JPH03294829A - Nonlinear optical thin film and production thereof - Google Patents

Nonlinear optical thin film and production thereof

Info

Publication number
JPH03294829A
JPH03294829A JP2097972A JP9797290A JPH03294829A JP H03294829 A JPH03294829 A JP H03294829A JP 2097972 A JP2097972 A JP 2097972A JP 9797290 A JP9797290 A JP 9797290A JP H03294829 A JPH03294829 A JP H03294829A
Authority
JP
Japan
Prior art keywords
grown
thin film
optically transparent
nonlinear optical
optical thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2097972A
Other languages
Japanese (ja)
Inventor
Masaru Yoshida
勝 吉田
Yoshio Manabe
由雄 真鍋
Tsuneo Mitsuyu
常男 三露
Ichiro Tanahashi
棚橋 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2097972A priority Critical patent/JPH03294829A/en
Publication of JPH03294829A publication Critical patent/JPH03294829A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3684Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used for decoration purposes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To allow the uniform doping of multiple fine metallic particles into optically transparent materials by alternately depositing the fine metallic particles grown to an island shape and the optically transparent materials grown as a continuous film. CONSTITUTION:This thin film consists of the laminated structure alternately laminated with the fine metallic particles 2 grown to the island shape on a substrate 1 and the optically transparent materials 3 grown as the continuous film. A remarkable and preferable effect is obtainable if the thickness a in the direction perpendicular to the substrate surface of the fine metallic particles 2 grown to the island shape and the thickness b in the direction perpendicular to the substrate 1 surface of the optically transparent materials 3 grown as the continuous film satisfy the relation a<=b. The uniform doping of the fine metallic particles 2 at the unified grain size into the optically transparent materials at a high concn. is possible in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高速光スイッチなどへの応用が考えられ衣 金
属微粒子と光学的透明物質との積層構造の非線形光学薄
膜およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nonlinear optical thin film having a laminated structure of fine metal particles and an optically transparent material, and a method for manufacturing the same.

従来の技術 金属微粒子をガラス中にドープすることにより、金属の
3次の非線形感受率が増大し 光学的非線形性が大きく
なることがオブディフクスレタース゛第10巻第511
頁(Optics Letters、 vol、 10
.511(1985))に記載されている。金属微粒子
としては金や銀が使用されており、金属微粒子ドープガ
ラスの製造方法としては金属塩の還元法が用いられてい
る。また溶融法によってつくられるガラスに金属微粒子
を混ぜたものを熱処理して特定の成分のみを析出させる
方法によって、金、肌 銅などの金属コロイドが析出し
た着色ガラスが作られている。
Conventional technology: By doping fine metal particles into glass, the third-order nonlinear susceptibility of the metal increases and the optical nonlinearity increases.
Page (Optics Letters, vol, 10
.. 511 (1985)). Gold and silver are used as the metal fine particles, and a metal salt reduction method is used as a method for producing glass doped with metal fine particles. Colored glass with precipitated metal colloids such as gold and copper is also produced by heat-treating glass made by the melting method and mixing fine metal particles to precipitate only specific components.

発明が解決しようとする課題 このよう頓 従来の方法で製造した金微9粒子ドープガ
ラスの3次の非線形感受率はlo−12〜10− ” 
esuO値であり、非常に小さい。この原因はガラスへ
の金属微粒子のドープ量が5ppm以下で、非常に少な
いためであると考えられる。しかし 従来の製造方法で
はドープ量をこれ以上増やすと、均一に分散してドープ
することが困難となる。
Problems to be Solved by the Invention The third-order nonlinear susceptibility of glass doped with nine fine gold particles produced by the conventional method is lo-12 to lo-10.
esuO value, which is very small. The reason for this is thought to be that the amount of metal fine particles doped into the glass is very small, 5 ppm or less. However, with conventional manufacturing methods, if the amount of dope is increased beyond this level, it becomes difficult to dope in a uniformly dispersed manner.

本発明はこのような課題を解決するもので、多量の金属
微粒子を光学的透明物質中に均一にドープした非線形光
学薄膜を提供することを目的とするものである。
The present invention is intended to solve these problems, and aims to provide a nonlinear optical thin film in which an optically transparent material is uniformly doped with a large amount of fine metal particles.

