JPH0473723A - Nonlinear optical material and its manufacture - Google Patents

Nonlinear optical material and its manufacture

Info

Publication number
JPH0473723A
JPH0473723A JP18906690A JP18906690A JPH0473723A JP H0473723 A JPH0473723 A JP H0473723A JP 18906690 A JP18906690 A JP 18906690A JP 18906690 A JP18906690 A JP 18906690A JP H0473723 A JPH0473723 A JP H0473723A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
nonlinear optical
thin film
optical material
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18906690A
Other languages
Japanese (ja)
Inventor
Yoshio Manabe
由雄 真鍋
Ichiro Tanahashi
棚橋 一郎
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18906690A priority Critical patent/JPH0473723A/en
Publication of JPH0473723A publication Critical patent/JPH0473723A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To dope the particle of an oxide semiconductor in a thin amorphous film uniformly and at high density by aligning the grain diameter of it by dispersing the particle of the oxide semiconductor in the thin amorphous film provided with optical forbidden band width higher than that of the oxide semiconductor. CONSTITUTION:Such structure is employed that the particle of the oxide semiconductor is doped in the thin amorphous film provided with the optical forbidden band width higher than that of the oxide semiconductor. Therefore, no deterioration due to oxidation occurs in the characteristic of a semiconductor. Also, the grain diameter of the particle can be controlled corresponding to the change of vapor-depositing speed when the oxide semiconductor forms the particle in the thin amorphous film by varying the vapor-depositing speed of the oxide semiconductor in point of time as manufacturing the amorphous thin film. Thereby, it is possible to manufacture the thin film in which the particle of the oxide semiconductor is doped at high density and uniformly under satisfactory control.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非線形光学効果を利用した光デバイスの基礎を
なす酸化物半導体微粒子ドープ非晶質薄膜等の非線形光
学材料およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nonlinear optical material such as an amorphous thin film doped with oxide semiconductor particles, which forms the basis of an optical device that utilizes nonlinear optical effects, and a method for manufacturing the same.

従来の技術 従来の技術として(よ 例えばシ゛ヤーナルオ7゛す゛
オフ°デイカル ソサエティ オフゝ アメリカ第73
巻第647頁(Journal  ofthe  0p
tical  5ociety  of  Ameri
ca  ヱ3. 647(1983))に記載されてい
るCdSxSe+−xをホウケイ酸ガラスにドープした
カットオフフィルタガラスを非線形光学材料に用いるも
のがある。このカットオフフィルタガラスはCd S 
x S e + −xとホウケイ酸ガラス材料を白金ル
ツボに入れ1600℃程度の高温で溶融し作製している
Conventional technology Conventional technology (for example, 73rd Anniversary Society 73
Volume No. 647 (Journal of the 0p
tical 5ociety of Ameri
ca 3. 647 (1983)), a cut-off filter glass in which borosilicate glass is doped with CdSxSe+-x is used as a nonlinear optical material. This cut-off filter glass is CdS
x S e + -x and a borosilicate glass material are placed in a platinum crucible and melted at a high temperature of about 1600°C.

ま た、  シ゛ヤーナル オフ゛ アプライド957
頁(Journal of Applied Phys
ics fi3.  957(1988))に開示され
ているようなCdS微粒子ドープ薄膜ガラスがある。こ
の薄膜ガラスはターゲットにコニング社製7059ガラ
スと、CdSとを用い高周波マグネトロンスパッタリン
グ法により、7059ガラス中にCdSを2〜4重量%
分散させたものである。
In addition, Scial Off Applied 957
Page (Journal of Applied Phys.
ics fi3. 957 (1988)), there is a thin film glass doped with CdS particles. This thin film glass was produced by high-frequency magnetron sputtering using Conning's 7059 glass as a target and CdS, with 2 to 4% by weight of CdS in the 7059 glass
It is dispersed.

