPS60141755A publication Critical patent/JPS60141755A/en
Publication of JPH047391B2 publication Critical patent/JPH047391B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は常温硬化時の低収縮性に優れた低収縮
性不飽和ポリエステル樹脂組成物に関する。 一般に不飽和ポリエステル樹脂の硬化成形物
は、ベンゾイルペルオキシド、メチルエチルケト
ンペルオキシド等の有機ペルオキシドを重合触媒
とし、必要ならばナフテン酸コバルト、オクテン
酸コバルト等の有機金属塩を重合促進剤として用
いて、ハンドレイアツプ法等の接触圧成形法、比
較的低圧のプレス又は圧入機を用いて不飽和ポリ
エステル樹脂の硬化時に発生する反応熱を利用す
るコールドプレス法及びレジンインジエクト法又
はレジンモルタル、レジンコンクリート等の常温
成形法、あるいはシートモールデイングコンパウ
ンド(SMC)、バルクモールデイングコンパウン
ド(BMC)等の成形用組成物を使用する加熱成
形法等により得られている。 しかし、不飽和ポリエステル樹脂は硬化収縮が
約5〜12容量%と大きく、上記いずれの成形法を
採用しても硬化収縮に起因する強度低下、クラツ
ク、反り、表面汚れ等、種々の欠陥の発生が避け
られなかつた。 上記の不飽和ポリエステル樹脂の硬化収縮を低
減させる方法として不飽和ポリエステル樹脂に熱
可塑性樹脂、例えばポリスチレン、ポリメタクリ
ル酸メチル、ポリ酢酸ビニル等を配合する方法が
行われており、これらの方法がある程度の低収縮
効果を発現させ得ることは公知である。 しかしながら、基本的に重大な欠点は相変らず
存在している。即ち一般の熱可塑性樹脂が不飽和
ポリエステル樹脂の硬化収縮を低減させるところ
の低収縮剤としての効果を発現するためには、必
ず硬化成形時に成形温度がかなり高いことを要す
る。このため加熱成形法以外の成形法では有効な
低収縮剤が存在しない。更に一般の熱可塑性樹脂
は不飽和ポリエステル樹脂への分散安定性が不良
であり、硬化段階途中で不飽和ポリエステル樹脂
成形体からの浮き出しが生じ、硬化物表面の荒
れ、硬化不良、硬化収縮の不均一、強度低下等に
より該樹脂の使用分野、範囲が制限を受けてい
る。 本発明者らは上記の欠点を解決するために鋭意
研究した結果、酢酸ビニルとスチレセグメントか
ら成り、且つどちらか一方のセグメントに酸基を
結合させたブロツク共重合体混合物を不飽和ポリ
エステル樹脂の硬化時に添加するならば、該不飽
和ポリエステル樹脂硬化体に対し優れた低収縮効
果を発現させ得ることを発明し、これを特願昭56
−48769号(特開昭57−164114号)で出願した。
しかし、この発明は加熱成形には十分であつても
常温硬化においては未だ不十分であつた。本発明
者らは不飽和ポリエステル樹脂に安定に分散し、
且つ常温硬化においても十分な低収縮効果を発現
し得るブロツク共重合体混合物を提供するよう研
究した結果、後述するブロツク共重合体混合物は
これを得るさいブロツク効率が70〜90重量%と高
く、且つこのブロツク共重合体混合物を含有する
非水分散樹脂組成物が極めて優れた分散安定性を
示し、さらに上記のブロツク共重合体混合物を不
飽和ポリエステル樹脂に配合してなる組成物は特
に常温硬化低収縮性に優れた効果を持つことの知
見を得て本発明を完成した。 即ち本発明は (A);不飽和ポリエステル20〜70重量% (B);前記不飽和ポリエステル(A)と共重合可能な単
量体30〜70重量%、(C);下記に定義されるブロ
ツク共重合体混合物2〜20重量%からなり、上
記単量体(B)及びブロツク共重合体混合物(C)の混
合物が非水分散状態であり且つ上記不飽和ポリ
エステル(A)、単量体(B)、及びブロツク共重合体
混合物(C)の混合物が非水分散状態である低収縮
性不飽和ポリエステル樹脂組成物である。 前記のブロツク共重合体混合物とは 一般式 〔式中、R1は炭素数1〜18のアルキレン基もし
くは置換アルキレン基、炭素数3〜15のシクロア
ルキレン基もしくは置換シクロアルキレン基又は
フエニレン基もしくは置換フエニレン基を示し、
R2はエチレン基、アセチレン基又はフエニレン
基を示す。n=2〜40である。〕 で表わされるポリメリツクペルオキシドを重合開
始剤として、下記(a)及び(b)で定義されるいずれか
一方の単量体(以下それぞれを単量体(a)及び単量
体(b)という)又は単量体の混合物を重合させて
(第一重合反応)、分子内にペルオキシ結合を有す
る重合体を得、ついでこの重合体と第一重合反応
に用いなかつた単量体又は単量体の混合物とを、
ブロツク共重合させて得られたブロツク共重合体
である。 (a); スチレン単量体70〜100重量%及びこれと
共重合可能な単量体30〜0重量%からなる単量
体若しくは単量体混合物 (b); アクリル酸又はメタクリル酸の炭素数1〜
4のアルキルエステル70〜100重量%及びこれ
と共重合可能な単量体30〜0重量%からなる単
量体又は単量体混合物 本発明に用いられる不飽和ポリエステル(A)は
α、β−不飽和二塩基酸、飽和二塩基酸及びグリ
コール類から製造される。ここでα、β−不飽和
二塩基酸は、例えば無水マレイン酸、マレイン
酸、フマル酸、メサコン酸、テトラコン酸、イタ
コン酸、塩素化マレイン酸あるいはこれらのアル
キルエステル類である。飽和二塩基酸は、例えば
無水フタル酸、フタル酸、イソフタル酸、テトラ
フタル酸、テトラヒドロフタル酸、ハロゲン化無
水フタル酸、アジピン酸、コハク酸、セバシン酸
あるいはこれらのアルキルエステル類等である。
グリコール類は、例えばエチレングリコール、ジ
エチレングリコール、プロピレングリコール、ジ
プロピレングリコール、ブチレングリコール、ネ
オペンチルグリコール、ヘキシレングリコール、
水素化ビスフエノールA、2,2′−ジ(4−ヒド
ロキシプロポキシフエニル)プエロパン、2,
2′−ジ(4−ヒドロキシエトキシフエニル)プロ
パン、エチレンオキシド、プロピレンオキシド等
である。 不飽和ポリエステル(A)と共重合可能な単量体(B)
としては、例えばスチレン、α−メチルスチレ
ン、t−ブチルスチレンの様なアルケニル芳香族
単量体、アクリル酸及びメタクリル酸のアルキル
エステル等が用いられるが特にスチレンが好まし
い。 また、ブロツク共重合体混合物(C)は一般式
()で示されるポリメリツクペルオキシドを用
いて公知の製造プロセスで通常の塊状重合法、懸
濁重合法、乳化重合法及び溶液重合法等で重合す
ることにより容易に製造することができる。この
場合、第一重合反応により生じた分子内にペルオ
キシ結合を有する重合体は、中間体として反応系
から取り出して次のブロツク共重合体混合物の原
料にすることもできるし、反応系から取り出すこ
となく引き続いてブロツク共重合させることもで
きる。また、ポリメリツクペルオキシドの使用量
は前記単量体(a)又は単量体(b)100重量部に対して
0.1〜10重量部、重合温度は40〜140℃、重合時間
は2〜15時間がそれぞれ適当である。 本発明におけるブロツク共重合体混合物(c)の製
造に使用されるポリメリツクペルオキシドは、通
常のペルオキシエステルを製造する方法で、ジヒ
ドロペルオキシドと二塩基酸塩化物とを塩基の存
在下に反応させることにより容易に製造出来る。 本発明における一般式()で表わされるポリ
メリツクペルオキシドとは、具体的には例えば (以上いずれもn=2〜40である。) 等をあげることが出来る。 本発明におけるブロツク共重合体混合物(c)を製
造するのに用いられるスチレン単量体と共重合可
能な単量体としては、例えばアクリル酸、アクリ
ル酸エステル、メタクリル酸、メタクリル酸エス
テル、スチレン誘導体、アクリルニトリル、メタ
クリルニトリル、フマル酸又はマレイン酸の誘導
体、ビニルケトン、ビニルピリジン、ブタジエン
等をあげることが出来、その使用量はスチレン単
量体との単量体混合物中で30重量%以下に限定さ
れる。 30重量%を超えた場合は、最終的に合成される
ブロツク共重合体混合物(c)の性能が悪影響を受
け、該ブロツク共重合体混合物(c)を含有してなる
不飽和ポリエステル樹脂組成物を硬化させるなら
ば硬化物表面が光沢不足となり、顔料着色性不良
が強くなる。 アクリル酸又はメタクリル酸の炭素数1〜4の
アルキルエステルと共重合可能な単量体として
は、例えばアクリル酸又はメタクリル酸の炭素数
5〜18のアルキルエステル、アクリル酸、メタク
リル酸、メタクリルニトリル、スチレン及びスチ
レン誘導体等をあげることが出来、その使用量は
アクリル酸又はメタクリル酸の炭素数1〜4のア
ルキルエステルとからなる単量体混合物中で30重
量%以下に限定される。30重量%を超えた場合
は、最終的に合成されるブロツク共重合体混合物
(c)の性態に悪影響を与え、該ブロツク共重合体混
合物(C)を含有してなる不飽和ポリエステル樹脂組
成物を硬化させる場合に、その硬化途中で該ブロ
ツク共重合体混合物(C)の浮き出しが認められ、硬
化収縮の不均一が生じる。 なお、前記ブロツク共重合体混合物(c)を製造す
るのに用いられる単量体(a)と単量体(c)との比率
は、単量体(a)が10〜90重量部で単量体(b)が90〜10
重量部であることが好ましい。この範囲を外れる
場合には、不飽和ポリエステル樹脂組成物とした
時に、硬化前ないし硬化途中で不飽和ポリエステ
ルとブロツク共重合体混合物(C)とが層分離の傾向
を示し、硬化物組成の不均質化を招くことになる
ので好ましくない。 本発明においてブロツク共重合体混合物(C)の配
合量は前記不飽和ポリエステル(A)、単量体(B)及び
ブロツク共重合体混合物(C)の合計量に対して2〜
20重量%が必要である。 2重量%未満では低収縮効果が生じない。また
20重量%を超えると硬化時の膨張が大き過ぎ硬化
成形物の機械強度が低下する。 以上詳述した組成を有する不飽和ポリエステル
樹脂組成物はそのままで種々の目的に使用するこ
とも出来るが、微粉末(例えば炭酸カルシウム、
タルク、クレー、木粉等の無機質又は有機質微粉
末)、骨材(例えば砂、砂利、砕石等の無機質粒
状物質)等を適宜配合してなるレジンモルタル組
成物、レジンコンクリート組成物としても有効に
使用出来る。そしてこれらの組成物は数日間放置
しても樹脂リツチ層が生じることもなく微粉末、
骨材の沈降も少なく極めて貯蔵安定性に優れてい
るのみならず、従来公知の手順に従つて硬化させ
るならば10℃〜30℃、10分〜10時間程度の常温硬
化条件下で、寸法精度の優れた組成均質の硬化成
形物を得ることが出来る。 即ち本発明の低収縮性不飽和ポリエステル樹脂
組成物は、特定のブロツク共重合体混合物(C)がミ
クロに安定分散している非水分散状態を極めて長
時間保つ組成物であり、且つ該組成物が低収縮効
果を発現するに当つては必ずしも十分な硬化温度
を必要としない特長を持つている。この特長によ
り常温硬化を採用する従来の成形法のいずれによ
るものについても、従来の成形物に比較して高強
度で寸法精度及び表面光沢等に優れた成形物を得
ることが可能になつた。また、該組成物は十分な
硬化温度が伴えばその低収縮効果発現が更に大き
くなるのは当然のことであり、SMC、BMC等の
成形用組成物として用いる加熱成形法によれば極
めて大きな寸法精度、強度、光沢、表面平滑性等
を与えることが出来る。 以下、参考例、実施例及び比較例によつて本発
明を詳細に説明する。なお各例中、部及び%とあ
るは特に断わらない限り重量部及び重量%を示
す。 参考例 1 〔ポリメリツクペルオキシドの製造〕
The present invention relates to a low-shrinkage unsaturated polyester resin composition that exhibits excellent low-shrinkage properties when cured at room temperature. Generally, cured molded products of unsaturated polyester resins are produced by hand-laying using an organic peroxide such as benzoyl peroxide or methyl ethyl ketone peroxide as a polymerization catalyst and, if necessary, an organic metal salt such as cobalt naphthenate or cobalt octenoate as a polymerization accelerator. Contact pressure molding methods such as the UP method, cold press methods and resin injection methods that use the reaction heat generated during curing of unsaturated polyester resin using a relatively low-pressure press or press-in machine, resin mortar, resin concrete, etc. It is obtained by a cold molding method or a hot molding method using a molding composition such as a sheet molding compound (SMC) or a bulk molding compound (BMC). However, unsaturated polyester resin has a large curing shrinkage of about 5 to 12% by volume, and no matter which of the above molding methods is used, various defects such as strength reduction, cracks, warping, and surface stains occur due to curing shrinkage. was unavoidable. As a method of reducing curing shrinkage of the above-mentioned unsaturated polyester resins, a method of blending thermoplastic resins such as polystyrene, polymethyl methacrylate, polyvinyl acetate, etc. with unsaturated polyester resins has been used, and these methods have been used to some extent. It is known that it is possible to exhibit a low shrinkage effect. However, fundamentally important drawbacks remain. That is, in order for a general thermoplastic resin to exhibit its effect as a low shrinkage agent that reduces curing shrinkage of unsaturated polyester resins, it is necessary that the molding temperature be quite high during curing molding. For this reason, there is no effective low-shrinkage agent for molding methods other than hot molding. Furthermore, general thermoplastic resins have poor dispersion stability in unsaturated polyester resins, causing embossment from unsaturated polyester resin moldings during the curing stage, roughening of the surface of the cured product, poor curing, and poor curing shrinkage. The field and range of use of this resin is restricted due to uniformity, reduced strength, etc. As a result of intensive research in order to solve the above-mentioned drawbacks, the present inventors have developed a block copolymer mixture consisting of vinyl acetate and styrene segments, with an acid group bonded to one of the segments, to an unsaturated polyester resin. The inventor discovered that if added during curing, the unsaturated polyester resin cured product could exhibit an excellent low shrinkage effect, and this was patented in 1983.
-48769 (Japanese Unexamined Patent Publication No. 57-164114).
However, although this invention was sufficient for heat molding, it was still insufficient for room temperature curing. The present inventors have stably dispersed in unsaturated polyester resin,
Moreover, as a result of research to provide a block copolymer mixture that can exhibit a sufficient low shrinkage effect even when cured at room temperature, the block copolymer mixture described below has a high block efficiency of 70 to 90% by weight when obtained. Moreover, a non-aqueous dispersion resin composition containing this block copolymer mixture exhibits extremely excellent dispersion stability, and furthermore, a composition prepared by blending the above block copolymer mixture with an unsaturated polyester resin is particularly curable at room temperature. The present invention was completed based on the knowledge that it has an excellent effect on low shrinkage. That is, the present invention comprises (A); 20 to 70% by weight of an unsaturated polyester (B); 30 to 70% by weight of a monomer copolymerizable with the unsaturated polyester (A); (C); defined below. It consists of 2 to 20% by weight of a block copolymer mixture, the mixture of the monomer (B) and the block copolymer mixture (C) is in a non-aqueous dispersion state, and the unsaturated polyester (A) and the monomer This is a low shrinkage unsaturated polyester resin composition in which a mixture of (B) and block copolymer mixture (C) is in a non-aqueous dispersion state. What is the above block copolymer mixture? General formula [In the formula, R 1 represents an alkylene group or substituted alkylene group having 1 to 18 carbon atoms, a cycloalkylene group or substituted cycloalkylene group having 3 to 15 carbon atoms, or a phenylene group or a substituted phenylene group,