課題を解決するための手段 この課題を解決するために本発明(よ 基板面上番ζ 
島状成長させた少なくとも1種類の金属微粒子と、連続
膜として成長させた光学的透明物質とを交互に堆積した
積層構造の非線形光学薄膜としたものである。さらにこ
の非線形光学薄膜をスパッタリングで製造するものであ
る。
Means for Solving the Problem In order to solve this problem, the present invention (as shown in FIG.
This nonlinear optical thin film has a laminated structure in which at least one kind of metal fine particles grown in an island shape and an optically transparent material grown as a continuous film are alternately deposited. Furthermore, this nonlinear optical thin film is manufactured by sputtering.

作用 この構成により、光学的透明物質中に粒径の揃った金属
微粒子を多量に均一に分散することができるために 大
きな3次の非線形感受率を持つ非線形光学薄膜を製造す
ることが可能となる。
Effect: With this configuration, a large amount of fine metal particles with uniform particle sizes can be uniformly dispersed in an optically transparent material, making it possible to manufacture a nonlinear optical thin film with large third-order nonlinear susceptibility. .

実施例 本発明における非線形光学薄膜の構造を第1図に示す。Example The structure of the nonlinear optical thin film according to the present invention is shown in FIG.

図に示すように 本発明の非線形光学薄膜は基板1上に
島状に成長させた金属微粒子2と、連続膜として成長さ
せた光学的透明物質3とが交互に堆積した積層構造より
なるものである。ここで、島状に成長させた金属微粒子
2の基板面に垂直方向の厚みaと、連続膜として成長さ
せた光学的透明物質3の基板1面に垂直方向の厚みbは
a≦bの関係を満たす場合、より効果が著しくなり好ま
しく−金属の島状微粒子の大きさは局所的電場効果が現
れる程度に小さいことが必要であり、数nm〜数110
0n程度の大きさが適当である。金属微粒子の大きさが
1μm以上になると)くルク的な性質が大きくなるため
光学的非線形性は小さくなる。
As shown in the figure, the nonlinear optical thin film of the present invention has a laminated structure in which fine metal particles 2 grown in the form of islands on a substrate 1 and optically transparent material 3 grown as a continuous film are alternately deposited. be. Here, the thickness a of the metal fine particles 2 grown in an island shape in the direction perpendicular to the substrate surface and the thickness b of the optically transparent material 3 grown as a continuous film in the direction perpendicular to the substrate 1 surface have a relationship of a≦b. If it satisfies the above criteria, the effect will be more significant, and it is preferable.The size of the metal island-like fine particles must be small enough to produce a local electric field effect, and should be in the range of several nanometers to several 110 nanometers.
A size of about 0n is appropriate. When the size of the metal fine particles is 1 μm or more), the optical nonlinearity becomes small because the circular properties become large.

本発明の非線形光学薄膜は 金属薄膜作製時のごく初期
過程に形成される島状成長物質が、微粒子であることを
利用して、この島状成長物質を金属微粒子2として、光
学的透明物質3中へのドーピングに積極的に利用すると
いうものである。
The nonlinear optical thin film of the present invention utilizes the fact that the island-like growth material formed in the very early stage of metal thin film production is a fine particle, and uses the island-like growth material as the metal fine particle 2 to form an optically transparent material 3. It is actively used for doping inside the body.

本発明における非線形光学薄膜の製造方法で(よ金属微
粒子2を光学的透明物質3中へ 粒径を揃えた状態で均
一にドープできることが特徴である。
The method for producing a nonlinear optical thin film according to the present invention is characterized in that the fine metal particles 2 can be uniformly doped into the optically transparent material 3 with the particle diameters being uniform.

