JPH08313946A - Nonlinear optical thin film and its production - Google Patents

Nonlinear optical thin film and its production

Info

Publication number
JPH08313946A
JPH08313946A JP11818395A JP11818395A JPH08313946A JP H08313946 A JPH08313946 A JP H08313946A JP 11818395 A JP11818395 A JP 11818395A JP 11818395 A JP11818395 A JP 11818395A JP H08313946 A JPH08313946 A JP H08313946A
Authority
JP
Japan
Prior art keywords
fine particles
layer
thin film
nonlinear optical
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11818395A
Other languages
Japanese (ja)
Inventor
Ichiro Tanahashi
一郎 棚橋
Yoshio Manabe
由雄 真鍋
Takao Toda
隆夫 任田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11818395A priority Critical patent/JPH08313946A/en
Publication of JPH08313946A publication Critical patent/JPH08313946A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a large-size third-order nonlinear optical material by using composite fine particles. CONSTITUTION: Vapor deposition is performed on a quartz substrate in an argon gas atmosphere by using CdS, Ag, SiO2 , targets and a high frequency magnetron sputtering device while controlling the voltage applied on each target and vapor deposition time. In this method, a Ag thin film 2 is formed by vapor deposition, then CdS fine particles 1 are formed, further, a Ag thin film 2 is formed by vapor deposition to obtain composite fine particles having a structure of CdS fine particles/Ag layer, and then a SiO2 , layer 3 is formed by vapor deposition to obtain a laminar structure. This process is repeated to form 30 layers of the laminar structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は3次の非線形光学効果を
利用した光デバイスの基礎をなす非線形光学薄膜の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a nonlinear optical thin film which is the basis of an optical device utilizing the third-order nonlinear optical effect.

【0002】[0002]

【従来の技術】近年、非線形光学薄膜は高速光スイッ
チ、高調波発生素子などの光デバイスとしての用途が考
えられている。特にその中核をなす金属微粒子、半導体
微粒子または非線形光学特性を有する有機化合物を用い
た非線形光学薄膜については、より高性能な薄膜の開
発、またはより改良された薄膜およびその製造方法が注
目されている。
2. Description of the Related Art In recent years, nonlinear optical thin films have been considered for use as optical devices such as high-speed optical switches and harmonic generating elements. In particular, regarding a nonlinear optical thin film using a metal fine particle, a semiconductor fine particle, or an organic compound having a nonlinear optical property, which is the core of the thin film, development of a higher performance thin film, or an improved thin film and a manufacturing method thereof have been attracting attention. .

【0003】この分野における従来の技術としては、ア
プライド フィジックスA第47巻347ペ−ジ(Appl. Phy
s. A, Vol.47, 347 1988)に記載されている溶融法によ
る金微粒子分散ガラスの作製法がある。この方法は、従
来のフィルタ−ガラスの作製法と同様の溶融冷却法によ
るものであり、ガラスマトリックス中に溶解した金イオ
ンをさらに熱処理することにより金微粒子として析出さ
せる技術である。
As a conventional technique in this field, Applied Physics A Vol. 47, 347 pages (Appl. Phy
s. A, Vol.47, 347 1988), there is a method for producing gold fine particle dispersed glass by a melting method. This method is based on the same melting and cooling method as the conventional filter-glass manufacturing method, and is a technique of precipitating gold ions dissolved in a glass matrix as fine gold particles by further heat treatment.

【0004】また、ジャ−ナル オブ オプティカル
ソサエティ オブ アメリカ第73巻647ペ−ジ(J.
Opt. Soc. Am., Vol. 73 1983)に記載されているよう
に、CdSxSe1-xをホウケイ酸ガラスに分散したカッ
トオフフィルタ−ガラスを非線形光学薄膜に用いる技術
が提案されている。このカットオフフィルタ−ガラス
は、ホウケイ酸ガラス原料とCdSxSe1-xとを白金ル
ツボに入れ、1000℃程度の温度で溶融し作製してい
る。
In addition, the journal of optical
Society of America Vol. 73 647 (J.
Opt. Soc. Am., Vol. 73 1983), a technique of using a cut-off filter glass in which CdS x Se 1-x is dispersed in borosilicate glass for a nonlinear optical thin film has been proposed. . This cut-off filter glass is produced by putting a borosilicate glass raw material and CdS x Se 1-x in a platinum crucible and melting at a temperature of about 1000 ° C.