R 2 represents an ethylene group, an acetylene group or a phenylene group. n=2-40. ] Using polymer peroxide represented by as a polymerization initiator, either one of the monomers defined in (a) and (b) below (hereinafter referred to as monomer (a) and monomer (b), respectively) ) or a mixture of monomers (first polymerization reaction) to obtain a polymer having a peroxy bond in the molecule, and then this polymer and a monomer or monomers not used in the first polymerization reaction. a mixture of
This is a block copolymer obtained by block copolymerization. (a); Monomer or monomer mixture consisting of 70 to 100% by weight of a styrene monomer and 30 to 0% by weight of a monomer copolymerizable with the same (b); Number of carbon atoms in acrylic acid or methacrylic acid 1~
A monomer or monomer mixture consisting of 70 to 100% by weight of the alkyl ester of No. 4 and 30 to 0% by weight of a monomer copolymerizable therewith. The unsaturated polyester (A) used in the present invention is α,β- Manufactured from unsaturated dibasic acids, saturated dibasic acids and glycols. Here, the α,β-unsaturated dibasic acid is, for example, maleic anhydride, maleic acid, fumaric acid, mesaconic acid, tetraconic acid, itaconic acid, chlorinated maleic acid, or alkyl esters thereof. Examples of the saturated dibasic acid include phthalic anhydride, phthalic acid, isophthalic acid, tetraphthalic acid, tetrahydrophthalic acid, halogenated phthalic anhydride, adipic acid, succinic acid, sebacic acid, and alkyl esters thereof.
Examples of glycols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, neopentyl glycol, hexylene glycol,
Hydrogenated bisphenol A, 2,2'-di(4-hydroxypropoxyphenyl)pueropan, 2,
These include 2'-di(4-hydroxyethoxyphenyl)propane, ethylene oxide, and propylene oxide. Monomer (B) copolymerizable with unsaturated polyester (A)
For example, alkenyl aromatic monomers such as styrene, α-methylstyrene, and t-butylstyrene, alkyl esters of acrylic acid and methacrylic acid, and the like are used, with styrene being particularly preferred. In addition, the block copolymer mixture (C) is polymerized using a polymeric peroxide represented by the general formula () by a conventional bulk polymerization method, suspension polymerization method, emulsion polymerization method, solution polymerization method, etc. By doing so, it can be easily manufactured. In this case, the polymer having peroxy bonds in the molecule produced by the first polymerization reaction can be taken out from the reaction system as an intermediate and used as a raw material for the next block copolymer mixture, or can be taken out from the reaction system. It is also possible to carry out block copolymerization subsequently. In addition, the amount of polymer peroxide used is based on 100 parts by weight of the monomer (a) or monomer (b).
Appropriate values are 0.1 to 10 parts by weight, a polymerization temperature of 40 to 140°C, and a polymerization time of 2 to 15 hours. The polymeric peroxide used in the production of the block copolymer mixture (c) in the present invention can be obtained by reacting a dihydroperoxide and a dibasic acid chloride in the presence of a base using a conventional method for producing peroxyesters. It can be easily manufactured by Specifically, the polymeric peroxide represented by the general formula () in the present invention is, for example, (In all of the above, n=2 to 40.) etc. Examples of monomers copolymerizable with the styrene monomer used to produce the block copolymer mixture (c) of the present invention include acrylic acid, acrylic esters, methacrylic acid, methacrylic esters, and styrene derivatives. , acrylonitrile, methacrylnitrile, derivatives of fumaric acid or maleic acid, vinyl ketone, vinylpyridine, butadiene, etc., and the amount used is limited to 30% by weight or less in the monomer mixture with styrene monomer. be done. If it exceeds 30% by weight, the performance of the finally synthesized block copolymer mixture (c) will be adversely affected, and the unsaturated polyester resin composition containing the block copolymer mixture (c) will be adversely affected. If the cured product is cured, the surface of the cured product will lack gloss and the pigment colorability will be more poor. Examples of monomers copolymerizable with alkyl esters of acrylic acid or methacrylic acid having 1 to 4 carbon atoms include alkyl esters of acrylic acid or methacrylic acid having 5 to 18 carbon atoms, acrylic acid, methacrylic acid, methacryl nitrile, Examples include styrene and styrene derivatives, and the amount used thereof is limited to 30% by weight or less in the monomer mixture consisting of an alkyl ester of acrylic acid or methacrylic acid having 1 to 4 carbon atoms. If it exceeds 30% by weight, the final synthesized block copolymer mixture
When curing an unsaturated polyester resin composition containing the block copolymer mixture (C), the block copolymer mixture (C) adversely affects the properties of (c). Embossing is observed, and uneven curing shrinkage occurs. The ratio of monomer (a) and monomer (c) used to produce the block copolymer mixture (c) is 10 to 90 parts by weight of monomer (a). Quantity (b) is 90-10
Parts by weight are preferred. If it is outside this range, when an unsaturated polyester resin composition is made, the unsaturated polyester and the block copolymer mixture (C) will tend to separate into layers before or during curing, resulting in defects in the composition of the cured product. This is not preferable because it will lead to homogenization. In the present invention, the blending amount of the block copolymer mixture (C) is 2 to 2 to
20% by weight is required. If the amount is less than 2% by weight, the shrinkage reduction effect will not occur. Also
If it exceeds 20% by weight, the expansion during curing will be too large and the mechanical strength of the cured molded product will decrease. The unsaturated polyester resin composition having the composition detailed above can be used as it is for various purposes, but it can also be used as a fine powder (e.g. calcium carbonate,
It is also effective as a resin mortar composition or a resin concrete composition, which is made by appropriately blending inorganic or organic fine powders such as talc, clay, and wood powder, and aggregates (for example, inorganic granular materials such as sand, gravel, and crushed stone). Can be used. These compositions do not form a resin-rich layer even after being left for several days and remain fine powders.
Not only does it have excellent storage stability with little aggregate settling, but it also maintains dimensional accuracy under room temperature curing conditions of 10°C to 30°C for 10 minutes to 10 hours if cured according to conventionally known procedures. A cured molded product with excellent compositional homogeneity can be obtained. That is, the low-shrinkage unsaturated polyester resin composition of the present invention is a composition that maintains a non-aqueous dispersion state in which the specific block copolymer mixture (C) is stably dispersed microscopically for an extremely long time; It has the feature that a sufficient curing temperature is not necessarily required for the product to exhibit a low shrinkage effect. Due to this feature, it has become possible to obtain molded products with higher strength, superior dimensional accuracy, surface gloss, etc. compared to conventional molded products, regardless of the conventional molding method that employs room-temperature curing. Furthermore, it is a matter of course that the low shrinkage effect of the composition will further increase if accompanied by a sufficient curing temperature, and if the thermoforming method used as a molding composition for SMC, BMC, etc., the composition will have extremely large dimensions. It can provide precision, strength, gloss, surface smoothness, etc. Hereinafter, the present invention will be explained in detail with reference to Reference Examples, Examples, and Comparative Examples. In each example, parts and % indicate parts by weight and % by weight unless otherwise specified. Reference example 1 [Manufacture of polymeric peroxide]

