JPS6330956B2 - - Google Patents

Info

Publication number
JPS6330956B2
JPS6330956B2 JP58026258A JP2625883A JPS6330956B2 JP S6330956 B2 JPS6330956 B2 JP S6330956B2 JP 58026258 A JP58026258 A JP 58026258A JP 2625883 A JP2625883 A JP 2625883A JP S6330956 B2 JPS6330956 B2 JP S6330956B2
Authority
JP
Japan
Prior art keywords
monomer
block copolymer
mixture
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58026258A
Other languages
Japanese (ja)
Other versions
JPS59152918A (en
Inventor
Kyosuke Fukushi
Masaharu Nakayama
Yasuo Morya
Shinkichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP2625883A priority Critical patent/JPS59152918A/en
Publication of JPS59152918A publication Critical patent/JPS59152918A/en
Publication of JPS6330956B2 publication Critical patent/JPS6330956B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は常温硬化時の低収縮性に優れた低収縮
性不飽和ポリエステル樹脂組成物に関する。 一般に不飽和ポリエステル樹脂の硬化成形物
は、ベンゾイルペルオキシド、メチルエチルケト
ンペルオキシド等の有機ペルオキシドを重合触媒
とし、必要ならばナフテン酸コバルト、オクテン
酸コバルト等の如き有機金属塩を重合促進剤とし
て用いて、ハンドレイアツプ法等の接触圧成形
法、比較的低圧のプレス又は圧入機を用いて不飽
和ポリエステル樹脂の硬化時に発生する反応熱を
利用するコールドプレス法及びレジンインジエク
ト法又はレジンモルタル、レジンコンクリート等
の常温成形法、あるいはシートモールデイングコ
ンパウンド(SMC)、バルクモールデイングコン
パウンド(BMC)等の成形用組成物を使用する
加熱成形法等により得られている。 しかし、不飽和ポリエステル樹脂は硬化収縮が
約5〜12容量%と大きく、上記いずれの成形法を
採用しても硬化収縮に起因する強度低下、クラツ
ク、反り、表面汚れ等、種々の欠陥の発生が避け
られなかつた。 上記の不飽和ポリエステル樹脂の硬化収縮を低
減させる方法として不飽和ポリエステル樹脂に熱
可塑性樹脂、例えばポリスチレン、ポリメタクリ
ン酸メチル、ポリ酢酸ビニル等を配合させる方法
が行われており、これらの方法がある程度の低収
縮効果を発現させ得ることは公知である。 しかしながら、基本的に重大な欠点は相変らず
存在している。即ち一般の熱可塑性樹脂が不飽和
ポリエステル樹脂の硬化収縮を低減させるところ
の低収縮剤としての効果を発現するためには必ず
硬化成形時に成形温度がかなり高いことを要す
る。このため加熱成形法以外の成形法では有効な
低収縮剤が存在しない。更に一般の熱可塑性樹脂
は不飽和ポリエステル樹脂への分散安定性が不良
であり硬化段階途中で不飽和ポリエステル樹脂成
形体からの浮き出しが生じ、硬化物表面の荒れ、
硬化不良、硬化収縮の不均一、強度低下等により
該樹脂の使用分野、範囲が制限を受けている。 本発明者らは上記の欠点を解決するために鋭意
攻究した結果酢酸ビニルとスチレンセグメントか
ら成り、且つどちらか一方のセグメントに酸基を
結合させたブロツク共重合体混合物を不飽和ポリ
エステル樹脂の硬化時に添加するならば該不飽和
ポリエステル樹脂硬化体に対し優れた低収縮効果
を発現させ得ることを発明し、これを特願昭56−
48769号(特開昭57−164114号)で出願した。し
かし、この発明は加熱成形は十分であつても常温
硬化においては未だ不十分であつた。本発明者ら
は不飽和ポリエステル樹脂に安定に分散し、且つ
常温硬化においても十分な低収縮効果を発現し得
るブロツク共重合体混合物を提供するよう研究し
た結果、後述するブロツク共重合体はこれを得る
さいブロツク効率が70〜90重量%と高く、かつこ
のブロツク共重合体混合物を含有する非水分散樹
脂組成物が極めて優れた分散安定性を示し、さら
に上記のブロツク共重合体混合物を不飽和ポリエ
ステル樹脂に配合してなる組成物は特に常温硬化
低収縮性に優れた効果を持つことの知見を得て本
発明を完成した。 即ち本発明は (A);不飽和ポリエステル20〜70重量% (B);前記不飽和ポリエステル(A)と共重合可能な
単量体30〜70重量%、(C);下記に定義されるブロ
ツク共重合体混合物2〜20重量%からなり、上記
(B)単量体及び(C)ブロツク共重合体の混合物が非水
分散状態であり且つ上記不飽和ポリエステル(A)、
単量体(B)、及びブロツク共重合体混合物(C)の混合
物が非水分散状態である低収縮性不飽和ポリエス
テル樹脂組成物である。 前記のブロツク共重合体混合物とは 一般式 〔式中、R1は炭素数1〜18のアルキレン基もし
くは置換アルキレン基、炭素数3〜15のシクロア
ルキレン基もしくは置換シクロアルキレン基、フ
エニレン基もしくは置換フエニレン基を示し、
R2は炭素数2〜10のアルキレン基もしくは置換
アルキレン基、
The present invention relates to a low-shrinkage unsaturated polyester resin composition that exhibits excellent low-shrinkage properties when cured at room temperature. Generally, cured molded products of unsaturated polyester resins are made by hand using an organic peroxide such as benzoyl peroxide or methyl ethyl ketone peroxide as a polymerization catalyst and, if necessary, an organic metal salt such as cobalt naphthenate or cobalt octenoate as a polymerization accelerator. Contact pressure molding methods such as the lay-up method, cold press methods that utilize the reaction heat generated during curing of unsaturated polyester resin using a relatively low-pressure press or press-in machine, resin injection methods, resin mortar, resin concrete, etc. It is obtained by a room-temperature molding method, or a heat molding method using a molding composition such as a sheet molding compound (SMC) or a bulk molding compound (BMC). However, unsaturated polyester resin has a large curing shrinkage of about 5 to 12% by volume, and no matter which of the above molding methods is used, various defects such as strength reduction, cracks, warping, and surface stains occur due to curing shrinkage. was unavoidable. As a method of reducing the curing shrinkage of the above-mentioned unsaturated polyester resin, a method has been used in which a thermoplastic resin such as polystyrene, polymethyl methacrylate, polyvinyl acetate, etc. is blended with the unsaturated polyester resin, and these methods have a certain degree of effectiveness. It is known that it is possible to develop a low contraction effect. However, fundamentally important drawbacks remain. That is, in order for a general thermoplastic resin to exhibit its effect as a low-shrinkage agent that reduces curing shrinkage of unsaturated polyester resins, it is necessary that the molding temperature be quite high during curing molding. For this reason, there is no effective low-shrinkage agent for molding methods other than hot molding. Furthermore, general thermoplastic resins have poor dispersion stability in unsaturated polyester resins, causing embossment from unsaturated polyester resin moldings during the curing stage, resulting in roughness and roughness on the surface of the cured product.
The field and range of use of this resin is limited due to poor curing, non-uniform curing shrinkage, reduced strength, etc. The inventors of the present invention made intensive efforts to solve the above-mentioned drawbacks, and as a result, a block copolymer mixture consisting of vinyl acetate and styrene segments, with an acid group bonded to one of the segments, was used as an unsaturated polyester resin. He discovered that if added during curing, the cured product of unsaturated polyester resin could exhibit an excellent low shrinkage effect, and this patent application was published in 1983.
The application was filed under No. 48769 (Japanese Unexamined Patent Publication No. 164114/1983). However, although this invention was sufficient in heat forming, room temperature curing was still insufficient. The present inventors conducted research to provide a block copolymer mixture that can be stably dispersed in an unsaturated polyester resin and exhibit sufficient low shrinkage effects even when cured at room temperature. The non-aqueous dispersion resin composition containing this block copolymer mixture has a high blocking efficiency of 70 to 90% by weight and exhibits extremely excellent dispersion stability. The present invention was completed based on the knowledge that a composition blended with a saturated polyester resin has particularly excellent effects on low shrinkage when cured at room temperature. That is, the present invention comprises (A); 20 to 70% by weight of an unsaturated polyester (B); 30 to 70% by weight of a monomer copolymerizable with the unsaturated polyester (A); (C); defined below. Consisting of 2 to 20% by weight of a block copolymer mixture, the above
(B) the monomer and (C) the block copolymer mixture is in a non-aqueous dispersion state, and the unsaturated polyester (A),
This is a low shrinkage unsaturated polyester resin composition in which a mixture of a monomer (B) and a block copolymer mixture (C) is in a non-aqueous dispersion state. The above block copolymer mixture has the general formula [In the formula, R 1 represents an alkylene group or substituted alkylene group having 1 to 18 carbon atoms, a cycloalkylene group or substituted cycloalkylene group having 3 to 15 carbon atoms, a phenylene group or a substituted phenylene group,
R 2 is an alkylene group or substituted alkylene group having 2 to 10 carbon atoms,