【0005】[0005]

【発明が解決しようとする課題】上記方法の金属微粒子
分散または半導体微粒子分散非線形光学薄膜の製造方法
では、次のような課題がある。
The method for producing a non-linear optical thin film in which metal fine particles are dispersed or semiconductor fine particles are dispersed in the above method has the following problems.

【0006】(1)金属微粒子分散ガラスの場合:溶融
冷却法では溶融できる金属の種類がかぎられ、3次非線
形光学定数も10-11 esuと小さい。また、ガラスへの金
属の溶解度が小さいために10-6〜10-5容量%程度しか金
属の分散量を上げることができない。さらにガラス中に
分散された金属を微粒子として析出させるためには10
00 ℃以上の高温で長時間熱処理しなければならな
い。また、デバイスとして有望な薄膜化が困難である。
(1) In the case of fine metal particle-dispersed glass: The types of metals that can be melted by the melt cooling method are limited, and the third-order nonlinear optical constant is as small as 10 -11 esu. Moreover, since the solubility of the metal in glass is small, the amount of metal dispersed can be increased only by about 10 −6 to 10 −5 % by volume. Furthermore, in order to precipitate the metal dispersed in the glass as fine particles, 10
It must be heat-treated at a high temperature of 00 ° C. or higher for a long time. In addition, it is difficult to make a thin film, which is a promising device.

【0007】(2)金コロイド溶液の場合:金コロイド
の濃度を高めることが困難であり、10-6容量%以上の濃
度にすると金コロイドが凝集する。また、3次非線形光
学定数も10-11 esu以下と小さい。さらに、たとえ低濃
度のコロイド溶液を作製したとしても長期安定性に欠
け、時間の経過とともに次第に溶液組成が変化したりコ
ロイドの粒径が大きくなる。
(2) Gold colloid solution: It is difficult to increase the gold colloid concentration, and the gold colloid aggregates at a concentration of 10 -6 % by volume or more. Also, the third-order nonlinear optical constant is as small as 10 -11 esu or less. Further, even if a low-concentration colloidal solution is prepared, it lacks long-term stability, and the solution composition gradually changes or the colloidal particle size increases with the passage of time.

【0008】(3)半導体微粒子分散ガラスの場合:溶
融冷却法では溶融時に半導体の構成成分の一部が蒸発
し、半導体組成の変化がおきて3次非線形光学定数も10
-11〜10-12 esuと小さくなるという問題がある。また、
デバイスとして有望な薄膜化が困難である。
(3) In the case of semiconductor fine particle dispersed glass: In the melt cooling method, a part of the constituent components of the semiconductor is evaporated during melting, the semiconductor composition changes, and the third-order nonlinear optical constant is also 10
There is a problem that it becomes as small as -11 to 10 -12 esu. Also,
It is difficult to make a thin film, which is a promising device.

【0009】本発明は、半導体微粒子/金属層、半導体
微粒子/半導体層、または、金属微粒子/金属層からな
る3次非線形光学効果を示す複合微粒子とガラスまたは
セラミックス層を積層することにより、3次非線形光学
感受率を増大させた非線形光学薄膜を提供することを目
的とする。
According to the present invention, a semiconductor fine particle / metal layer, a semiconductor fine particle / semiconductor layer, or a composite fine particle composed of a metal fine particle / metal layer and exhibiting a third-order nonlinear optical effect is laminated with a glass or ceramic layer to form a tertiary layer. An object of the present invention is to provide a nonlinear optical thin film having an increased nonlinear optical susceptibility.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、本発明の第1の非線形光学薄膜は、半導体微粒子の
表面に金属層を被覆した構造からなる3次非線形光学効
果を示す複合微粒子からなる層と前記複合微粒子からな
る層の光吸収波長域に光吸収のないガラスまたはセラミ
ックスからなる層とを順次基板上に積層した構成を備え
た非線形光学薄膜である。
To achieve the above object, the first non-linear optical thin film of the present invention comprises composite fine particles having a third-order non-linear optical effect having a structure in which the surface of semiconductor fine particles is coated with a metal layer. And a layer made of glass or ceramics that does not absorb light in the light absorption wavelength region of the layer made of the composite fine particles are sequentially laminated on the substrate.