【式】(n≒ 9.72)の製造 温度計、撹拌機を備えたガラス製反応器に2,
5−ジメチルヘキサン−2,5−ジヒドロペルオ
キシド178部、ピリジン190部及び塩化メチレン
1000部を仕込んだ。さらにこのガラス製反応器の
内容物を撹拌下温度を0〜5℃に維持しながら、
この内容物にアジピン酸塩化物183部を30分間か
かつて滴下ロートで加えた。滴下終了後、ガラス
製反応器の内容物を温度0〜5℃に維持しつつ2
時間撹拌を継続して反応を終了させた。反応生成
物を希塩酸で洗浄して残存ピリジンを除去した
後、水洗し、20℃以下で塩化メチレンを減圧留去
して粘性液体254部を得た。 得られた粘性液体について通常のヨード滴定法
によりその活性酸素量を求めたところ、10.9%で
あつた。 この粘性液体の赤外線吸収スペクトルにおける
特性吸収波長及び核磁気共鳴スペクトルのτ値及
び強度から、次記構成単位からなるペルオキシエ
ステル型ポリメリツクペルオキシドであることを
確認した。 このポリメリツクペルオキシドの平均分子量を
VPO法により測定したところ、2800であつた。 参考例 2 〔ブロツク共重合体混合物の製造−1〕 温度計、撹拌機、コンデンサーを備えたガラス
製反応器に、1.0%のポリビニルアルコール水溶
液300部と予めメタクリル酸メチル(以後MMA
と略記する)10部に参考例1で得られたポリメリ
ツクペルオキシド(以後P・POと略記する)0.5
部を溶解させて得られた溶液とを仕込んだ。反応
器内の空気を窒素ガスで置換した後、撹拌しつつ
105℃に加熱して重合を開始した。温度を105℃に
維持しつつ1.5時間重合させた後、スチレン(以
後STと略記する)90部を加えた。次いで温度を
115℃に昇温して12時間重合を続けた。室温に冷
却して重合を終了した後、重合物を別しよく水
洗してから真空乾燥して白色粒状のブロツク共重
合体混合物97部を得た。 参考例 3 〔ブロツク共重合体混合物の製造−2〕 予めMMA50部に参考例1で得られたP・PO
を2.5部溶解させた溶液、及びST50部を用いる以
外は参考例2に準じでブロツク共重合体混合物97
部を得た。 参考例 4 〔ブロツク共重合体混合物の製造−3〕 予めMMA90部に参考例1で得られたP・PO
を4.5部溶解させた溶液、及びST10部を用いる以
外は参考例2に準じてブロツク共重合体混合物96
部を得た。 参考例 5 〔ブロツク共重合体混合物の製造−4〕 予めMMA10部に参考例1で得られたP・PO
を0.5部溶解させた溶液を重合させた後、ST63部
とメタクリル酸(以後MAと略記する)27部の混
合物を用いる以外は参考例2に準じでブロツク共
重合体混合物95部を得た。 参考例 6 〔ブロツク共重合体混合物の製造−5〕 予めMMA63部とアクリル酸(以後AAと略記
する)27部に参考例1で得られたP・POを6部
溶解させた溶液を重合させた後、ST10部を用い
る以外は参考例2に準じてブロツク共重合体混合
物94部を得た。 参考例 7 〔ブロツク共重合体混合物の製造−6〕 予めMMA35部とAA15部に参考例1で得られ
たP・POを4.5部溶解させた溶液を重合させた
後、ST35部とMA15部を用いる以外は参考例2
に準じでブロツク共重合体混合物93部を得た。 参考例 8〔ブロツク共重合体混合物の製造−7〕 予めアクリル酸ブチル(以後BAと略記する)
50部に
Production of [Formula] (n≒ 9.72) In a glass reactor equipped with a thermometer and a stirrer, 2.
178 parts of 5-dimethylhexane-2,5-dihydroperoxide, 190 parts of pyridine and methylene chloride
1000 copies were made. Furthermore, the contents of this glass reactor were stirred while maintaining the temperature at 0 to 5°C.
To this contents was added 183 parts of adipate chloride via addition funnel over a period of 30 minutes. After the dropwise addition, the contents of the glass reactor were heated for 2 hours while maintaining the temperature at 0 to 5℃.
Stirring was continued for an hour to complete the reaction. The reaction product was washed with dilute hydrochloric acid to remove residual pyridine, then washed with water, and methylene chloride was distilled off under reduced pressure at 20° C. or lower to obtain 254 parts of a viscous liquid. The amount of active oxygen in the obtained viscous liquid was determined by the usual iodometry method and was found to be 10.9%. From the characteristic absorption wavelength in the infrared absorption spectrum and the τ value and intensity of the nuclear magnetic resonance spectrum of this viscous liquid, it was confirmed that it was a peroxyester type polymeric peroxide consisting of the following structural units. The average molecular weight of this polymer peroxide is
When measured by the VPO method, it was 2800. Reference Example 2 [Manufacture of block copolymer mixture-1] In a glass reactor equipped with a thermometer, a stirrer, and a condenser, 300 parts of a 1.0% polyvinyl alcohol aqueous solution and methyl methacrylate (hereinafter MMA) were placed in advance.
0.5 parts of polymeric peroxide (hereinafter abbreviated as P/PO) obtained in Reference Example 1 to 10 parts (abbreviated as P/PO)
and the solution obtained by dissolving 1 part. After replacing the air in the reactor with nitrogen gas, while stirring
Polymerization was initiated by heating to 105°C. After polymerizing for 1.5 hours while maintaining the temperature at 105°C, 90 parts of styrene (hereinafter abbreviated as ST) was added. Then the temperature
The temperature was raised to 115°C and polymerization was continued for 12 hours. After the polymerization was completed by cooling to room temperature, the polymer was separated, thoroughly washed with water, and then dried under vacuum to obtain 97 parts of a white granular block copolymer mixture. Reference Example 3 [Production of block copolymer mixture-2] P/PO obtained in Reference Example 1 was added to 50 parts of MMA in advance.
A block copolymer mixture 97 was prepared in the same manner as in Reference Example 2, except that 2.5 parts of a solution of 2.5 parts of ST was used and 50 parts of ST were used.
I got the department. Reference Example 4 [Manufacture of block copolymer mixture-3] P/PO obtained in Reference Example 1 was added to 90 parts of MMA in advance.
A block copolymer mixture 96 was prepared according to Reference Example 2 except that 4.5 parts of ST was dissolved in the solution and 10 parts of ST was used.
I got the department. Reference Example 5 [Manufacture of block copolymer mixture-4] P/PO obtained in Reference Example 1 was added to 10 parts of MMA in advance.
After polymerizing a solution in which 0.5 part of was dissolved, 95 parts of a block copolymer mixture was obtained in the same manner as in Reference Example 2, except that a mixture of 63 parts of ST and 27 parts of methacrylic acid (hereinafter abbreviated as MA) was used. Reference Example 6 [Manufacture of block copolymer mixture-5] A solution prepared by dissolving 6 parts of P/PO obtained in Reference Example 1 in 63 parts of MMA and 27 parts of acrylic acid (hereinafter abbreviated as AA) in advance was polymerized. After that, 94 parts of a block copolymer mixture was obtained according to Reference Example 2 except that 10 parts of ST was used. Reference Example 7 [Manufacture of block copolymer mixture-6] After polymerizing a solution in which 4.5 parts of P/PO obtained in Reference Example 1 was dissolved in 35 parts of MMA and 15 parts of AA, 35 parts of ST and 15 parts of MA were added. Reference example 2 except for use
93 parts of a block copolymer mixture was obtained. Reference Example 8 [Manufacture of block copolymer mixture-7] Butyl acrylate (hereinafter abbreviated as BA) in advance
50 copies