発明が解決しようとする課題 このような従来の非線形光学材料およびその製造方法で
Cヨ  次のような2つの課題があっ丸イ)カットオフ
フィルタガラスの場合:  CdS.Se1−xとホウ
ケイ酸ガラスを1 6 0 0を以上の高温で溶融して
作製するために 半導体微粒子の表面が酸化されてしま
う。このために半導体組成の制御が極めて難しいものと
なる。さらにCdSxSe+−xをホウケイ酸ガラスに
2〜4重量%以上均質に分散させることか困難である。
Problems to be Solved by the Invention These conventional nonlinear optical materials and methods for producing the same have the following two problems: (1) In the case of cut-off filter glass: CdS. Since the semiconductor particles are manufactured by melting Se1-x and borosilicate glass at a high temperature of 1600 or higher, the surfaces of the semiconductor particles are oxidized. This makes controlling the semiconductor composition extremely difficult. Furthermore, it is difficult to homogeneously disperse CdSxSe+-x in borosilicate glass in an amount of 2 to 4% by weight or more.

口)スパッタリング法を用いた場合; 酸化物であるガ
ラス中に半導体微粒子を作製するのて 上記イ)と同様
に半導体表面が酸化され易くなる。
(b) When using the sputtering method: When semiconductor fine particles are produced in glass, which is an oxide, the semiconductor surface is likely to be oxidized as in (a) above.

また ガラス薄膜の形成に時間がかかり(特にスパッタ
リング速度の小さなSiOaガラスの形成の場合)厚膜
を形成するのが困難である。
Furthermore, it takes a long time to form a glass thin film (particularly in the case of forming SiOa glass, which has a low sputtering rate), and it is difficult to form a thick film.

本発明は上記課題を解決するもので、非晶質薄膜中に酸
化物半導体の微粒子を均一にかつ高濃度にドープさせた
大きな非線形光学効果を有する非線形光学材料およびそ
の製造方法を提供することを目的とする。
The present invention solves the above-mentioned problems, and aims to provide a nonlinear optical material having a large nonlinear optical effect in which fine particles of oxide semiconductor are doped uniformly and at a high concentration in an amorphous thin film, and a method for manufacturing the same. purpose.

課題を解決するための手段 本発明は上記目的を達成するために 酸化物半導体の微
粒子をその酸化物半導体より大きな光学的禁制帯幅を有
する非晶質薄膜中に均一に多量にドープした構造を有す
る非線形光学材料よりなり、また非晶質薄膜を作製しな
か収 酸化物半導体の蒸着速度を時間的に変化させるこ
とによって酸化物半導体の微粒子を分散させて酸化物半
導体ドープ非晶質薄膜を作製する構成よりなる。
Means for Solving the Problems In order to achieve the above objects, the present invention provides a structure in which fine particles of an oxide semiconductor are uniformly and abundantly doped into an amorphous thin film having an optical bandgap larger than that of the oxide semiconductor. An amorphous thin film doped with an oxide semiconductor is produced by dispersing fine particles of an oxide semiconductor by temporally changing the deposition rate of the oxide semiconductor. It consists of a configuration.

作用 本発明は上記した構成により、酸化物半導体の微粒子を
酸化物半導体より大きな光学的禁制帯幅を有する非晶質
薄膜中にドープした構造を有しているために 半導体の
特性が酸化によって劣化してしまうことがなしも また
非晶質薄膜を作製しなが収 酸化物半導体の蒸着速度を
時間的に変化させることによって、非晶質薄膜中で酸化
物半導体が微粒子を形成するときに蒸着速度の変化に応
じて微粒子の粒径を制御できる。このため〈 酸化物半
導体の微粒子を非晶質薄膜中に高濃度に制御よく均一に
ドープした薄膜を作製することが可能であa 実施例 本発明の非晶質薄膜には酸化物半導体より大きな光学的
禁制帯幅を有する窒化1級 炭化1扱 または酸化物が
好ましく、特に窒化はう魚 窒化アルミニウム 窒化チ
タン、窒化珪黒 炭化はう黒炭化チタン、炭化珪秦 酸
化珪素を用いると半導体物質の分散性が良好となりより
好ましく℃非晶質薄膜中に分散させる酸化物半導体の微
粒子ニLL.  ZnQ.  In20s、SnO2、
CdSnOs、Cd2SnO*、Niへ Ire.Ti
02、CdIn20z、In2TeOe、WO2、MO
O3が好ましく− 以下本発明の一実施例について第1図および第2図を参
照して説明する。
Effect The present invention has a structure in which fine particles of an oxide semiconductor are doped into an amorphous thin film having a larger optical bandgap than that of an oxide semiconductor, so that the characteristics of the semiconductor deteriorate due to oxidation. By changing the evaporation rate of the oxide semiconductor over time, the oxide semiconductor is deposited when it forms fine particles in the amorphous thin film. The particle size of fine particles can be controlled according to changes in speed. For this reason, it is possible to fabricate a thin film in which oxide semiconductor fine particles are uniformly doped in a highly controlled manner in an amorphous thin film. Class 1 nitrides, class 1 carbides, or oxides, which have an optical bandgap, are preferable, especially nitrides, aluminum nitride, titanium nitride, silicon nitride, black carbides, black titanium carbide, silicon carbide, and silicon oxides. The fine particles of the oxide semiconductor LL. ZnQ. In20s, SnO2,
To CdSnOs, Cd2SnO*, Ni Ire. Ti
02, CdIn20z, In2TeOe, WO2, MO
O3 is preferred - An embodiment of the present invention will now be described with reference to FIGS. 1 and 2.