【0011】また、本発明の第2の非線形光学薄膜は、
半導体微粒子の表面に前記微粒子と異なる種類の半導体
層を被覆した構造からなる3次非線形光学効果を示す複
合微粒子からなる層と前記複合微粒子からなる層の光吸
収波長域に光吸収のないガラスまたはセラミックスから
なる層とを順次基板上に積層した構成を備えた非線形光
学薄膜である。
The second nonlinear optical thin film of the present invention is
Glass having no light absorption in the light absorption wavelength range of a layer made of composite fine particles having a structure in which the surface of the semiconductor fine particles is coated with a semiconductor layer of a type different from that of the fine particles and exhibiting a third-order nonlinear optical effect, or A nonlinear optical thin film having a structure in which ceramic layers are sequentially laminated on a substrate.

【0012】また、本発明の第3の非線形光学薄膜は、
金属微粒子の表面に前記微粒子と異なる種類の金属層を
被覆した構造からなる3次非線形光学効果を示す複合微
粒子からなる層と前記複合微粒子からなる層の光吸収波
長域に光吸収のないガラスまたはセラミックスからなる
層とを順次基板上に積層した構成を備えた非線形光学薄
膜である。
The third nonlinear optical thin film of the present invention is
Glass having no light absorption in the light absorption wavelength range of a layer made of composite fine particles having a structure in which the surface of the metal fine particles is coated with a metal layer of a type different from that of the fine particles and exhibiting a third-order nonlinear optical effect, or A nonlinear optical thin film having a structure in which ceramic layers are sequentially laminated on a substrate.

【0013】前記本発明の非線形光学薄膜においては、
半導体微粒子が、ZnS、CdS、ZnSe、CdS
e、PbS、InP、InAs、GaAs、またはGa
AlAsから選ばれる少なくとも1つであることが好ま
しい。また、前記本発明の非線形光学薄膜においては、
金属微粒子が、金、白金、銀、銅、錫、ロジウム、パラ
ジウムまたはイリジウムから選ばれる少なくとも1つで
あることが好ましい。また、前記本発明の非線形光学薄
膜においては、半導体層が、ZnS、CdS、ZnS
e、CdSe、PbS、InP、InAs、GaAs、
またはGaAlAsから選ばれる少なくとも1つである
ことが好ましい。また、前記本発明の非線形光学薄膜に
おいては、金属層が、金、白金、銀、銅、錫、ロジウ
ム、パラジウムまたはイリジウムから選ばれる少なくと
も1つであることが好ましい。また、前記本発明の非線
形光学薄膜においては、ガラスまたはセラミックスが、
光学的に広い波長範囲で透明なSiO2、TiO2、Al
23,SiNから選ばれる少なくとも1つであることが
好ましい。また、前記本発明の非線形光学薄膜において
は、基板が、光学的に広い波長範囲で透明なSiO2
TiO2、Al23,SiNから選ばれる少なくとも1
つであることが好ましい。
In the nonlinear optical thin film of the present invention,
Semiconductor particles are ZnS, CdS, ZnSe, CdS
e, PbS, InP, InAs, GaAs, or Ga
It is preferably at least one selected from AlAs. Further, in the nonlinear optical thin film of the present invention,
The metal fine particles are preferably at least one selected from gold, platinum, silver, copper, tin, rhodium, palladium or iridium. Further, in the above-mentioned nonlinear optical thin film of the present invention, the semiconductor layer is ZnS, CdS, ZnS.
e, CdSe, PbS, InP, InAs, GaAs,
Alternatively, it is preferably at least one selected from GaAlAs. Further, in the nonlinear optical thin film of the present invention, the metal layer is preferably at least one selected from gold, platinum, silver, copper, tin, rhodium, palladium or iridium. Further, in the nonlinear optical thin film of the present invention, glass or ceramics,
Optically transparent SiO 2 , TiO 2 , and Al in a wide wavelength range
It is preferably at least one selected from 2 O 3 and SiN. Further, in the nonlinear optical thin film of the present invention, the substrate is SiO 2 which is transparent in an optically wide wavelength range,
At least 1 selected from TiO 2 , Al 2 O 3 and SiN
Preferably three.