【式】(式中、R3は水素原子又は メチル基を示し、R4は炭素数2〜10のアルキレ
ン基もしくは置換アルキレン基を示しm=1〜13
である。)、
[Formula] (In the formula, R 3 represents a hydrogen atom or a methyl group, R 4 represents an alkylene group having 2 to 10 carbon atoms or a substituted alkylene group, and m = 1 to 13
It is. ),

【式】 又は【formula】 or

【式】を示し、 n=2〜20である。〕で表わされるポリメリツク
ペルオキシドを重合開始剤として、下記(a)及び(b)
で定義されるいずれか一方の単量体又は単量体の
混合物(以下それぞれを単量体(a)及び単量体(b)と
いう)を重合させて(第一重合反応)、分子内に
ペルオキシ結合を有する重合体を得、ついでこの
重合体と第一重合反応に用いなかつた単量体又は
単量体の混合物を、ブロツク共重合させて、得ら
れたブロツク共重合体 (a);スチレン単量体70〜100重量%及びこれと共
重合可能な単量体30〜0重量%とからなる単量
体若しくは単量体混合物 (b);アクリル酸又はメタクリル酸の炭素数1〜4
のアルキルエステル70〜100重量%及びこれと
共重合可能な単量体30〜0重量%からなる単量
体又は単量体混合物 本発明に用いられる不飽和ポリエステルはα,
β―不飽和二塩基酸、飽和二塩基酸及びグリコー
ル類から製造される。ここでα,β不飽和二塩基
酸は、たとえば無水マレイン酸、マレイン酸、フ
マル酸、メサコン酸、テトラコン酸、イタコン
酸、塩素化マレイン酸あるいはこれらのアルキル
エステル類である。飽和二塩基酸は、例えば無水
フタル酸、フタル酸、イソフタル酸、テトラフタ
ル酸、テトラヒドロフタル酸、ハロゲン化無水フ
タル酸、アジピン酸、コハク酸、セバシン酸ある
いはこれらのアルキルエステル類等である。グリ
コール類は、例えばエチレングリコール、ジエチ
レングリコール、プロピレングリコール、ジプロ
ピレングリコール、ブチレングリコール、ネオベ
ンチルグリコール、ヘキシレングリコール、水素
化ビスフエノールA、2,2′―ジ(4―ヒドロキ
シプロボキシフエニル)プロパン、2,2′―ジ
(4―ヒドロキシエトキシフエニル)プロパン、
エチレンオキシド、プロピレンオキシド等であ
る。 不飽和ポリエステルと共重合可能な単量体(B)と
しては、例えばスチレン、α―メチルスチレン、
t―ブチルスチレンの様なアルケニル芳香族単量
体、アクリル酸及びメタクリル酸のアルキルエス
テル等が用いられるが特にスチレンが好ましい。 また、ブロツク共重合体混合物(C)は一般式
()で示されるポリメリツクペルオキシドを用
いて公知の製造プロセスで通常の塊状重合法、懸
濁重合法、乳化重合法及び溶液重合法等で重合す
ることにより容易に製造することができる。この
場合、第一重合反応により生じた分子内にペルオ
キシ結合を有する共重合体混合物は中間体として
反応系から取り出して次のブロツク共重合体混合
物の原料にすることもできるし、反応系から取り
出すことなく引き続いてブロツク共重合させるこ
ともできる。また、ポリメリツクペルオキシドの
使用量は前記単量体A又は単量体B100部に対し
て0.1〜10部、重合温度は40〜90℃、重合時間は
2〜15時間がそれぞれ適当である。 本発明におけるブロツク共重合体混合物の製造
に使用されるポリメリツクペルオキシドは通常の
ジアシルペルオキシドを製造する方法で、分子内
にエステル結合を有する二塩基酸塩化物と過酸化
ソーダとを反応させることにより容易に製造出来
る。 本発明における一般式()で表わされるポリ
メリツクペルオキシドとは具体的には例えば (以上いずれもn=2〜20である。) 等をあげることが出来る。 本発明におけるブロツク共重合体混合物を製造
するのに用いられるスチレン単量体と共重合可能
な単量体としては、例えばアクリル酸、アクリル
酸エステル、メタクリル酸、メタクリル酸エステ
ル、スチレン誘導体、アクリルニトリル、メタク
リルニトリル、フマル酸又はマレイン酸の誘導
体、ビニルケトン、ビニルピリジン、ブタジエン
等をあげることが出来、その使用量はスチレンと
の単量体混合物中で30重量%以下に限定される。 30重量%を超えた場合は、最終的に合成される
ブロツク共重体混合物の性能が悪影響を受け、該
ブロツク共重合体混合物を含有してなる不飽和ポ
リエステル樹脂組成物を硬化させるならば硬化物
表面が光沢不足となり、顔料着色性不足が強くな
る。 アクリル酸又はメタクリル酸の炭素数1〜4の
アルキルエステルと共重合可能な単量体として
は、例えばアクリル酸又はメタクリル酸の炭素数
5〜18のアルキルエステル、アクリル酸、メタク
リル酸、メタクリルニトリル、スチレン及びスチ
レン誘導体等をあげることが出来、その使用量は
アクリル酸又はメタクリル酸の炭素数1〜4のア
ルキルエステルとからなる単量体混合物中で30重
量%以下に限定される。30重量%を超えた場合
は、最終的に合成されるブロツク共重合体混合物
の性能に悪影響を与え、該ブロツク共重合体混合
物を含有してなる不飽和ポリエステル樹脂組成物
を硬化させる場合にその硬化途中で該ブロツク共
重合体混合物の浮き出しが認められ、硬化収縮の
不均一が生じる。 なお、前記ブロツク共重合体混合物(C)を製造す
るのに用いられる単量体(a)と単量体(b)との比率
は、単量体(a)が10〜90重量部で単量体(b)が90〜10
重量部であることが好ましい。この範囲を外れる
場合には、不飽和ポリエステル樹脂組成物とした
時に、硬化前ないし硬化途中で不飽和ポリエステ
ルとブロツク共重合体混合物とが層分離の傾向を
示し、硬化物組成の不均質化を招くことになるの
で好ましくない。 本発明においてブロツク共重合体混合物の配合
量は前記不飽和ポリエステル(A)、単量体(B)及びブ
ロツク共重合体混合物(C)との合計量に対して2〜
20重量%が必要である。 2重量%未満では低収縮効果が生じない。また
20重量%を超えると硬化時の膨張が大き過ぎ硬化
成形物の機械強度が低下する。 以上詳述した組成を有する不飽和ポリエステル
樹脂組成物はそのままで種々の目的に使用するこ
とも出来るが、微粉末(例えば炭酸カルシウム、
タルク、クレー、木粉等の無機質又は有機質微粉
末)、骨材(例えば砂、砂利、砕石等の無機質粒
状物質)等を適宜配合してなるレジンモルタル組
成物、レジンコンクリート組成物としても有効に
使用出来る。そしてこれらの組成物は数日間放置
しても樹脂リツチ層が生じることもなく微粉末、
骨材の沈降も少なく極めて貯蔵安定性に優れてい
るのみならず、従来公知の手順に従つて硬化させ
るならば10℃〜30℃、10分〜10時間程度の常温硬
化条件下で、寸法精度の優えた組成均質の硬化成
形物を得ることが出来る。 即ち本発明の低収縮性不飽和ポリエステル樹脂
組成物は特定のブロツク共重合体混合物がミクロ
に安定分散している非水分散状態を極めて長時間
保つ組成物であり、且つ該組成物が低収縮効果を
発現するに当つては必ずしも十分な硬化温度を必
要としない特長を持つている。この特長により常
温硬化を採用する従来の成形法のいずれによるも
のについても従来の成形物に比較して高強度で寸
法精度及び表面光沢等に優れた成形物を得ること
が可能になつた。また、該組成物は硬化温度が伴
えばその低収縮効果発現が更に大きくなるのは当
然のことであり、SMC、BMC等の成形用組成物
として加熱成形法を採用して極めて大きな寸法精
度、強度、光沢、表面平滑性等を与えることが出
来る。 以下、参考例、実施例及び比較例によつて本発
明を詳細に説明する。なお各例中、部及び%とあ
るは特に断わらない限り重量部及び重量%を示
す。 参考例 1 〔ポリメリツクペルオキシドの製造〕 の製造 温度計、撹拌機を備えたガラス反応器にアジピ
ン酸塩化物183部とトリエチレングリコール75部
を仕込んだ。該ガラス反応器の内容物を温度20〜
30℃、圧力を40〜50mmHgに維持しつつ撹拌下に
60分間反応させて無色粘性液体のトリエチレング
リコールビス(アジポイルクロライド)220部を
得た。 次に温度計、撹拌機、滴下漏斗を備えたガラス
製反応器に、50%過酸化水素溶液30部と5%苛性
ソーダ水溶液832部とで予め調製した過酸化ソー
ダ水溶液を仕込んだ。さらにこのガラス製反応器
の内容物を撹拌下温度を0〜5℃に維持しなが
ら、この内容物に先の反応で得られたトリエチレ
ングリコールビス(アジポイルクロライド)176
部を滴下漏斗で加えた。滴下終了後、得た反応組
成物を温度0〜5℃に維持しつつ30分間撹拌を継
続して反応を終了させた。反応生成物より生成し
た固体の沈殿物を別し、続いて2回水洗浄した
後真空乾燥して白色固体140部を得た。この白色
固体を360部のクロロホルムに溶解させ、これを
1600部のメタノール中に注ぎ再結晶させて精製し
た。この生成物を別して白色固体108部を得た。
この精製反応物についてヨード測定法による純
度、分子量、分解温度、赤外線吸収スペクトル分
析及び核磁気共鳴スペクトル分析を行ない、下記
の結果を得た。なお分子量はVPO(日立製作所
製、蒸気圧平衡法分子量測定装置115型)で測定
した。 ヨード測定法による純度 99.7% 分解温度 90℃ 分子量 2140(n≒5.3) 赤外線吸収スペクトル 1725cm-1(エステル基のC=O結合) 1780cm-1と1805cm-1(ジアシル基のC=0結合) 875cm-1(O―O結合) 核磁気共鳴スペクトル τ:8.24(8H、
[Formula] is shown, and n=2 to 20. ] Using polymer peroxide as a polymerization initiator, the following (a) and (b)
Either one of the monomers defined in (hereinafter referred to as monomer (a) and monomer (b)) (hereinafter referred to as monomer (b)) is polymerized (first polymerization reaction), and A block copolymer (a) obtained by obtaining a polymer having a peroxy bond, and then block copolymerizing this polymer with a monomer or a mixture of monomers not used in the first polymerization reaction; Monomer or monomer mixture (b) consisting of 70 to 100% by weight of a styrene monomer and 30 to 0% by weight of a monomer copolymerizable with the same; acrylic acid or methacrylic acid having 1 to 4 carbon atoms