本実施例で用いたCVD装置の基本概略図を第1図に示
す。
A basic schematic diagram of the CVD apparatus used in this example is shown in FIG.

CVD装置l(↓ 酸化物半導体を構成する酸化性ガス
と酸素以外のCVDガスの流量を制御する流量制御器2
および3、絶縁基板4SiH4供給口5、N H 3供
給口6によって構成されている。
CVD device 1 (↓ Flow rate controller 2 that controls the flow rate of CVD gases other than oxidizing gas and oxygen that constitute the oxide semiconductor
and 3, an insulating substrate 4, a SiH4 supply port 5, and an N H3 supply port 6.

非晶質として(↓ SiH4とNHsを用いて窒化珪素
を形成し’7’:o  酸化物半導体としてl;LZn
(CHI)2とN 2 0を用いて酸化亜鉛を形成し九
基板4は石英ガラスを用い九 CVDガスの流’J−1t  S i HaをIOsc
cm?QN H sを5 0 s ecml.  Zn
  (CHs) 2を2secml;  N20を6 
s e cmにした基板温度を600℃にした場合、酸
化亜鉛と窒化珪素の蒸着速度はそれぞれ0. 5nm/
see、1nrn/seeであツ九 酸化物半導体を構成する酸素以外のCVD原料ガス(Z
 n (CHs) 2)と酸化性のCVD原料ガス(N
aO)とを各個別の供給から同時にかつ周期的に増減し
て供給する。例えばZn (CH3)2とNaOの流量
を、流量制御器2、3によって、上記で示した流量を5
0%まで減少させて1分間保持し その後上記の流量ま
で増加させて1分間保持するサイクルを繰り返して、酸
化亜鉛の蒸着速度を制御し九 以上の作製条件で膜厚2μmの酸化亜鉛の微粒子ドープ
非晶質薄膜を基板4(0,5mm厚)上に作製したi 
 300℃の電気炉中で1時間加熱した 薄膜中の酸化亜鉛のドープ量は2重量%であり、粒子径
は4〜6nmであっ九 酸化亜鉛をドープした非晶質薄膜の吸収スペクトルから
得られた光学的禁制帯幅はバルクの値に比べ0.4eV
ブルーシフトしていることから酸化亜鉛の微粒子か量子
ドツトとなっていることかわかっt島 な壮 本実施例では非晶質薄膜として窒化珪素を用いた
力交 酸化物 窒化り扱  炭化物のうちの少なくとも
2種類を用いた化合物でもよい。例えは非晶質薄膜とし
て酸窒化珪素を用し\ その薄膜中に酸化亜鉛をドープ
すると、酸化亜鉛の微粒子が量子ドツトとなっているこ
とが観測され通数に非晶質として、SiH4とN20を
用いて酸化珪素を形成した場合について述へる。酸化物
半導体として(よ 上述の場合と同様にZn(CHs)
2とN20を用いて酸化亜鉛を形成しt4  基板4は
石英ガラスを用いtミ 酸化物半導体と非晶質はともに酸化物なので、非晶質薄
膜作製のみにN 20を供給し旭 CVDガスノ流量は
 S i H4をIOsccmK、N20を70sec
m!へ Zn  (CHa) 2を2 s c crn
にし九 基板温度を600℃にした場合、酸化亜鉛と酸
化珪素の蒸着速度はそれぞれInm/sec、5nm/
seCであツ?、:o  Z n (CH3) 2の流
量を、流量制御器3によって上記で示した流量を1分間
ごとに断続的にCVD装置に供給して、酸化亜鉛の蒸着
速度を制御し池 以上の作製条件で膜厚2μmで、酸化亜鉛の微粒子ドー
プ非晶質薄膜を基板4(0,5mm厚)上に作製しk 
形成した後300℃の電気炉中で1時間加熱した 薄膜
中の酸化亜鉛のドープ量は2重量%であり、粒子径は4
〜6nmであつ池酸化亜鉛をドープした非晶質薄膜の吸
収スペクトルから得られた光学的禁制帯幅はバルクの値
に比べ0.3eVブルーシフトしていることから酸化亜
鉛の微粒子が量子ドツトとなっていることがわかりな な択 本実施例では酸化珪素非晶質薄膜を作製する場合
N20ガスを用いた力(酸化性を有するガスであれば何
でもよく、たとえば酸素ガスでもよ一 本実施例では酸化物半導体ドープ非晶質薄膜の非晶質薄
膜として酸化珪素と窒化珪素を用いた力交上記以外の窒
化はう太 窒化アルミニウム 窒化チタン、炭化はう魚
 炭化チタン、炭化珪素についても酸化物半導体をドー
プするとブルーシフトを観察できに 本実施例では1CVD法を用いた力丈 プラズマCVD
法を用いてもよく、また非晶質薄膜の作製も熱CVD法
を用いた力交 スパッタ法を用いてもよし℃ 以上の方法で作製した酸化亜鉛ドープ窒化珪素非晶質薄
膜または酸化亜鉛ドープ酸化珪素非晶質薄膜を用(\ 
光双安定素子を作製したこの素子の石英ガラス基板側か
ら波長337nmのレーザ光をスポット径5μmで入射
しへ次に入射光の強度と出射光の強度の関係を室温(2
5℃)にて測定したとこへ 第2図に示したような光双
安定特性を示しへ 発明の効果 以上の実施例から明らかなように本発明によれば 酸化
物半導体の微粒子を酸化物半導体より大きな光学的禁制
帯幅を有する非晶質薄膜中に分散させた構成によるので
、非晶質薄膜中に酸化物半導体の微粒子の粒径を揃えて
均一にしかも高濃度に1ζ−ブさせることができ、大き
な非線形光学効果を有する非線形光学材料を提供できる
As amorphous (↓ form silicon nitride using SiH4 and NHs '7': o As oxide semiconductor l; LZn