【0014】次に本発明の第1の非線形光学薄膜の製造
方法は、各ターゲットに金属、半導体、ガラス、あるい
はセラミックスから選ばれる少なくとも1つを用い、多
元スパッタ法により、半導体微粒子の表面に金属層を被
覆した構造からなる3次非線形光学効果を示す複合微粒
子からなる層と前記複合微粒子からなる層の光吸収波長
域に光吸収のないガラスまたはセラミックスからなる層
とを順次基板上に蒸着するという構成を備えたものであ
る。
Next, in the first method for producing a nonlinear optical thin film of the present invention, at least one selected from a metal, a semiconductor, a glass, or a ceramic is used for each target, and a metal is formed on the surface of semiconductor fine particles by a multi-source sputtering method. A layer made of composite fine particles having a third-order nonlinear optical effect, which has a layer-covered structure, and a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the layer made of the composite fine particles are sequentially deposited on a substrate. It is equipped with the configuration.

【0015】また、本発明の第2の非線形光学薄膜の製
造方法は、各ターゲットに半導体、ガラス、あるいはセ
ラミックスから選ばれる少なくとも1つを用い、多元ス
パッタ法により、半導体微粒子の表面に前記微粒子と異
なる種類の半導体層を被覆した構造からなる3次非線形
光学効果を示す複合微粒子からなる層と前記複合微粒子
からなる層の光吸収波長域に光吸収のないガラスまたは
セラミックスからなる層とを順次基板上に蒸着するとい
う構成を備えたものである。
In the second method for producing a non-linear optical thin film of the present invention, at least one selected from semiconductor, glass and ceramics is used for each target, and the fine particles are formed on the surface of the semiconductor fine particles by the multi-source sputtering method. Substrate in which a layer made of composite fine particles having a third-order nonlinear optical effect and having a structure of coating different types of semiconductor layers and a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the layer made of the composite fine particles are sequentially formed. It has a structure of vapor deposition on top.

【0016】また、本発明の第3の非線形光学薄膜の製
造方法は、各ターゲットに金属、ガラス、あるいはセラ
ミックスから選ばれる少なくとも1つを用い、多元スパ
ッタ法により、金属微粒子の表面に前記微粒子と異なる
種類の金属層を被覆した構造からなる3次非線形光学効
果を示す複合微粒子からなる層と前記複合微粒子からな
る層の光吸収波長域に光吸収のないガラスまたはセラミ
ックスからなる層とを順次基板上に蒸着するという構成
を備えたものである。
In the third method for producing a non-linear optical thin film of the present invention, at least one selected from metal, glass and ceramics is used for each target, and the fine particles are formed on the surface of the fine metal particles by the multi-source sputtering method. Substrate in which a layer made of composite fine particles having a third-order nonlinear optical effect having a structure in which different types of metal layers are coated and a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the layer made of the composite fine particles are sequentially formed. It has a structure of vapor deposition on top.

【0017】[0017]

【作用】前記本発明の第1の非線形光学材料によれば、
半導体微粒子の表面に金属層を被覆した構造からなる3
次非線形光学効果を示す複合微粒子からなる層と前記複
合微粒子からなる層の光吸収波長域に光吸収のないガラ
スまたはセラミックスからなる層とを順次基板上に積層
した構成を備えた非線形光学薄膜であることにより、半
導体微粒子の非線形光学特性を金属被覆層により増大さ
せることが可能な大きな3次の非線形光学感受率を有す
る非線形光学薄膜を達成できる。
According to the first nonlinear optical material of the present invention,
It has a structure in which the surface of semiconductor particles is coated with a metal layer 3
Next, a nonlinear optical thin film having a structure in which a layer made of composite fine particles exhibiting a nonlinear optical effect and a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the layer made of the composite fine particles are sequentially laminated on a substrate. As a result, it is possible to achieve a nonlinear optical thin film having a large third-order nonlinear optical susceptibility capable of increasing the nonlinear optical characteristics of semiconductor fine particles by the metal coating layer.