本発明において粒径が揃った金属微粒子2を均一にドー
プできる理由について述べる。蒸発源から基板1上に飛
来した金属粒子は それ自体の持つエネルギがそれほど
大きくない場合、基板1と垂直方向のエネルギを短時間
に失って基板1上に滞在する。乙かL 蒸着粒子が基板
に到達したとき、気相−固相間の遷移過程であるため一
般には熱平衡に達しておら衣 基板1表面を動き回った
後に 基板1表面の欠陥などの吸着点にとらえられて基
板1上に付着する。もし吸着点がなければ蒸着粒子は再
蒸発する。次々に飛来してくる蒸着粒子によって、近傍
の付着粒子がいくつか集まり、それが結晶核となる。こ
の結晶核か形成された後、島状構造が成長する。この薄
膜形成の初期段階の島状構造ができたところで金属粒子
が飛来するのを止めて、基板l上に金属島状微粒子2を
分散させる。その上に光学的透明物質3の薄膜を形成し
て、金属島状微粒子2の全面を光学的透明物質3で覆う
ことによって光学的透明物質3の中に粒径の揃った金属
微粒子2を均一にドープさせることが可能となる。
The reason why metal fine particles 2 having a uniform particle size can be uniformly doped in the present invention will be described. If the metal particles flying onto the substrate 1 from the evaporation source do not have much energy themselves, they lose energy in a direction perpendicular to the substrate 1 in a short period of time and stay on the substrate 1. When the deposited particles reach the substrate, they generally do not reach thermal equilibrium because they are in the transition process between the gas phase and the solid phase.After moving around the surface of the substrate 1, they are captured by adsorption points such as defects on the surface of the substrate 1. and adheres to the substrate 1. If there are no adsorption points, the deposited particles will reevaporate. The successive incoming vapor deposited particles gather together several adhering particles in the vicinity, which become crystal nuclei. After this crystal nucleus is formed, island-like structures grow. When the island-like structure at the initial stage of thin film formation is formed, the flying metal particles are stopped, and the metal island-like fine particles 2 are dispersed on the substrate l. By forming a thin film of an optically transparent substance 3 thereon and covering the entire surface of the metal island-like fine particles 2 with the optically transparent substance 3, the metal fine particles 2 having a uniform particle size are uniformly distributed in the optically transparent substance 3. This makes it possible to dope.

この島状構造は 形成条件によって、形状や大きさは異
なる力交 球形で大きさを比較的均一に制御することが
できる。また 金属微粒子の密度を制御することも可能
である。金属微粒子のドープ量は最大で20重量%にす
ることができtもいろいろな金属について上記の方法に
より薄膜を作製L 3次の非線形感受率を測定したとこ
へ金属微粒子2として用いられる材料はAu、Ag、C
uなどの金属が3次の非線形感受率が大きいことを本発
明者らは発見し九 光学的透明物質3として用いられる
材料(よ 非線形光学特性を得るのに必要な波長範囲で
光学的に透明であれ(′L 無機ガラス物質であっても
有機高分子化合物であってもよ(℃ 本発明の具体的な実施例について述べる。
The shape and size of this island-like structure vary depending on the formation conditions, and the size can be controlled to be relatively uniform due to the spherical shape. It is also possible to control the density of metal fine particles. The doping amount of the metal fine particles can be up to 20% by weight, and thin films of various metals are prepared by the above method.The third-order nonlinear susceptibility was measured.The material used as the metal fine particles 2 was Au. ,Ag,C
The present inventors have discovered that metals such as u have a large third-order nonlinear susceptibility. It may be an inorganic glass substance or an organic polymer compound (℃) Specific examples of the present invention will be described.