Zinc oxide is formed using (CHI)2 and N20, and the substrate 4 is made of quartz glass.
cm? QN H s for 50 s ecml. Zn
(CHs) 2 secml; N20 6
When the substrate temperature is set to 600° C., the deposition rates of zinc oxide and silicon nitride are respectively 0. 5nm/
see, 1nrn/see, CVD raw material gas other than oxygen (Z
n (CHs) 2) and oxidizing CVD raw material gas (N
aO) from each individual supply simultaneously and periodically in increasing or decreasing amounts. For example, the flow rates of Zn (CH3)2 and NaO are controlled by the flow rate controllers 2 and 3 to increase the flow rate shown above to 5.
The cycle of reducing the flow rate to 0% and holding it for 1 minute, then increasing it to the above flow rate and holding it for 1 minute is repeated, controlling the deposition rate of zinc oxide, and doping fine particles of zinc oxide with a film thickness of 2 μm under the production conditions of 9 or more. i where an amorphous thin film was produced on substrate 4 (0.5 mm thick)
The amount of zinc oxide doped in the thin film heated for 1 hour in an electric furnace at 300°C was 2% by weight, and the particle size was 4 to 6 nm. The optical forbidden band width is 0.4 eV compared to the bulk value.
From the blue shift, it was clear that the particles were zinc oxide particles or quantum dots.In this example, silicon nitride was used as the amorphous thin film. A compound using at least two types may be used. For example, when silicon oxynitride is used as an amorphous thin film and zinc oxide is doped into the thin film, fine particles of zinc oxide are observed to form quantum dots. The case where silicon oxide is formed using is described below. As an oxide semiconductor (as in the above case, Zn(CHs)
Zinc oxide is formed using 2 and N20, and the substrate 4 is made of quartz glass.Since the oxide semiconductor and the amorphous are both oxides, N20 is supplied only to prepare the amorphous thin film. is S i H4 IOsccmK, N20 70sec
m! to Zn (CHa) 2 to 2 sc crn
When the substrate temperature is 600°C, the deposition rates of zinc oxide and silicon oxide are Inm/sec and 5nm/sec, respectively.
Is it seC? , :o Z n (CH3) 2 was intermittently supplied to the CVD apparatus every minute using the flow rate controller 3 at the flow rate shown above to control the deposition rate of zinc oxide and to form a pond or more. An amorphous thin film doped with fine particles of zinc oxide was prepared on the substrate 4 (0.5 mm thick) with a film thickness of 2 μm under the following conditions.