A monomer or monomer mixture consisting of 70 to 100% by weight of an alkyl ester of and 30 to 0% by weight of a monomer copolymerizable with the unsaturated polyester used in the present invention is α,
Manufactured from β-unsaturated dibasic acids, saturated dibasic acids and glycols. Here, the α,β unsaturated dibasic acid is, for example, maleic anhydride, maleic acid, fumaric acid, mesaconic acid, tetraconic acid, itaconic acid, chlorinated maleic acid, or alkyl esters thereof. Examples of the saturated dibasic acid include phthalic anhydride, phthalic acid, isophthalic acid, tetraphthalic acid, tetrahydrophthalic acid, halogenated phthalic anhydride, adipic acid, succinic acid, sebacic acid, and alkyl esters thereof. Examples of glycols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, neobentyl glycol, hexylene glycol, hydrogenated bisphenol A, and 2,2'-di(4-hydroxyproboxyphenyl). Propane, 2,2'-di(4-hydroxyethoxyphenyl)propane,
Ethylene oxide, propylene oxide, etc. Examples of the monomer (B) copolymerizable with unsaturated polyester include styrene, α-methylstyrene,
Alkenyl aromatic monomers such as t-butylstyrene, alkyl esters of acrylic acid and methacrylic acid, and the like are used, with styrene being particularly preferred. In addition, the block copolymer mixture (C) is polymerized using a polymeric peroxide represented by the general formula () by a conventional bulk polymerization method, suspension polymerization method, emulsion polymerization method, solution polymerization method, etc. By doing so, it can be easily manufactured. In this case, the copolymer mixture having peroxy bonds in the molecules produced by the first polymerization reaction can be taken out from the reaction system as an intermediate and used as a raw material for the next block copolymer mixture, or it can be taken out from the reaction system. It is also possible to carry out block copolymerization subsequently. Further, the amount of polymeric peroxide used is 0.1 to 10 parts per 100 parts of monomer A or monomer B, the polymerization temperature is 40 to 90 DEG C., and the polymerization time is 2 to 15 hours. The polymeric peroxide used in the production of the block copolymer mixture in the present invention is produced by reacting a dibasic acid chloride having an ester bond in the molecule with sodium peroxide, using the usual method for producing diacyl peroxide. Easy to manufacture. Specifically, the polymeric peroxide represented by the general formula () in the present invention is, for example, (In all of the above, n=2 to 20.) etc. Examples of monomers copolymerizable with the styrene monomer used to produce the block copolymer mixture of the present invention include acrylic acid, acrylic esters, methacrylic acid, methacrylic esters, styrene derivatives, and acrylonitrile. , methacrylnitrile, derivatives of fumaric acid or maleic acid, vinyl ketone, vinylpyridine, butadiene, etc., and the amount used thereof is limited to 30% by weight or less in the monomer mixture with styrene. If it exceeds 30% by weight, the performance of the finally synthesized block copolymer mixture will be adversely affected, and if an unsaturated polyester resin composition containing the block copolymer mixture is cured, the cured product will be affected. The surface becomes insufficiently glossy, and pigment coloring properties become insufficient. Examples of monomers copolymerizable with C1-C4 alkyl esters of acrylic acid or methacrylic acid include C5-18 alkyl esters of acrylic acid or methacrylic acid, acrylic acid, methacrylic acid, methacryl nitrile, Examples include styrene and styrene derivatives, and the amount thereof used is limited to 30% by weight or less in the monomer mixture consisting of an alkyl ester of acrylic acid or methacrylic acid having 1 to 4 carbon atoms. If it exceeds 30% by weight, it will adversely affect the performance of the finally synthesized block copolymer mixture, and the unsaturated polyester resin composition containing the block copolymer mixture will be difficult to cure. During curing, embossment of the block copolymer mixture is observed, resulting in non-uniform curing shrinkage. The ratio of monomer (a) and monomer (b) used to produce the block copolymer mixture (C) is such that monomer (a) is 10 to 90 parts by weight. Quantity (b) is 90-10
Parts by weight are preferred. If outside this range, when an unsaturated polyester resin composition is made, the unsaturated polyester and block copolymer mixture tend to separate into layers before or during curing, resulting in non-uniformity of the composition of the cured product. I don't like this because it invites people. In the present invention, the blending amount of the block copolymer mixture is 2 to 2 to