(実施例1) 第2図に示す多元スパッタリング装置を°用1.%スパ
ッタ源をSiO2ターゲット6とAuターゲット7とで
構成した 基板4とターゲット6もしくは7との間は 
lカ所のアパーチャ(孔)9が開いたシャッタ8を配置
しており、シャッタ8を回転させることによってアパー
チャ9の位置を変化させ、SiO2ターゲット6または
Auターゲット7のいずれかのターゲットの上方にもっ
てくることができる。アパーチャ9の位置と停止時間と
はコンピュータで制御されている。基板4には石英ガラ
スを用いに 薄膜作製条件はアルゴン雰囲気中でガス圧3Pa1  
基板はヒータ5で200℃に加熱LSiO2ターゲット
6への入力電力は200W、Auターゲット7への入力
電力はIOWとした まず、基板4表面の凹凸を8102膜で覆って平坦にす
るためにアパーチャ9をSiO2ターゲット6の上で止
めて、基板4にSiO2膜を1100n堆積させt島 つぎにアパーチャ9をAuターゲット7の上で止めて、
Au微粒子を堆積させ九 Au微粒子の密度はごく短時
間の緩和時間を経た後、急激に増加し結晶核が成長して
島状構造が成長する。たとえは 基板4をAuターゲッ
ト上に10秒間滞在させることにより、平均粒径約5n
mのAu島状微粒子が成長し總 金属島状微粒子の大き
さが4〜6nmになったところで、再びシャッタ8を回
転させてSiO2ターゲット6の上で止&SiO2膜を
約6nm堆積させた SiO2とAuを基板4に交互に堆積させる操作を繰り
返して、金属島状微粒子と8102膜とが交互に堆積し
た積層構造を形成した この操作を400回繰り返して
約2.5μmの非線形光学薄膜を製造しtら 作製した薄膜中のAuのドープ量は5重量%であり、A
u微粒子の平均粒径は5nmであっ九(実施例2) 実施例1で用いた非線形光学薄膜製造装置を用いて、金
属ターゲットとしてAgとCuを用いて実施例1と同様
な方法により、 SiO2と金属島状微粒子とを基板に
交互に堆積させる操作を繰り返して非線形光学薄膜を作
製した 作製した非線形光学薄膜中のAgおよびCuの
ドープ量はそれぞれ5重量%および2重量%であっk 
またAgおよびCu微粒子の平均粒径はそれぞれ5nm
および6nmであっk (実施例3) 実施例1および2で作製した非線形光学薄膜の3次の非
線形感受率χ13′を測定したとこ&Au微粒子ドープ
ガラス薄膜のχ+ff+は2.0本10−”esu (
励起波長0.53μm)、Ag微粒子ドープガラス薄膜
のχ+31は5.0*10−”esu (励起波長0.
40μm)、Cu微粒子ドープガラス薄膜のχ+31は
1.0本1O−11Iesu (励起波長0.65μm
)であッf−0また実施例1で作製した非線形光学薄膜
を用いてファブリペロ−型共振器を製作L5ピコ秒以下
の非常に高速のスイッチング速度を得れ発明の効果 本発明における島状成長させた金属微粒子と光学的透明
物質とが交互に堆積した積層構造を持つ非線形光学薄膜
は 光学的透明物質中に金属微粒子の粒径を揃えて均一
に しかも高濃度にドープさせることができるたム 大
きな非線形光学効果を有する非線形光学薄膜を得ること
が可能である。
(Example 1) The multi-source sputtering apparatus shown in FIG. The sputtering source was composed of a SiO2 target 6 and an Au target 7. Between the substrate 4 and the target 6 or 7,
A shutter 8 with apertures 9 at l locations is arranged, and by rotating the shutter 8, the position of the aperture 9 is changed, and it is placed above either the SiO2 target 6 or the Au target 7. I can come. The position and stop time of the aperture 9 are controlled by a computer. Silica glass was used for the substrate 4, and the thin film production conditions were an argon atmosphere and a gas pressure of 3 Pa1.
The substrate was heated to 200°C with a heater 5. The input power to the LSiO2 target 6 was 200 W, and the input power to the Au target 7 was IOW. was stopped on the SiO2 target 6, a SiO2 film of 1100 nm was deposited on the substrate 4, and the aperture 9 was then stopped on the Au target 7.
After depositing Au fine particles, the density of the Au fine particles increases rapidly after a very short relaxation time, crystal nuclei grow, and an island-like structure grows. For example, by leaving the substrate 4 on the Au target for 10 seconds, the average particle size is approximately 5n.
When the size of the metal island-like fine particles reaches 4 to 6 nm, the shutter 8 is rotated again and stopped on the SiO2 target 6, and the SiO2 film is deposited to a thickness of about 6 nm. The operation of alternately depositing Au on the substrate 4 was repeated to form a laminated structure in which metal island fine particles and 8102 film were alternately deposited. This operation was repeated 400 times to produce a nonlinear optical thin film of about 2.5 μm. The doping amount of Au in the thin film prepared by T et al. was 5% by weight, and A
The average particle size of the u particles was 5 nm (Example 2) Using the nonlinear optical thin film manufacturing apparatus used in Example 1, SiO2 was produced in the same manner as in Example 1 using Ag and Cu as metal targets. A nonlinear optical thin film was fabricated by repeating the operation of alternately depositing metal island-like fine particles on a substrate.The doping amounts of Ag and Cu in the fabricated nonlinear optical thin film were 5% by weight and 2% by weight, respectively.
In addition, the average particle diameter of Ag and Cu fine particles is 5 nm each.
(Example 3) Third-order nonlinear susceptibility χ13' of the nonlinear optical thin films prepared in Examples 1 and 2 was measured. (
The excitation wavelength is 0.53 μm), and the χ+31 of the Ag fine particle-doped glass thin film is 5.0*10-”esu (the excitation wavelength is 0.53 μm).
40 μm), the χ+31 of the Cu fine particle-doped glass thin film is 1.0 1O-11 Iesu (excitation wavelength 0.65 μm)
), a Fabry-Perot type resonator was fabricated using the nonlinear optical thin film prepared in Example 1, and a very high switching speed of less than L5 picoseconds was obtained. The nonlinear optical thin film has a laminated structure in which fine metal particles and optically transparent material are alternately deposited, and it is possible to dope the metal fine particles uniformly and at a high concentration into the optically transparent material by aligning the particle size. It is possible to obtain nonlinear optical thin films with nonlinear optical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の非線形光学薄膜の構造を示す断面@ 
第2図は同非線形光学薄膜製造装置の構成を示す斜視図
である。 1−一基板、 2−一金属微粒子、3−一光学的透明物
質、 4−一基板、 6−−Si○2ターゲツト、7−
−Auターゲツト、 8−−シャツ久 9アパーチャ。
Figure 1 is a cross section showing the structure of the nonlinear optical thin film of the present invention.
FIG. 2 is a perspective view showing the configuration of the nonlinear optical thin film manufacturing apparatus. 1-1 substrate, 2-1 metal fine particles, 3-1 optically transparent substance, 4-1 substrate, 6--Si○2 target, 7-
-Au target, 8--Shirt 9 aperture.