The doping amount of zinc oxide in the thin film was 2% by weight, and the particle size was 4% by weight.
The optical forbidden band width obtained from the absorption spectrum of an amorphous thin film doped with zinc oxide at ~6 nm is blue-shifted by 0.3 eV compared to the bulk value, indicating that the fine particles of zinc oxide are quantum dots. In this example, when producing an amorphous silicon oxide thin film, we used N20 gas (any gas with oxidizing properties may be used; for example, oxygen gas may be used). Next, we will discuss the mechanical exchange using silicon oxide and silicon nitride as an amorphous thin film of an oxide semiconductor doped amorphous thin film. When a semiconductor is doped, a blue shift can be observed, and in this example, 1 CVD method was used.
Alternatively, the amorphous thin film may be prepared using a thermal CVD method or a force exchange sputtering method. Using silicon oxide amorphous thin film (\
A laser beam with a wavelength of 337 nm is incident on the quartz glass substrate side of this device with a spot diameter of 5 μm. Next, the relationship between the intensity of the incident light and the intensity of the output light is measured at room temperature (2
When measured at a temperature of 5°C, it exhibited optical bistability as shown in Figure 2.Effects of the Invention As is clear from the above examples, according to the present invention, fine particles of an oxide semiconductor can be made into an oxide semiconductor. Since the structure is such that the particles are dispersed in an amorphous thin film having a larger optical bandgap, the particle size of the oxide semiconductor particles can be made uniform in the amorphous thin film, and the 1ζ-bubble can be uniformly distributed at a high concentration. This makes it possible to provide a nonlinear optical material with a large nonlinear optical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の非線形光学材料の製造方法
を実施するために使用する装置の概略断面図 第2図は
本発明による製造方法で作られた非線形光学材料を用い
た光双安定素子の光双安定特性を示す図である。 l・・・CVD装置 4・・・基扼 代理人の氏名 弁理士 粟野重孝 はか1名7X  射
 た (mTV)
FIG. 1 is a schematic cross-sectional view of an apparatus used to carry out a method of manufacturing a nonlinear optical material according to an embodiment of the present invention. FIG. FIG. 3 is a diagram showing optical bistability characteristics of a stable element. l...CVD equipment 4...Name of Motoki's agent Patent attorney Shigetaka Awano 1 person 7X shot (mTV)