20% by weight is required. If the amount is less than 2% by weight, the shrinkage reduction effect will not occur. Also
If it exceeds 20% by weight, the expansion during curing will be too large and the mechanical strength of the cured molded product will decrease. The unsaturated polyester resin composition having the composition detailed above can be used as it is for various purposes, but it can also be used as a fine powder (e.g. calcium carbonate,
It is also effective as a resin mortar composition and a resin concrete composition, which are made by appropriately blending inorganic or organic fine powders such as talc, clay, and wood powder, and aggregates (for example, inorganic granular materials such as sand, gravel, and crushed stone). Can be used. These compositions do not form a resin-rich layer even after being left for several days, and remain fine powders.
Not only does it have excellent storage stability with little aggregate settling, but it also maintains dimensional accuracy under room temperature curing conditions of 10°C to 30°C for 10 minutes to 10 hours if cured according to conventionally known procedures. A cured molded product with excellent compositional homogeneity can be obtained. That is, the low shrinkage unsaturated polyester resin composition of the present invention is a composition that maintains a non-aqueous dispersion state in which a specific block copolymer mixture is stably dispersed microscopically for an extremely long time, and the composition has a low shrinkage property. It has the feature that it does not necessarily require a sufficient curing temperature to exhibit its effects. Due to this feature, it has become possible to obtain molded products with higher strength, superior dimensional accuracy, surface gloss, etc. compared to conventional molded products using any of the conventional molding methods that employ room-temperature curing. In addition, it is a matter of course that the low shrinkage effect of the composition becomes even greater as the curing temperature increases, and therefore, by employing a thermoforming method as a molding composition for SMC, BMC, etc., extremely high dimensional accuracy, It can provide strength, gloss, surface smoothness, etc. Hereinafter, the present invention will be explained in detail using Reference Examples, Examples, and Comparative Examples. In each example, parts and % indicate parts by weight and % by weight unless otherwise specified. Reference example 1 [Manufacture of polymeric peroxide] Production of 183 parts of adipic acid chloride and 75 parts of triethylene glycol were charged into a glass reactor equipped with a thermometer and a stirrer. The contents of the glass reactor are heated to a temperature of 20~
30℃, under stirring while maintaining pressure at 40-50mmHg.
The reaction was carried out for 60 minutes to obtain 220 parts of triethylene glycol bis(adipoyl chloride) as a colorless viscous liquid. Next, a glass reactor equipped with a thermometer, a stirrer, and a dropping funnel was charged with an aqueous sodium peroxide solution prepared in advance with 30 parts of a 50% hydrogen peroxide solution and 832 parts of a 5% aqueous sodium hydroxide solution. Furthermore, while stirring the contents of this glass reactor and maintaining the temperature at 0 to 5°C, triethylene glycol bis(adipoyl chloride 176) obtained in the previous reaction was added to the contents.
of the mixture was added using an addition funnel. After the dropwise addition was completed, stirring was continued for 30 minutes while maintaining the temperature of the obtained reaction composition at 0 to 5°C to complete the reaction. A solid precipitate formed from the reaction product was separated, washed twice with water, and then dried under vacuum to obtain 140 parts of a white solid. Dissolve this white solid in 360 parts of chloroform and
It was purified by pouring it into 1600 parts of methanol and recrystallizing it. This product was separated to obtain 108 parts of a white solid.
The purified reaction product was analyzed for purity, molecular weight, decomposition temperature, infrared absorption spectroscopy, and nuclear magnetic resonance spectroscopy by iodine measurement, and the following results were obtained. The molecular weight was measured by VPO (manufactured by Hitachi, Ltd., vapor pressure equilibrium method molecular weight measuring device model 115). Purity by iodine measurement method 99.7% Decomposition temperature 90℃ Molecular weight 2140 (n≒5.3) Infrared absorption spectrum 1725cm -1 (C=O bond of ester group) 1780cm -1 and 1805cm -1 (C=0 bond of diacyl group) 875cm -1 (O-O bond) Nuclear magnetic resonance spectrum τ: 8.24 (8H,