Claims (5)

【特許請求の範囲】[Claims] (1)基板面上に、島状成長させた少なくとも1種類の
金属微粒子と、連続膜として成長させた光学的透明物質
とを、交互に堆積させた非線形光学薄膜。
(1) A nonlinear optical thin film in which at least one kind of metal fine particles grown in island form and an optically transparent material grown as a continuous film are alternately deposited on a substrate surface.
(2)基板面上に島状成長させた金属微粒子の基板面垂
直方向の厚みaと、連続膜として、成長させた光学的透
明物質の基板面垂直方向の厚みbとが a≦b の関係を満たす請求項1記載の非線形光学薄膜。
(2) The relationship between the thickness a of the metal fine particles grown in island form on the substrate surface in the direction perpendicular to the substrate surface and the thickness b of the optically transparent material grown as a continuous film in the direction perpendicular to the substrate surface is a≦b. The nonlinear optical thin film according to claim 1, which satisfies the following.
(3)基板面上に島状成長させた金属微粒子が金(Au
)、銀(Ag)または銅(Cu)のいずれかである請求
項1記載の非線形光学薄膜。
(3) The metal fine particles grown in the form of islands on the substrate surface are made of gold (Au).
), silver (Ag), or copper (Cu).
(4)基板面上に島状成長させた少なくとも1種類の金
属微粒子と、連続膜として成長させた光学的透明物質と
を交互に堆積させて製造する非線形光学薄膜の製造方法
(4) A method for manufacturing a nonlinear optical thin film, which comprises alternately depositing on a substrate surface at least one kind of metal fine particles grown in an island shape and an optically transparent material grown as a continuous film.
(5)基板面上に、島状成長させた金属微粒子と、連続
膜として成長させた光学的透明物質とを交互に堆積させ
た構造の薄膜をスパッタリング法で製造する請求項4記
載の非線形光学薄膜の製造方法。
(5) The nonlinear optical system according to claim 4, wherein a thin film having a structure in which fine metal particles grown in island shapes and optically transparent material grown as a continuous film are alternately deposited on the substrate surface is manufactured by a sputtering method. Method for manufacturing thin films.
JP2097972A 1990-04-13 1990-04-13 Nonlinear optical thin film and production thereof Pending JPH03294829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097972A JPH03294829A (en) 1990-04-13 1990-04-13 Nonlinear optical thin film and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097972A JPH03294829A (en) 1990-04-13 1990-04-13 Nonlinear optical thin film and production thereof

Publications (1)

Publication Number Publication Date
JPH03294829A true JPH03294829A (en) 1991-12-26

Family

ID=14206589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097972A Pending JPH03294829A (en) 1990-04-13 1990-04-13 Nonlinear optical thin film and production thereof

Country Status (1)