【式】(n≒12.5) で示されるP・POを1部溶解させた溶液、及び
ST50部を用いる以外は参考例2に準じてブロツ
ク共重合体混合物96部を得た。 次に参考例2〜8で得られたブロツク共重合体
混合物を各々2.0g秤量した後、ソツクスレー抽
出器を用いて初めにシクロヘキサンで24時間、次
にアセトニトリルで24時間抽出した。シクロヘキ
サン及びアセトニトリル抽出による重量減少量を
各々ポリスチレン(以後PSTと略記する)、及び
ポリメタクリル酸メチル(以後PMMAと略記す
る)又はポリアクリル酸ブチル(以後PBAと略
記する)の含有量とし、抽出残分を該ブロツク共
重合体の含有量とした。結果を表1に示す。
[Formula] (n≒12.5) A solution in which a part of P/PO is dissolved, and
96 parts of a block copolymer mixture was obtained according to Reference Example 2 except that 50 parts of ST was used. Next, 2.0 g of each of the block copolymer mixtures obtained in Reference Examples 2 to 8 was weighed and extracted using a Soxhlet extractor, first with cyclohexane for 24 hours and then with acetonitrile for 24 hours. The amount of weight loss due to cyclohexane and acetonitrile extraction is defined as the content of polystyrene (hereinafter abbreviated as PST), polymethyl methacrylate (hereinafter abbreviated as PMMA) or polybutyl acrylate (hereinafter abbreviated as PBA), and the extracted residue is % was defined as the content of the block copolymer. The results are shown in Table 1.