【式】) τ:7.56(8H、【formula】) τ: 7.56 (8H,

【式】) τ:6.28(8H、―CH2CH2OCH2―) τ:5.72(4H、[Formula]) τ: 6.28 (8H, - CH 2 CH 2 OCH 2 -) τ: 5.72 (4H,

【式】) これらの結果から精製反応生成物は下記一般式
を有するポリメリツクペルオキシドであることが
認められた。 参考例 2 〔ブロツク共重合体混合物の製造―1〕 温度計、撹拌機、コンデンサーを備えたガラス
製反応器に、1.0%のポリビニルアルコール水溶
液300部と予めメタクリル酸メチル(以後MMA
と略記する。)10部に参考例1で得られたポリメ
リツクペルオキシド(以後P・POと略記する。)
0.5部を溶解させて得られた溶液とを仕込んだ。
反応器内の空気を窒素ガスで置換した後、撹拌し
つつ65℃に加熱して重合を開始した。温度を65℃
に維持しつつ1.5時間重合させた後、スチレン
(以後STと略記する。)90部を加えた。次いで温
度を75℃に昇温して12時間重合を続けた。室温に
冷却して重合を終了した後、重合物を別しよく
水洗してから真空乾燥して白色粒状のブロツク共
重合体混合物97部を得た。 参考例 3 〔ブロツク共重合体混合物の製造―2) 予めMMA50部に参考例1で得られたP・PO
を2.5部溶解させた溶液、及びST50部を用いる以
外は参考例2に準じてブロツク共重合体混合物97
部を得た。 参考例 4 〔ブロツク共重合体混合物の製造―3〕 予めMMA90部に参考例1で得られたP・PO
を4.5部を溶解させた溶液、及びST10部を用いる
以外は参考例2に準じてブロツク共重合体混合物
96部を得た。 参考例 5 〔ブロツク共重合体混合物の製造―4) 予めMMA10部に参考例1で得られたP・PO
を0.5部溶解させた溶液を重合させた後、ST63部
とメタクリル酸(以後MAと略記する)27部の混
合物を用いる以外は参考例2に準じてブロツク共
重合体混合物95部を得た。 参考例 6 〔ブロツク共重合体混合物の製造―5) 予めMMA63部とアクリル酸(以後AAと略記
する。)27部に参考例1で得られたP・POを6部
溶解させた溶液を重合させた後、ST10を用いる
以外は参考例2に準じてブロツク共重合体混合物
94部を得た。 参考例 7 〔ブロツク共重合体混合物の製造―6〕 予めMMA35部とAA15部に参考例1で得られ
たP・POを4.5部溶解させた溶液を重合させた
後、ST35部とMA15部を用いる以外は参考例2
に準じてブロツク共重合体混合物93部を得た。 参考例 8 〔ブロツク共重合体混合物の製造―7) 予めアクリル酸ブチル(以後BAと略記する)
50部に参考例1で得られたP・POを1部溶解さ
せた溶液、及びST50部を用いる以外は参考例2
に準じてブロツク共重合体混合物96部を得た。 次に参考例2〜8で得られたブロツク共重合体
混合物を各々2.0g秤量した後、ソツクスレー抽出
器を用いて初めにシクロヘキサンで24時間、次に
アセトニトリルで24時間抽出した。シクロヘキサ
ン及びアセトニトリル抽出による重量減少量を
各々ポリスチレン(以後PSTと略記する)、及び
ポリメタクリル酸メチル(以後PMMAと略記す
る)又はポリアクリル酸ブチル(以後PBAと略
記する)の含有量とし、抽出残分を該ブロツク共
重合体の含有量とした。結果を表1に示す。
[Formula]) From these results, it was confirmed that the purified reaction product was a polymeric peroxide having the following general formula. Reference Example 2 [Manufacture of block copolymer mixture-1] In a glass reactor equipped with a thermometer, a stirrer, and a condenser, 300 parts of a 1.0% polyvinyl alcohol aqueous solution and methyl methacrylate (hereinafter MMA) were placed in advance.
It is abbreviated as ) 10 parts of the polymeric peroxide obtained in Reference Example 1 (hereinafter abbreviated as P/PO).
A solution obtained by dissolving 0.5 part was added.
After replacing the air in the reactor with nitrogen gas, the reactor was heated to 65° C. with stirring to initiate polymerization. Temperature 65℃
After polymerizing for 1.5 hours while maintaining the same temperature, 90 parts of styrene (hereinafter abbreviated as ST) was added. Then, the temperature was raised to 75°C and polymerization was continued for 12 hours. After the polymerization was completed by cooling to room temperature, the polymer was separated, thoroughly washed with water, and then dried under vacuum to obtain 97 parts of a white granular block copolymer mixture. Reference Example 3 [Manufacture of block copolymer mixture-2] P/PO obtained in Reference Example 1 was added to 50 parts of MMA in advance.
A block copolymer mixture 97 was prepared according to Reference Example 2 except that 2.5 parts of ST was dissolved in the solution and 50 parts of ST was used.
I got the department. Reference Example 4 [Manufacture of block copolymer mixture-3] P/PO obtained in Reference Example 1 was added to 90 parts of MMA in advance.
A block copolymer mixture was prepared according to Reference Example 2 except that 4.5 parts of ST was dissolved in the solution and 10 parts of ST was used.
Obtained 96 copies. Reference Example 5 [Manufacture of block copolymer mixture-4] P/PO obtained in Reference Example 1 was added to 10 parts of MMA in advance.
After polymerizing a solution in which 0.5 part of ST was dissolved, 95 parts of a block copolymer mixture was obtained according to Reference Example 2, except that a mixture of 63 parts of ST and 27 parts of methacrylic acid (hereinafter abbreviated as MA) was used. Reference Example 6 [Production of Block Copolymer Mixture-5) A solution prepared by dissolving 6 parts of P/PO obtained in Reference Example 1 in 63 parts of MMA and 27 parts of acrylic acid (hereinafter abbreviated as AA) in advance was polymerized. After that, the block copolymer mixture was prepared according to Reference Example 2 except that ST10 was used.
Obtained 94 copies. Reference Example 7 [Manufacture of block copolymer mixture-6] After polymerizing a solution in which 4.5 parts of P/PO obtained in Reference Example 1 was dissolved in 35 parts of MMA and 15 parts of AA, 35 parts of ST and 15 parts of MA were added. Reference example 2 except for use
93 parts of a block copolymer mixture was obtained. Reference example 8 [Manufacture of block copolymer mixture-7] Butyl acrylate (hereinafter abbreviated as BA) in advance
Reference Example 2 except that a solution in which 1 part of P/PO obtained in Reference Example 1 was dissolved in 50 parts, and 50 parts of ST were used.
96 parts of a block copolymer mixture was obtained. Next, 2.0 g of each of the block copolymer mixtures obtained in Reference Examples 2 to 8 was weighed and extracted using a Soxhlet extractor, first with cyclohexane for 24 hours and then with acetonitrile for 24 hours. The amount of weight loss due to cyclohexane and acetonitrile extraction is defined as the content of polystyrene (hereinafter abbreviated as PST), polymethyl methacrylate (hereinafter abbreviated as PMMA) or polybutyl acrylate (hereinafter abbreviated as PBA), and the extracted residue is % was defined as the content of the block copolymer. The results are shown in Table 1.