Claims (6)

【特許請求の範囲】[Claims] (1)酸化物半導体の微粒子をその酸化物半導体より大
きな光学的禁制帯幅を有する非晶質薄膜中に分散させた
ことを特徴とする非線形光学材料。
(1) A nonlinear optical material characterized in that fine particles of an oxide semiconductor are dispersed in an amorphous thin film having an optical bandgap larger than that of the oxide semiconductor.
(2)非晶質薄膜が、炭化物、窒化物および酸化物のう
ちの少なくとも一つであることを特徴とする請求項1記
載の非線形光学材料。
(2) The nonlinear optical material according to claim 1, wherein the amorphous thin film is at least one of carbide, nitride, and oxide.
(3)酸化物半導体の微粒子を非晶質薄膜中に分散させ
て絶縁基板上に堆積する非線形光学材料の製造方法にお
いて、酸化物半導体の蒸着速度を時間的に変化させるこ
とを特徴とする非線形光学材料の製造方法。
(3) A method for manufacturing a nonlinear optical material in which fine particles of an oxide semiconductor are dispersed in an amorphous thin film and deposited on an insulating substrate, the nonlinear optical material characterized by temporally changing the deposition rate of the oxide semiconductor. Method of manufacturing optical materials.
(4)酸化物半導体が、CVD法で作製されたものであ
ることを特徴とする請求項3記載の非線形光学材料の製
造方法。
(4) The method for producing a nonlinear optical material according to claim 3, wherein the oxide semiconductor is produced by a CVD method.
(5)酸化物半導体の蒸着速度を時間的に変化させる手
段として、前記酸化物半導体を構成する元素を含んだ酸
化性のCVD原料ガスと酸素以外のCVD原料ガスの流
量を変化させることを特徴とする請求項3記載の非線形
光学材料の製造方法。
(5) As means for temporally changing the deposition rate of the oxide semiconductor, the flow rate of an oxidizing CVD source gas containing an element constituting the oxide semiconductor and a CVD source gas other than oxygen is changed. 4. The method of manufacturing a nonlinear optical material according to claim 3.
(6)酸化物半導体を構成する元素を含んだ酸化性のC
VD原料ガスと酸素以外のCVD原料ガスとを各個別の
供給口から同時かつ周期的に増減して供給することを特
徴とする請求項5記載の非線形光学材料の製造方法。
(6) Oxidizing C containing elements constituting an oxide semiconductor
6. The method of manufacturing a nonlinear optical material according to claim 5, wherein the VD source gas and the CVD source gas other than oxygen are supplied simultaneously and periodically from each individual supply port in an increased or decreased manner.
JP18906690A 1990-07-16 1990-07-16 Nonlinear optical material and its manufacture Pending JPH0473723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18906690A JPH0473723A (en) 1990-07-16 1990-07-16 Nonlinear optical material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18906690A JPH0473723A (en) 1990-07-16 1990-07-16 Nonlinear optical material and its manufacture

Publications (1)

Publication Number Publication Date
JPH0473723A true JPH0473723A (en) 1992-03-09

Family

ID=16234729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18906690A Pending JPH0473723A (en) 1990-07-16 1990-07-16 Nonlinear optical material and its manufacture

Country Status (1)

Country Link
JP (1) JPH0473723A (en)

Similar Documents

Publication Publication Date Title
US5113473A (en) Nonlinear, optical thin-films and manufacturing method thereof
Madhuri et al. Studies on electron beam evaporated WO3 thin films
JPH0249238B2 (en)
JP2679354B2 (en) Nonlinear optical material and manufacturing method thereof
KR100561702B1 (en) Synthesis method of ??? nanorod and nanowire using vapor evaporation
JPH0473723A (en) Nonlinear optical material and its manufacture
JPH03294829A (en) Nonlinear optical thin film and production thereof
JPH04295027A (en) Production of particulate dispersion glass
CN113238426B (en) Optical limiting device based on quantum dot nonlinearity and nonlinear film preparation method thereof
JPH0618947A (en) Nonlinear optical thin film
JPH05127206A (en) Nonlinear optical material and production thereof
JPH0473721A (en) Manufacture of nonlinear optical material
JP2851694B2 (en) Nonlinear optical thin film
JPH042632A (en) Production of nonlinear optical material
JPH05150276A (en) Nonlinear optical material and production thereof
JP2945258B2 (en) Manufacturing method of nonlinear optical material
JPH05134277A (en) Production of nonlinear optical element
JP3341361B2 (en) Manufacturing method of ultrafine particle dispersion material
JPH05150278A (en) Nonlinear optical material and production thereof
JPH06342176A (en) Non-linear optical material and production thereof
JPH0473720A (en) Manufacture of nonlinear optical material
JPH04345137A (en) Production of nonlinear optical material
JPH07270837A (en) Superfine particle dispersed thin film and its production
JPH04113335A (en) Production of nonlinear optical material
JPH0710693A (en) Method and device for producing zinc oxide thin film