【表】 参考例 9 〔不飽和ポリエステル樹脂の製造〕 フマル酸812部、イソフタル酸498部、プロピレ
ングリコール396部及びネオペンチルグリコール
542部を通常の方法でエステル化して不飽和ポリ
エステル(酸価30、以後UPと略記する)を合成
し、得られたUPをSTで希釈してST濃度が全体
の35%となるように調整し不飽和ポリエステル樹
脂(以後UPRと略記する)を得た。 参考例 10 〔比較用ブロツク共重合体混合物の製造−1〕 温度計、撹拌機、コンデンサーを備えたガラス
製反応器に1.0%ポリビニルアルコール水溶液300
部と、予め酢酸ビニル(以後VACと略記する)
10部に参考例1で得られたP・POを0.5部溶解さ
せて得られた溶液とを仕込んだ。反応器内の空気
を窒素ガスで置換した後、撹拌しつつ100℃に加
熱して重合を開始した。反応器の内容物を温度
100℃に維持しながら3時間重合させた後、ST90
部とMA10部の混合物を加えた。次いで温度を
115℃に昇温し7時間重合を続けた。室温に冷却
して重合を終了した後重合物を別し、よく水洗
浄してから真空乾燥して白色粒状のブロツク共重
合体混合物103部を得た。 参考例 11 〔比較用ブロツク共重合体混合物の製造−2〕 予めVAC50部に参考例1で得られたP・POを
2.5部溶解させた溶液を用い、次いでST50部と
MA1.5部の混合物を用いる以外は参考例10に準
じてブロツク共重合体混合物98部を得た。 次に参考例10〜11で得られたブロツク共重合体
混合物を各々2.0g秤量した後、ソツクスレー抽
出器を用いて初めにメタノールで24時間、次にシ
クロヘキサンで24時間抽出した。メタノール及び
シクロヘキサン抽出による重量減少量を各々ポリ
酢酸ビニル(以後PVACと略記する)、PSTの含
有量とし、抽出残分を該ブロツク共重合体の含有
量とした。結果を表2に示す。
[Table] Reference Example 9 [Production of unsaturated polyester resin] 812 parts of fumaric acid, 498 parts of isophthalic acid, 396 parts of propylene glycol, and neopentyl glycol
Synthesize unsaturated polyester (acid value: 30, hereinafter abbreviated as UP) by esterifying 542 parts using the usual method, diluting the obtained UP with ST and adjusting the ST concentration to 35% of the total. An unsaturated polyester resin (hereinafter abbreviated as UPR) was obtained. Reference Example 10 [Production of Comparative Block Copolymer Mixture-1] A 1.0% polyvinyl alcohol aqueous solution 300ml was placed in a glass reactor equipped with a thermometer, a stirrer, and a condenser.
and vinyl acetate (hereinafter abbreviated as VAC) in advance.
A solution obtained by dissolving 0.5 part of P.PO obtained in Reference Example 1 was added to 10 parts. After replacing the air in the reactor with nitrogen gas, the reactor was heated to 100°C with stirring to initiate polymerization. Temperature the contents of the reactor
After polymerizing for 3 hours while maintaining at 100℃, ST90
A mixture of 1 part and 10 parts of MA was added. Then the temperature
The temperature was raised to 115°C and polymerization was continued for 7 hours. After the polymerization was completed by cooling to room temperature, the polymer was separated, thoroughly washed with water, and then vacuum dried to obtain 103 parts of a white granular block copolymer mixture. Reference Example 11 [Production of Comparative Block Copolymer Mixture-2] P/PO obtained in Reference Example 1 was added to 50 parts of VAC in advance.
Use a solution containing 2.5 parts, then add 50 parts of ST.
98 parts of a block copolymer mixture was obtained in accordance with Reference Example 10, except that 1.5 parts of MA was used in the mixture. Next, 2.0 g of each of the block copolymer mixtures obtained in Reference Examples 10 to 11 was weighed and extracted using a Soxhlet extractor, first with methanol for 24 hours and then with cyclohexane for 24 hours. The weight loss due to methanol and cyclohexane extraction was defined as the content of polyvinyl acetate (hereinafter abbreviated as PVAC) and PST, respectively, and the extraction residue was defined as the content of the block copolymer. The results are shown in Table 2.