【表】 参考例 9 〔不飽和ポリエステル樹脂の製造〕 フマル酸812部、イソフタル酸498部、プロピレ
ングリコール396部及びネオペンチルグリコール
542部を通常の方法でエステル化して不飽和ポリ
エステル(酸価30、以後UPと略記する)を合成
し、得られたUPをSTで希釈してST濃度が全体
の35%となるように調整し不飽和ポリエステル樹
脂(以下UPRと略記する)を得た。 参考例 10 〔比較用ブロツク共重合体混合物の製造―1〕 温度計、撹拌機、コンデンサーを備えたガラス
製反応器に1.0%ポリビニルアルコール水溶液300
部と、予め酢酸ビニル(以下VAcと略記する)
10部に参考例1で得られたP・POを0.5部溶解さ
せて得られた溶液とを仕込んだ。反応器内の空気
を窒素ガスで置換した後、撹拌しつつ60℃に加熱
して重合を開始した。反応器の内容物を温度60℃
に維持しながら3時間重合させた後、ST90部と
MA10部の混合物を加えた。次いで温度を75℃に
昇温し7時間重合を続けた。室温に冷却して重合
を終了した後重合物を別し、よく水洗浄してか
ら真空乾燥して白色粒状のブロツク共重合体混合
物103部を得た。 参考例 11 〔比較用ブロツク共重合体混合物の製造―2〕 予めVA(50部に参考例1で得られたP・POを
2.5部溶解させた溶液を用い、次いでST50部と
MA1.5部との混合物を用いる以外は参考例10に
準じてブロツク共重合体混合物98部を得た。 次に参考例10〜11で得られたブロツク共重合体
混合物を各々2.0g秤量した後、ソツクスレー抽出
器を用いて初めにメタノールで24時間、次にシク
ロヘキサンで24時間抽出した。メタノール及びシ
クロヘキサン抽出による重量減少量を各々ポリ酢
酸ビニル(以下PVAcと略記する)、PSTの含有
量とし、抽出残分を該ブロツク共重合体の含有量
とした。結果を表2示す。
[Table] Reference Example 9 [Production of unsaturated polyester resin] 812 parts of fumaric acid, 498 parts of isophthalic acid, 396 parts of propylene glycol, and neopentyl glycol
Synthesize unsaturated polyester (acid value: 30, hereinafter abbreviated as UP) by esterifying 542 parts using the usual method, diluting the obtained UP with ST and adjusting the ST concentration to 35% of the total. An unsaturated polyester resin (hereinafter abbreviated as UPR) was obtained. Reference Example 10 [Manufacture of block copolymer mixture for comparison-1] 1.0% polyvinyl alcohol aqueous solution 300 ml was placed in a glass reactor equipped with a thermometer, stirrer, and condenser.
and vinyl acetate (hereinafter abbreviated as VAc) in advance.
A solution obtained by dissolving 0.5 part of P.PO obtained in Reference Example 1 was added to 10 parts. After replacing the air in the reactor with nitrogen gas, the reactor was heated to 60° C. with stirring to initiate polymerization. Bring the contents of the reactor to a temperature of 60℃
After polymerizing for 3 hours while maintaining
A mixture of 10 parts MA was added. Then, the temperature was raised to 75°C and polymerization was continued for 7 hours. After the polymerization was completed by cooling to room temperature, the polymer was separated, thoroughly washed with water, and then vacuum dried to obtain 103 parts of a white granular block copolymer mixture. Reference Example 11 [Manufacture of Comparative Block Copolymer Mixture-2] Add P/PO obtained in Reference Example 1 to 50 parts of VA (50 parts) in advance.
Use a solution containing 2.5 parts, then add 50 parts of ST.
98 parts of a block copolymer mixture was obtained according to Reference Example 10 except that a mixture with 1.5 parts of MA was used. Next, 2.0 g of each of the block copolymer mixtures obtained in Reference Examples 10 to 11 was weighed and extracted using a Soxhlet extractor, first with methanol for 24 hours and then with cyclohexane for 24 hours. The weight loss due to methanol and cyclohexane extraction was defined as the content of polyvinyl acetate (hereinafter abbreviated as PVAc) and PST, respectively, and the extraction residue was defined as the content of the block copolymer. The results are shown in Table 2.

【表】 参考例 12 〔比較用低収縮剤の調製〕 (a) PVAc 分子量、約103000のものをその濃度が30%と
なるようにSTに溶解させて溶液にして比較用
低収縮剤(a)とした。 (b) PMMA 分子量、約500000のものをその濃度が30%と
なるようにSTに溶解させて溶液にして比較用
低収縮剤(b)とした。 (c) PST 旭ダウ工業(株)製、スタイロン666をその濃度
が30%となるようにSTに溶解させて溶液にし
て比較用低収縮剤(c)とした。 (d) ST―MMAランダム共重合体 ST(50)/MMA(50)重量比のランダム共
重合体で分子量約500000のものを、その濃度が
30%となるようにSTに溶解させて溶液にして
比較用低収縮剤(d)とした。 なお参考例2〜8、及び10、11で得られたブロ
ツク共重合体混合物は、その濃度が30%となるよ
うにSTに分散させた分散液として準備し、次に
述べる実施例に各々使用した。 実施例 1 〔常温、水浴系での不飽和ポリエステル樹脂組
成物の低収縮効果〕 参考例2で得られたブロツク共重合体混合物の
ST分散液と参考例9で得られたUPRとを重合媒
媒パーメツクN(日本油脂(株)製、メチルエチルケ
トンペルオキシドの商品名)及び重合触媒ナフテ
ン酸コバルトの共存下で混合した。次いでこれを
容積の知れたガラス管に注入し、20℃水浴中に静
置し、硬化物の容積収縮率を次式により求めた。 容積収縮率(%) 硬化前の容積―硬化後の容積/硬化前の容積×100 なお注入〜硬化の段階でガラス管に注入された
該組成物の温度変化を測定したが水浴による除熱
効果が大きく温度上昇は認められなかつた。結果
を表3に示す。 実施例 2〜14 〔常温、水浴系での不飽和ポリエステル樹脂組
成物の低収縮効果〕 参考例3〜8で得られたそれぞれのブロツク共
重合体混合物を用いる以外は実施例1に準じて試
験し、結果を表3に示した。
[Table] Reference Example 12 [Preparation of comparative low shrinkage agent] (a) Dissolve PVAc with a molecular weight of approximately 103000 in ST to a concentration of 30%, make a solution, and prepare a comparative low shrinkage agent (a ). (b) PMMA with a molecular weight of about 500,000 was dissolved in ST to a concentration of 30% to form a solution, which was used as a comparative low-shrinkage agent (b). (c) PST Styron 666 manufactured by Asahi Dow Industries Co., Ltd. was dissolved in ST to a concentration of 30% to form a solution, which was used as a comparative low shrinkage agent (c). (d) ST-MMA random copolymer A random copolymer with a weight ratio of ST(50)/MMA(50) with a molecular weight of approximately 500,000, whose concentration is
It was dissolved in ST to a concentration of 30% and made into a solution, which was used as a comparative low shrinkage agent (d). The block copolymer mixtures obtained in Reference Examples 2 to 8, 10, and 11 were prepared as dispersions in ST so that the concentration was 30%, and used in the following examples. did. Example 1 [Low shrinkage effect of unsaturated polyester resin composition in water bath system at room temperature] The block copolymer mixture obtained in Reference Example 2
The ST dispersion and the UPR obtained in Reference Example 9 were mixed in the presence of a polymerization medium Permec N (manufactured by NOF Corporation, trade name of methyl ethyl ketone peroxide) and a polymerization catalyst cobalt naphthenate. Next, this was poured into a glass tube with a known volume and left to stand in a 20°C water bath, and the volumetric shrinkage rate of the cured product was determined using the following formula. Volume shrinkage rate (%) Volume before curing - Volume after curing / Volume before curing x 100 The temperature change of the composition injected into the glass tube during the injection to curing stage was measured, but the heat removal effect by the water bath was measured. was large, and no temperature rise was observed. The results are shown in Table 3. Examples 2 to 14 [Low shrinkage effect of unsaturated polyester resin compositions at room temperature and in a water bath system] Tests were carried out according to Example 1 except that the respective block copolymer mixtures obtained in Reference Examples 3 to 8 were used. The results are shown in Table 3.