【0018】また、本発明の第2の非線形光学材料によ
れば、半導体微粒子の表面に前記微粒子と異なる種類の
半導体層を被覆した構造からなる3次非線形光学効果を
示す複合微粒子からなる層と前記複合微粒子からなる層
の光吸収波長域に光吸収のないガラスまたはセラミック
スからなる層とを順次基板上に積層した構成を備えた非
線形光学薄膜であることにより、半導体微粒子の非線形
光学特性を異なる種類の半導体被覆層により増大させる
ことが可能な大きな3次の非線形光学感受率を有する非
線形光学薄膜を達成できる。
Further, according to the second nonlinear optical material of the present invention, a layer made of composite fine particles exhibiting a third-order nonlinear optical effect having a structure in which the surface of the semiconductor fine particles is coated with a semiconductor layer of a different type from the fine particles. The nonlinear optical characteristics of semiconductor fine particles are different by being a nonlinear optical thin film having a structure in which a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the layer made of composite fine particles is sequentially laminated on a substrate. It is possible to achieve a nonlinear optical thin film having a large third-order nonlinear optical susceptibility that can be increased by various types of semiconductor coating layers.

【0019】また、本発明の第3の非線形光学材料によ
れば、金属微粒子の表面に前記微粒子と異なる種類の金
属層を被覆した構造からなる3次非線形光学効果を示す
複合微粒子からなる層と前記複合微粒子からなる層の光
吸収波長域に光吸収のないガラスまたはセラミックスか
らなる層とを順次基板上に積層した構成を備えた非線形
光学薄膜であることにより、金属微粒子の非線形光学特
性を異なる種類の金属被覆層により増大させることが可
能な大きな3次の非線形光学感受率を有する非線形光学
薄膜を達成できる。
Further, according to the third nonlinear optical material of the present invention, a layer made of composite fine particles exhibiting a third-order nonlinear optical effect having a structure in which the surface of the metal fine particles is coated with a metal layer of a type different from the fine particles. The non-linear optical thin film having a structure in which a layer made of glass or ceramics having no light absorption in the light absorption wavelength range of the layer made of the composite fine particles is sequentially laminated on the substrate, and thus the non-linear optical characteristics of the metal fine particles are different. Non-linear optical thin films can be achieved that have a large third-order non-linear optical susceptibility that can be increased by a variety of metallization layers.

【0020】また、半導体微粒子が、ZnS、CdS、
ZnSe、CdSe、PbS、InP、InAs、Ga
As、またはGaAlAsから選ばれる少なくとも1つ
であるという本発明の好ましい例によれば、これらの半
導体は量子サイズ効果に基づく大きな非線形光学特性を
示し、他の半導体に比べて容易に微粒子化させることが
可能で、また酸化されにくいため、より大きな3次の非
線形光学特性を有する非線形光学材料を実現することが
可能である。
Further, the semiconductor fine particles are ZnS, CdS,
ZnSe, CdSe, PbS, InP, InAs, Ga
According to a preferred example of the present invention, which is at least one selected from As and GaAlAs, these semiconductors exhibit large nonlinear optical characteristics based on the quantum size effect, and can be easily atomized as compared with other semiconductors. It is also possible to realize a non-linear optical material having a larger third-order non-linear optical characteristic because it is less likely to be oxidized.

【0021】また、金属微粒子が、金、白金、銀、銅、
錫、ロジウム、パラジウムまたはイリジウムから選ばれ
る少なくとも1つであるという本発明の好ましい例によ
れば、これらの金属は、表面プラズモン吸収や量子サイ
ズ効果に基づく非線形光学特性を示し、他の金属に比べ
て酸素その他の不純物による影響を受け難く、比較的純
粋な金属微粒子を析出させることができるので、より大
きな3次の非線形光学特性を有する非線形光学材料を実
現することが可能となる。
The fine metal particles are gold, platinum, silver, copper,
According to a preferred example of the present invention, which is at least one selected from tin, rhodium, palladium, and iridium, these metals exhibit nonlinear optical properties based on surface plasmon absorption and quantum size effect, and are superior to other metals. Since it is difficult to be affected by oxygen and other impurities and relatively pure metal fine particles can be deposited, it is possible to realize a nonlinear optical material having a larger third-order nonlinear optical characteristic.