Country Link
JP (1) JPH03294829A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401569A (en) * 1992-05-19 1995-03-28 Tdk Corporation Nonlinear optical thin film
WO1996031443A1 (en) * 1995-04-06 1996-10-10 Nippon Sheet Glass Co., Ltd. Glass sheet covered with colored film
WO2017146945A1 (en) * 2016-02-24 2017-08-31 Guardian Industries Corp. Coated article including metal island layer(s) formed using temperature control, and/or method of making the same
WO2017146944A1 (en) * 2016-02-24 2017-08-31 Guardian Industries Corp. Coated article including metal island layer(s) formed using stoichiometry control, and/or method of making the same
JP2017203893A (en) * 2016-05-12 2017-11-16 日本電信電話株式会社 Optical element and manufacturing method of optical element
US10562812B2 (en) 2018-06-12 2020-02-18 Guardian Glass, LLC Coated article having metamaterial-inclusive layer, coating having metamaterial-inclusive layer, and/or method of making the same
US10830933B2 (en) 2018-06-12 2020-11-10 Guardian Glass, LLC Matrix-embedded metamaterial coating, coated article having matrix-embedded metamaterial coating, and/or method of making the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401569A (en) * 1992-05-19 1995-03-28 Tdk Corporation Nonlinear optical thin film
WO1996031443A1 (en) * 1995-04-06 1996-10-10 Nippon Sheet Glass Co., Ltd. Glass sheet covered with colored film
WO2017146945A1 (en) * 2016-02-24 2017-08-31 Guardian Industries Corp. Coated article including metal island layer(s) formed using temperature control, and/or method of making the same
WO2017146944A1 (en) * 2016-02-24 2017-08-31 Guardian Industries Corp. Coated article including metal island layer(s) formed using stoichiometry control, and/or method of making the same
CN109071326A (en) * 2016-02-24 2018-12-21 佳殿玻璃有限公司 The coating product and/or its production method of the metal island layer to be formed are controlled including the use of temperature
CN109071327A (en) * 2016-02-24 2018-12-21 佳殿玻璃有限公司 The coating product and/or its production method of the metal island layer to be formed are controlled including the use of stoichiometry
JP2017203893A (en) * 2016-05-12 2017-11-16 日本電信電話株式会社 Optical element and manufacturing method of optical element
US10562812B2 (en) 2018-06-12 2020-02-18 Guardian Glass, LLC Coated article having metamaterial-inclusive layer, coating having metamaterial-inclusive layer, and/or method of making the same
US10830933B2 (en) 2018-06-12 2020-11-10 Guardian Glass, LLC Matrix-embedded metamaterial coating, coated article having matrix-embedded metamaterial coating, and/or method of making the same

Similar Documents

Publication Publication Date Title
Tanahashi et al. Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method
US5113473A (en) Nonlinear, optical thin-films and manufacturing method thereof
Gao et al. Template‐Free Growth of Well‐Ordered Silver Nano Forest/Ceramic Metamaterial Films with Tunable Optical Responses
JP2003508342A (en) Colloid photonic crystal
JPH03294829A (en) Nonlinear optical thin film and production thereof
Baba et al. Silver‐gold compound metal island films prepared by using a two‐step evaporation method
Tao et al. Optical non-linearity in nano-and micro-crystallized glasses
US5688442A (en) Nonlinear optical materials and process for producing the same
CN110656306A (en) Metal @ GST medium heterogeneous nano core-shell structure and preparation method thereof
US5817410A (en) Nonlinear optical composites using linear transparent substances and method for producing the same
JPH0797226A (en) Production of glass having dispersed gold fine particle
CN113238426B (en) Optical limiting device based on quantum dot nonlinearity and nonlinear film preparation method thereof
JPH0895099A (en) Manufacture of nonlinear optical laminated body
JPH08313946A (en) Nonlinear optical thin film and its production
JPS647445B2 (en)
JPH06292826A (en) Production of composite super fine particles
JPH08146477A (en) Nonlinear optical thin film and its production
JPH0473722A (en) Nonlinear optical material and its manufacture
KR102562139B1 (en) Color-controllable chalcogenide-metal oxide nanocomposite film and manufacturing method thereof, and transparent photoelectric device including the same
JP2795590B2 (en) Nonlinear optical material and manufacturing method thereof
JPH04172328A (en) Non-linear optical thin film
JP2612613B2 (en) Method for producing fine particle dispersed glass
JPH08304625A (en) Polarizing element and its production
JP3413892B2 (en) Manufacturing method of ultrafine particle dispersion material
JPH05341338A (en) Nonlinear optical glass and its production