【表】 重量に対する添加量を示す。
比較例 1〜8 参考例12で用意した比較用低収剤を用いる以外
は実施例1に準じて試験し、結果を表4に示す。 比較例 9〜12 参考例10、11で用意した比較用ブロツク共重合
体混合物を用いる以外は実施例1に準じて試験
し、結果を表5に示す。
[Table] Shows the amount added to the weight.
Comparative Examples 1 to 8 Tests were conducted according to Example 1 except that the comparative low yield agent prepared in Reference Example 12 was used, and the results are shown in Table 4. Comparative Examples 9 to 12 Tests were conducted according to Example 1 except that the comparative block copolymer mixtures prepared in Reference Examples 10 and 11 were used, and the results are shown in Table 5.

【表】【table】

【表】 着性状、の2層に完全に分離した。
[Table] Adhesion properties: completely separated into two layers.

【表】 実施例 15 〔レジンモルタル組成物での低収縮効果等〕 参考例9で得られたUPR80部と参考例2で得
られたブロツク共重合体混合物をその濃度が30%
となるようにSTに分散させてなるST分散液20部
とをラボミキサー(ハイシエアーミキサー)で20
分混合した後、パーメツクN1.0部ナフテン酸コ
バルト0.3部を加えて混合し、それに骨材と充て
ん剤の混合物(硅砂3号が2、硅砂4号が1、硅
砂7号が1、炭酸カルシウムが1の重量割合)
100部を加えて混合し、レジンモルタル組成物を
得た。この組成物を常温で2時間硬化させ、養生
7日後の表面状態を観察し、低収縮効果を測定し
た。この結果硬化物は亀裂、変形が認められず表
面状態は良好であつた。この時の線収縮率は
0.005%であつた。 比較例 13 実施例15におけるブロツク共重合体ST分散液
の代りに参考例12の比較用低収縮剤(c)を用いる以
外は実施例15に準じて試験した。その結果、硬化
物表面はPSTの分離に基づく粘着性を有し、収
縮率の測定は不可能であつた。 実施例 16 〔レジンコンクリート組成物での低収縮効果
等〕 参考例9で得られたUPR80部と参考例2で得
られたブロツク共重合体混合物をその濃度が30%
となるようにSTに分散させてなるST分散液20部
とをラボミキサーで20分混合した後、パーメツク
N1.0部、ナフテン酸コバルト0.3部を加えて混合
した。次いで炭酸カルシウム100部及び川砂(最
大粒径5mm)300部を混合してレジンコンクリー
ト組成物を得た。この組成物を縦1000mm×横100
mm×高さ50mmの金型に注入し室温で2時間硬化さ
せ、7日間養生し表面状態の良好なレジンコンク
リートを得た。結果を表6に示す。 実施例 17〜22 〔レジンコンクリート組成物での低収縮効果
等〕 参考例3〜8で得られたブロツク共重合体混合
物を用いる以外は実施例16に準じて試験し、表面
状態の良好なレジンコンクリートを得た。結果を
表6に示す。 比較例 14〜17 参考例12の比較用低収縮剤(a)〜(d)を用いる以外
は実施例16に準じて試験したが、該低収縮剤の浮
き出しによると思われる表面の粘着性が認められ
た。結果を表6に示す。 比較例 18〜19 参考例10、11で得られたブロツク共重合体混合
物を用いる以外は実施例16に準じて試験し、表面
状態の良好なレジンコンクリートを得た。結果を
表6に示した。 比較例 20 実施例16においてブロツク共重合体混合物の
ST分散液を加えなかつた以外は、実施例16に準
じてレジンコンクリートを得た。その表面はひび
割れ、クラツク等がはいり不良な状態であつた。
結果を表6に示す。
[Table] Example 15 [Low shrinkage effect in resin mortar composition, etc.] 80 parts of UPR obtained in Reference Example 9 and the block copolymer mixture obtained in Reference Example 2 were mixed at a concentration of 30%.
Mix 20 parts of ST dispersion with 20 parts of ST dispersion in a lab mixer (high shear mixer) so that
After mixing, 1.0 part of Parmeck N and 0.3 parts of cobalt naphthenate are added and mixed, and a mixture of aggregate and filler (2 parts of silica sand No. 3, 1 part of silica sand No. 4, 1 part of silica sand No. 7, calcium carbonate) is mixed. (weight ratio of 1)
100 parts were added and mixed to obtain a resin mortar composition. This composition was cured at room temperature for 2 hours, and the surface condition was observed after 7 days of curing to measure the low shrinkage effect. As a result, the cured product showed no cracks or deformation, and the surface condition was good. The linear shrinkage rate at this time is
It was 0.005%. Comparative Example 13 A test was conducted according to Example 15, except that the comparative low shrinkage agent (c) of Reference Example 12 was used instead of the block copolymer ST dispersion in Example 15. As a result, the surface of the cured product had tackiness due to the separation of PST, and it was impossible to measure the shrinkage rate. Example 16 [Low shrinkage effect in resin concrete composition, etc.] 80 parts of UPR obtained in Reference Example 9 and a block copolymer mixture obtained in Reference Example 2 were mixed at a concentration of 30%.
After mixing 20 parts of ST dispersion with ST in a lab mixer for 20 minutes,
1.0 part of N and 0.3 part of cobalt naphthenate were added and mixed. Next, 100 parts of calcium carbonate and 300 parts of river sand (maximum particle size: 5 mm) were mixed to obtain a resin concrete composition. This composition is 1000mm long x 100mm wide
The resin concrete was poured into a mold of mm x height 50 mm, cured at room temperature for 2 hours, and cured for 7 days to obtain resin concrete with a good surface condition. The results are shown in Table 6. Examples 17 to 22 [Low shrinkage effect in resin concrete compositions] Tests were conducted according to Example 16 except that the block copolymer mixtures obtained in Reference Examples 3 to 8 were used, and resins with good surface conditions were tested. Got concrete. The results are shown in Table 6. Comparative Examples 14 to 17 Tests were conducted according to Example 16 except that the comparative low shrinkage agents (a) to (d) of Reference Example 12 were used, but the surface tackiness, which was thought to be due to the embossment of the low shrinkage agents, was Admitted. The results are shown in Table 6. Comparative Examples 18-19 A test was conducted in accordance with Example 16, except that the block copolymer mixtures obtained in Reference Examples 10 and 11 were used, and resin concrete with a good surface condition was obtained. The results are shown in Table 6. Comparative Example 20 In Example 16, the block copolymer mixture
Resin concrete was obtained according to Example 16 except that the ST dispersion was not added. The surface was in poor condition with cracks and scratches.
The results are shown in Table 6.