【表】 参考例 12 〔比較用低収縮剤の調製〕 (a) PVAC 分子量約103000のものをその濃度が30%とな
るようにSTに溶解させて溶液にして比較用低
収縮剤(a)とした。 (b) PMMA 分子量約500000のものをその濃度が30%とな
るようにSTに溶解させて溶液にして比較用低
収縮剤(b)とした。 (c) PST 旭ダウ工業(株)製、スタイロン666をその濃度
が30%となるようにSTに溶解させて溶液にし
て比較用低収縮剤(c)とした。 (d) ST−MMAランダム共重合体 ST(50)/MMA(50)重量比のランダム共
重合体で分子量約500000のものを、その濃度が
30%となるようにSTに溶解させて溶液にして
比較用低収縮剤(b)とした。 なお参考例2〜8、及び10、11で得られたブロ
ツク共重合体混合物は、その濃度が30%となるよ
うにSTに分散させた分散液として次に述べる実
施例に各々使用した。 実施例 1 〔常温、水浴系での不飽和ポリエステル樹脂
組成物の低収縮効果〕 参考例2で得られたブロツク共重合体混合物
のST分散液と参考例9で得られたUPRとを重
合触媒パーメツクN(日本油脂(株)製、メチルエ
チルケトンペルオキシドの商品名)及び重合促
進剤ナフテン酸コバルトの共存下で混合した。
次いでこれを容積の知れたガラス管に注入し、
20℃の水浴中に静置し、硬化物の容積収縮率を
次式により求めた。 容積収縮率(%)=(硬化前の容積)−(
硬化後の容積)/(硬化前の容積)×100 なお注入〜硬化の段階でガラス管に注入され
た該組成物の温度変化を測定したが水浴による
除熱効果が大きく温度上昇は認められなかつ
た。結果を表3に示す。 実施例 2〜14 〔常温、水浴系での不飽和ポリエステル樹脂
組成物の低収縮効果〕 参考例2〜8で得られたそれぞれのブロツク共
重合体混合物を用い実施例1に準じで試験し、結
果を表3に示した。
[Table] Reference Example 12 [Preparation of comparative low-shrinkage agent] (a) Dissolve PVAC with a molecular weight of approximately 103,000 in ST to a concentration of 30% to make a solution. Comparative low-shrinkage agent (a) And so. (b) PMMA having a molecular weight of approximately 500,000 was dissolved in ST to a concentration of 30% to form a solution, which was used as a comparative low-shrinkage agent (b). (c) PST Styron 666 manufactured by Asahi Dow Industries Co., Ltd. was dissolved in ST to a concentration of 30% to form a solution, which was used as a comparative low shrinkage agent (c). (d) ST-MMA random copolymer A random copolymer with a weight ratio of ST(50)/MMA(50) with a molecular weight of approximately 500,000, whose concentration is
It was dissolved in ST to a concentration of 30% and made into a solution, which was used as a comparative low shrinkage agent (b). The block copolymer mixtures obtained in Reference Examples 2 to 8, 10, and 11 were used in the following examples as dispersions in which the block copolymer mixtures were dispersed in ST at a concentration of 30%. Example 1 [Low shrinkage effect of unsaturated polyester resin composition at room temperature and in a water bath system] The ST dispersion of the block copolymer mixture obtained in Reference Example 2 and the UPR obtained in Reference Example 9 were polymerized using a polymerization catalyst. The mixture was mixed in the presence of Permec N (manufactured by NOF Corporation, trade name of methyl ethyl ketone peroxide) and cobalt naphthenate, a polymerization accelerator.
Next, inject this into a glass tube of known volume,
The cured product was left standing in a water bath at 20°C, and the volumetric shrinkage rate of the cured product was determined using the following formula. Volume shrinkage rate (%) = (Volume before curing) - (
Volume after curing)/(Volume before curing) x 100 The temperature change of the composition injected into the glass tube during the injection to curing stage was measured, but the heat removal effect by the water bath was large, and no temperature increase was observed. Ta. The results are shown in Table 3. Examples 2 to 14 [Low shrinkage effect of unsaturated polyester resin compositions at room temperature and in a water bath system] Tests were conducted according to Example 1 using each of the block copolymer mixtures obtained in Reference Examples 2 to 8. The results are shown in Table 3.