【表】 不良な状態を示す。
以上の実施例及び比較例を対比すれば明らかな
ように、本発明によつて得られる常温成形不飽和
ポリエステルの硬化物は低収縮剤として同量用い
た場合慣用の常温成形と対比して容積収縮率が低
いことが認められた。 また、本発明品及び比較例品を用いてレジンコ
ンクリートを作製し、得られた製品を対比したと
ころ、本発明は比較例品に比して表面状態及び線
収縮率において一だんと秀れているのが認められ
た。
[Table] Indicates a defective condition.
As is clear from a comparison of the above Examples and Comparative Examples, the cured product of cold-molded unsaturated polyester obtained by the present invention has a larger volume than that of conventional cold-molded polyester when the same amount of low-shrinkage agent is used. It was observed that the shrinkage rate was low. In addition, when resin concrete was produced using the product of the present invention and the product of the comparative example, and the resulting products were compared, the product of the present invention was significantly superior in surface condition and linear shrinkage rate compared to the product of the comparative example. It was recognized that there was.

Claims (1)

【特許請求の範囲】 1 (A);不飽和ポリエステル20〜70重量% (B);前記不飽和ポリエステル(A)と共重合可能な
単量体30〜70重量%及び(C);下記に定義されるブ
ロツク共重合体混合物2〜20重量%からなり、上
記単量体(B)及びブロツク共重合体混合物(C)の混合
物が非水分散状態であり且つ上記不飽和ポリエス
テル(A)、単量体(B)及びブロツク共重合体混合物(C)
の混合物が非水分散状態である低収縮性不飽和ポ
リエステル樹脂組成物。 ブロツク共重合体混合物; 一般式 〔式中、R1は炭素数1〜18のアルキレン基もし
くは置換アルキレン基、炭素数3〜15のシクロア
ルキレン基もしくは置換シクロアルキレン基、フ
エニレン基もしくは置換フエニレン基を示し、
R2は炭素数2〜10のアルキレン基もしくは置換
アルキレン基、【式】(式中、R3 は水素原子又はメチル基を示し、R4は炭素数2
〜10のアルキレン基もしくは置換アルキレン基を
示しm=1〜13である。)、
【式】又は 【式】を示し、n =2〜20である。〕で表わされるポリメリツクペ
ルオキシドを重合開始剤として、下記(a)及び(b)で
定義されるいずれか一方の単量体又は単量体の混
合物(以下それぞれを単量体(a)及び単量体(b)とい
う)を重合させて(第一重合反応)、分子内にペ
ルオキシ結合を有する重合体を得、ついでこの重
合体と第一重合反応に用いなかつた単量体又は単
量体の混合物を、ブロツク共重合させて得られた
ブロツク共重合体。 (a);スチレン単量体70〜100重量%及びこれと共
重合可能な単量体30〜0重量%とからなる単量
体若しくは単量体混合物 (b);アクリル酸又はメタクリル酸の炭素数1〜4
のアルキルエステル70〜100重量%及びこれと
共重合可能な単量体30〜0重量%からなる単量
体又は単量体混合物。
[Claims] 1 (A); 20 to 70% by weight of unsaturated polyester (B); 30 to 70% by weight of a monomer copolymerizable with the unsaturated polyester (A); and (C); 2 to 20% by weight of the defined block copolymer mixture, the mixture of the monomer (B) and the block copolymer mixture (C) is in a non-aqueous dispersion state, and the unsaturated polyester (A), Monomer (B) and block copolymer mixture (C)
A low shrinkage unsaturated polyester resin composition in which a mixture of is in a non-aqueous dispersion state. Block copolymer mixture; general formula [In the formula, R 1 represents an alkylene group or substituted alkylene group having 1 to 18 carbon atoms, a cycloalkylene group or substituted cycloalkylene group having 3 to 15 carbon atoms, a phenylene group or a substituted phenylene group,
R 2 is an alkylene group or substituted alkylene group having 2 to 10 carbon atoms, [Formula] (wherein, R 3 is a hydrogen atom or a methyl group, and R 4 is a carbon number 2
-10 alkylene groups or substituted alkylene groups, m=1-13. ),
[Formula] or [Formula], and n = 2 to 20. ] using polymeric peroxide represented by as a polymerization initiator, any one of the monomers or a mixture of monomers defined in (a) and (b) below (hereinafter referred to as monomer (a) and monomer, respectively) (referred to as polymer (b)) (first polymerization reaction) to obtain a polymer having a peroxy bond in the molecule, and then this polymer and a monomer or monomers not used in the first polymerization reaction. A block copolymer obtained by block copolymerizing a mixture of (a); Monomer or monomer mixture consisting of 70 to 100% by weight of a styrene monomer and 30 to 0% by weight of a monomer copolymerizable with the same (b); Carbon of acrylic acid or methacrylic acid Numbers 1-4
A monomer or monomer mixture comprising 70 to 100% by weight of an alkyl ester of and 30 to 0% by weight of a monomer copolymerizable therewith.
JP2625883A 1983-02-21 1983-02-21 Unsaturated polyester resin composition having low shrinkage Granted JPS59152918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2625883A JPS59152918A (en) 1983-02-21 1983-02-21 Unsaturated polyester resin composition having low shrinkage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2625883A JPS59152918A (en) 1983-02-21 1983-02-21 Unsaturated polyester resin composition having low shrinkage

Publications (2)

Publication Number Publication Date
JPS59152918A JPS59152918A (en) 1984-08-31
JPS6330956B2 true JPS6330956B2 (en) 1988-06-21

Family

ID=12188232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2625883A Granted JPS59152918A (en) 1983-02-21 1983-02-21 Unsaturated polyester resin composition having low shrinkage

Country Status (1)

Country Link
JP (1) JPS59152918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364U (en) * 1990-04-17 1992-01-06

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164114A (en) * 1981-04-01 1982-10-08 Nippon Oil & Fats Co Ltd Low-shrinkage unsaturated polyester resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164114A (en) * 1981-04-01 1982-10-08 Nippon Oil & Fats Co Ltd Low-shrinkage unsaturated polyester resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364U (en) * 1990-04-17 1992-01-06

Also Published As

Publication number Publication date
JPS59152918A (en) 1984-08-31

Similar Documents

Publication Publication Date Title
US4102944A (en) Low profile unsaturated polyester resin composition
JPS6340447B2 (en)
JPS603327B2 (en) Low shrinkage unsaturated polyester resin composition
JPS6330956B2 (en)
US4122132A (en) Dispersion stabilizer
GB2087416A (en) Low shrinking resin mortar or resin concrete composition
JPH0117490B2 (en)
JP3092201B2 (en) Low shrinkage unsaturated polyester resin composition
JPH047390B2 (en)
JPH047391B2 (en)
JPS6099115A (en) Unsaturated polyester resin composition
JP2794802B2 (en) Low shrinkage unsaturated polyester resin composition
JPH0124823B2 (en)
JPS58189214A (en) Unsaturated polyester resin molding composition
JPH0629363B2 (en) Method for producing low shrinkage unsaturated polyester resin composition
JPS60217222A (en) Vinyl ester resin composition having low shrinkage
JP2701156B2 (en) Modifier for unsaturated polyester resin
KR810001560B1 (en) Resin composition having low shrink properties
JPH04306213A (en) Transparent low-shrinkage-based polymer composition
JPS62141058A (en) Low-shrinkage unsaturated polyester resin composition
JPH1192646A (en) Unsaturated polyester resin composition and its production
JPH05163425A (en) Unsaturated polyester resin composition
JPH0224311A (en) Graft copolymer useful as additive for unsaturated polyester resin
JPS6343948A (en) Production of low-shrinkage unsaturated polyester resin
JP2003064114A (en) Curing agent composition, thermosetting resin composition, molded and cured article and method for producing the same