【表】 比較例 1〜8 参考例12で用意した比較用低収縮剤を用いる以
外は実施例1に準じて試験し、結果を表4に示
す。 比較例 9〜12 参考例10、11で用意した比較用ブロツク共重合
体混合物のST分散液を用いる以外は実施例1に
準じて試験し、結果を表5に示す。
[Table] Comparative Examples 1 to 8 Tests were conducted according to Example 1 except that the comparative low shrinkage agent prepared in Reference Example 12 was used, and the results are shown in Table 4. Comparative Examples 9 to 12 Tests were conducted in accordance with Example 1, except that the ST dispersion of the comparative block copolymer mixture prepared in Reference Examples 10 and 11 was used, and the results are shown in Table 5.

【表】【table】

【表】【table】

【表】 実施例 15 〔レジンモルタル組成物での低収縮効果等〕 参考例9で得られたUPR80部と、参考例2で
得られたブロツク共重合体混合物をその濃度が30
%となるようにSTに分散させてなるST分散液20
部とをラボミキサー(ハイシエアーミキサー)で
20分間混合した後、パーメツクN1.0部、ナフテ
ン酸コバルト0.3部を加えて混合し、それに骨材
と充てん剤の混合物(硅砂3号が2、硅砂4号が
1、硅砂7号が1、炭酸カルシウムが1の重量割
合)100部を加えて混合し、レジンモルタル組成
物を得た。この組成物を常温で2時間硬化させ、
養生7日後の表面状態を観察し、低収縮効果を測
定した。この結果硬化物は亀裂、変形が認められ
ず表面状態は良好であつた。この時の線収縮率は
0.006%であつた。 比較例 13 実施例15におけるブロツク共重合体混合物ST
分散液の代りに参考例12の比較用低収縮剤(c)を用
いる以外は実施例15に準じて試験した。その結
果、硬化物表面はPSTの分離に基づく粘着性を
有し、収縮率の測定は不可能であつた。 実施例 16 〔レジンコンクリート組成物での低収縮効果
等〕 参考例9で得られたUPR80部と、参考例2で
得られたブロツク共重合体混合物をその濃度が30
%となるようにSTに分散させてなるST分散液20
部とをラボミキサーで20分間混合した後、パーメ
ツクN1.0部、ナフテン酸コバルト0.3部を加えて
混合した。次いで炭酸カルシウム100部及び川砂
(最大粒径5mm)300部を混合してレジンコンクリ
ート組成物を得た。この組成物を縦1000mm×横
100mm×高さ50mmの金型に注入し室温で2時間硬
化させ、7日間養生し表面状態の良好なレジンコ
ンクリートを得た。結果を表6に示す。 実施例 17〜22 〔レジンコンクリート組成物での低収縮効果
等〕 参考例3〜8で得られたブロツク共重合体混合
物を用いる以外は実施例16に準じて試験し、表面
状態の良好のレジンコンクリートを得た。結果を
表6に示す。 比較例 14〜17 参考例12の比較用低収縮剤(a)〜(d)を用いる以外
は実施例16に準じて試験したが、該低収縮剤の浮
き出しによると思われる表面の粘着性が認められ
た。結果を表6に示す。 比較例 18〜19 参考例10、11で得られた比較用ブロツク共重合
体混合物を用いる以外は実施例16に準じて試験
し、表面状態の良好なレジンコンクリートを得
た。結果を表6に示す。 比較例 20 実施例16においてブロツク共重合体混合物の
ST分散液を加えなかつた以外は、実施例16に準
じて試験したレジンコンクリートを得た。その表
面はひび割れ、クラツク等がはいり不良な状態で
あつた。結果を表6に示す。
[Table] Example 15 [Low shrinkage effect in resin mortar composition, etc.] 80 parts of UPR obtained in Reference Example 9 and the block copolymer mixture obtained in Reference Example 2 were mixed at a concentration of 30 parts.
ST dispersion liquid made by dispersing ST in such a manner that %
with a lab mixer (high shear mixer).
After mixing for 20 minutes, 1.0 part of Permec N and 0.3 part of cobalt naphthenate were added and mixed, followed by a mixture of aggregate and filler (2 parts of silica sand No. 3, 1 part of silica sand No. 4, 1 part of silica sand No. 7, 100 parts of calcium carbonate (weight ratio: 1) were added and mixed to obtain a resin mortar composition. This composition was cured at room temperature for 2 hours,
After 7 days of curing, the surface condition was observed and the low shrinkage effect was measured. As a result, the cured product showed no cracks or deformation, and the surface condition was good. The linear shrinkage rate at this time is
It was 0.006%. Comparative Example 13 Block copolymer mixture ST in Example 15
A test was conducted according to Example 15, except that the comparative low shrinkage agent (c) of Reference Example 12 was used instead of the dispersion. As a result, the surface of the cured product had tackiness due to the separation of PST, and it was impossible to measure the shrinkage rate. Example 16 [Low shrinkage effect in resin concrete composition, etc.] 80 parts of UPR obtained in Reference Example 9 and the block copolymer mixture obtained in Reference Example 2 were mixed at a concentration of 30 parts.
ST dispersion liquid made by dispersing ST in such a manner that %
After mixing for 20 minutes with a lab mixer, 1.0 part of Permec N and 0.3 part of cobalt naphthenate were added and mixed. Next, 100 parts of calcium carbonate and 300 parts of river sand (maximum particle size: 5 mm) were mixed to obtain a resin concrete composition. This composition is 1000mm long x horizontal
The resin concrete was poured into a mold of 100 mm x 50 mm in height, cured at room temperature for 2 hours, and cured for 7 days to obtain resin concrete with a good surface condition. The results are shown in Table 6. Examples 17 to 22 [Low shrinkage effect in resin concrete compositions] Tests were conducted according to Example 16 except that the block copolymer mixtures obtained in Reference Examples 3 to 8 were used, and resins with good surface conditions were tested. Got concrete. The results are shown in Table 6. Comparative Examples 14 to 17 Tests were conducted according to Example 16 except that the comparative low shrinkage agents (a) to (d) of Reference Example 12 were used, but the surface tackiness, which was thought to be due to the embossment of the low shrinkage agents, was Admitted. The results are shown in Table 6. Comparative Examples 18-19 A test was conducted in accordance with Example 16, except that the comparative block copolymer mixtures obtained in Reference Examples 10 and 11 were used, and resin concrete with a good surface condition was obtained. The results are shown in Table 6. Comparative Example 20 In Example 16, the block copolymer mixture
A resin concrete was obtained which was tested according to Example 16, except that no ST dispersion was added. The surface was in poor condition with cracks and scratches. The results are shown in Table 6.

【表】【table】

【表】 発生あるいは低収縮剤の分離等による不
良な状態を示す。
以上の実施例及び比較例を対比すれば明らかな
ように、本発明において用いられるブロツク共重
合体混合物は、低収縮剤として同量用いた場合、
慣用の低収縮剤と対比して容積収縮率が低いこと
が認められた。 また、本発明品及び比較例品を用いてレジンコ
ンクリートを作製し、得られた製品を対比したと
ころ、本発明品は比較例品に比して表面状態及び
線収縮率において一だんと優れているのが認めら
れた。
[Table] Indicates a defective condition due to generation or separation of the low shrinkage agent.
As is clear from comparing the above examples and comparative examples, when the block copolymer mixture used in the present invention is used as a low shrinkage agent in the same amount,
It was observed that the volume shrinkage rate was lower than that of conventional low shrinkage agents. In addition, when resin concrete was produced using the product of the present invention and the product of the comparative example, and the resulting products were compared, the product of the present invention was much superior to the product of the comparative example in terms of surface condition and linear shrinkage rate. It was recognized that there was.

Claims (1)

【特許請求の範囲】 1 (A);不飽和ポリエステル20〜70重量% (B);前記不飽和ポリエステル(A)と共重合可能な単
量体30〜70重量%及び(C);下記に定義されるブ
ロツク共重合体混合物2〜20重量%からなり、
上記単量体(B)及びブロツク共重合体混合物(C)の
混合物が非水分散状態であり且つ上記不飽和ポ
リエステル(A)、単量体(B)及びブロツク共重合体
混合物(C)の混合物が非水分散状態である低収縮
性不飽和ポリエステル樹脂組成物。 ブロツク共重合体混合物; 一般式 〔式中、R1は炭素数1〜18のアルキレン基もし
くは置換アルキレン基、炭素数3〜15のシクロア
ルキレン基もしくは置換シクロアルキレン基又は
フエニレン基もしくは置換フエニレン基を示し、
R2はエチレン基、アセチレン基又はフエニレン
基を示す。n=2〜40である。〕で表わされるポ
リメリツクペルオキシドを重合開始剤として、下
記(a)及び(b)で定義されるいずれか一方の単量体
(以下それぞれを単量体(a)及び単量体(b)という)
又は単量体の混合物を重合させて(第一重合反
応)、分子内にペルオキシ結合を有する重合体を
得、ついでこの重合体と第一重合反応に用いなか
つた単量体又は単量体の混合物とを、ブロツク共
重合させて得られたブロツク共重合体。 (a);スチレン単量体70〜100重量%及びこれと共
重合可能な単量体30〜0重量%からなる単量体
若しくは単量体混合物 (b);アクリル酸又はメタクリル酸の炭素数1〜4
のアルキルエステル70〜100重量%及びこれと
共重合可能な単量体30〜0重量%からなる単量
体又は単量体混合物。
[Claims] 1 (A); 20 to 70% by weight of unsaturated polyester (B); 30 to 70% by weight of a monomer copolymerizable with the unsaturated polyester (A); and (C); consisting of 2 to 20% by weight of a block copolymer mixture defined;
The mixture of the monomer (B) and the block copolymer mixture (C) is in a non-aqueous dispersion state, and the mixture of the unsaturated polyester (A), the monomer (B) and the block copolymer mixture (C) is A low shrinkage unsaturated polyester resin composition, the mixture of which is in a non-aqueous dispersion state. Block copolymer mixture; general formula [In the formula, R 1 represents an alkylene group or substituted alkylene group having 1 to 18 carbon atoms, a cycloalkylene group or substituted cycloalkylene group having 3 to 15 carbon atoms, or a phenylene group or a substituted phenylene group,
R 2 represents an ethylene group, an acetylene group or a phenylene group. n=2-40. ] Using the polymer peroxide represented by )
Alternatively, a mixture of monomers is polymerized (first polymerization reaction) to obtain a polymer having a peroxy bond in the molecule, and then this polymer is combined with the monomer or monomers not used in the first polymerization reaction. A block copolymer obtained by block copolymerizing a mixture. (a); Monomer or monomer mixture consisting of 70 to 100% by weight of a styrene monomer and 30 to 0% by weight of a monomer copolymerizable with the same (b); Number of carbon atoms in acrylic acid or methacrylic acid 1-4
A monomer or monomer mixture comprising 70 to 100% by weight of an alkyl ester of and 30 to 0% by weight of a monomer copolymerizable therewith.
JP24829183A 1983-12-28 1983-12-28 Low-profile unsaturated polyester resin composition Granted JPS60141755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24829183A JPS60141755A (en) 1983-12-28 1983-12-28 Low-profile unsaturated polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24829183A JPS60141755A (en) 1983-12-28 1983-12-28 Low-profile unsaturated polyester resin composition

Publications (2)

Publication Number Publication Date
JPS60141755A JPS60141755A (en) 1985-07-26
JPH047391B2 true JPH047391B2 (en) 1992-02-10

Family

ID=17175902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24829183A Granted JPS60141755A (en) 1983-12-28 1983-12-28 Low-profile unsaturated polyester resin composition

Country Status (1)

Country Link
JP (1) JPS60141755A (en)

Also Published As

Publication number Publication date
JPS60141755A (en) 1985-07-26

Similar Documents

Publication Publication Date Title
WO1997033942A1 (en) Unsaturated polyester resin composition and sheetlike molding material
JPS6340447B2 (en)
JPS603327B2 (en) Low shrinkage unsaturated polyester resin composition
JP3092201B2 (en) Low shrinkage unsaturated polyester resin composition
US4366290A (en) Unsaturated polyester resin composition
JPH06313019A (en) Resin composition and production of artificial marble
JPH047391B2 (en)
GB2087416A (en) Low shrinking resin mortar or resin concrete composition
JPH0117490B2 (en)
JPH047390B2 (en)
JPS6330956B2 (en)
JP2794802B2 (en) Low shrinkage unsaturated polyester resin composition
JPS6099115A (en) Unsaturated polyester resin composition
JPH02117953A (en) Low-shrinkage thermosetting resin composition
JPS62141058A (en) Low-shrinkage unsaturated polyester resin composition
JPH0629363B2 (en) Method for producing low shrinkage unsaturated polyester resin composition
JPH0585583B2 (en)
JPH1192646A (en) Unsaturated polyester resin composition and its production
JPS61293255A (en) Low-shrinkage unsaturated polyester resin composition
JPH05163425A (en) Unsaturated polyester resin composition
JPH04306213A (en) Transparent low-shrinkage-based polymer composition
JPS62273248A (en) Thermosetting resin composition having low shrinkage
JP2005120233A (en) Thermoplastic block copolymer and unsaturated polyester resin composition, and molded product
JPS63230763A (en) Low-shrinkage unsaturated polyester resin composition
JPH09176469A (en) Thickening resin composition