【0022】また、半導体層が、ZnS、CdS、Zn
Se、CdSe、PbS、InP、InAs、GaA
s、またはGaAlAsから選ばれる少なくとも1つで
あるという本発明の好ましい例によれば、これらの半導
体は蒸着条件を制御することにより他の半導体に比べて
容易に薄膜化させることが可能で、また酸化されにくい
ため、異なる種類の半導体微粒子や金属微粒子を容易に
被覆することが可能でより大きな3次の非線形光学特性
を有する非線形光学材料を実現することが可能である。
The semiconductor layer is made of ZnS, CdS, Zn
Se, CdSe, PbS, InP, InAs, GaA
According to a preferred example of the present invention, which is at least one selected from s or GaAlAs, these semiconductors can be easily formed into a thin film as compared with other semiconductors by controlling vapor deposition conditions. Since it is difficult to oxidize, it is possible to easily coat different kinds of semiconductor fine particles and metal fine particles, and it is possible to realize a nonlinear optical material having a larger third-order nonlinear optical characteristic.

【0023】また、金属層が、金、白金、銀、銅、錫、
ロジウム、パラジウムまたはイリジウムから選ばれる少
なくとも1つであるという本発明の好ましい例によれ
ば、これらの金属は、蒸着条件を制御することにより他
の金属に比べて容易に薄膜化させることが可能で、他の
金属に比べて酸素その他の不純物による影響を受け難
く、異なる種類の半導体微粒子や金属微粒子を容易に純
粋な金属層で被覆することが可能で、より大きな3次の
非線形光学特性を有する非線形光学材料を実現すること
が可能である。
The metal layer is made of gold, platinum, silver, copper, tin,
According to the preferable example of the present invention, which is at least one selected from rhodium, palladium, and iridium, these metals can be easily formed into a thin film as compared with other metals by controlling vapor deposition conditions. Compared to other metals, it is less affected by oxygen and other impurities, different kinds of semiconductor fine particles and metal fine particles can be easily covered with a pure metal layer, and has a larger third-order nonlinear optical characteristic. It is possible to realize nonlinear optical materials.

【0024】また、ガラス、セラミックスまたは基板
が、SiO2、TiO2、Al23,SiNから選ばれる
少なくとも1つであるという本発明の好ましい例によれ
ば、このようなガラス、セラミックスまたは基板がは、
化学的に安定であり、光学的に広い範囲で透明であるの
で、大きな3次の非線形光学特性を有する非線形光学材
料を達成できる。
According to a preferred example of the present invention in which the glass, ceramics or substrate is at least one selected from SiO 2 , TiO 2 , Al 2 O 3 and SiN, such glass, ceramics or substrate is used. But
Since it is chemically stable and optically transparent in a wide range, a nonlinear optical material having a large third-order nonlinear optical characteristic can be achieved.

【0025】次に本発明の第1の非線形光学薄膜の製造
方法は、各ターゲットに金属、半導体、ガラス、あるい
はセラミックスから選ばれる少なくとも1つを用い、多
元スパッタ法により、半導体微粒子の表面に金属層を被
覆した構造からなる3次非線形光学効果を示す複合微粒
子からなる層と前記複合微粒子からなる層の光吸収波長
域に光吸収のないガラスまたはセラミックスからなる層
とを順次基板上に蒸着する方法であるので、半導体微粒
子の表面に金属層を被覆した構造からなる3次非線形光
学効果を示す複合微粒子を高濃度に均一に形成させるこ
とができ、大きな3次の非線形光学特性を有する非線形
光学薄膜を容易に製造することができる。また、本発明
の第2の非線形光学薄膜の製造方法は、各ターゲットに
半導体、ガラス、あるいはセラミックスから選ばれる少
なくとも1つを用い、多元スパッタ法により、半導体微
粒子の表面に前記微粒子と異なる種類の半導体層を被覆
した構造からなる3次非線形光学効果を示す複合微粒子
からなる層と前記複合微粒子からなる層の光吸収波長域
に光吸収のないガラスまたはセラミックスからなる層と
を順次基板上に蒸着する方法であるので、半導体微粒子
の表面に異なる種類の半導体層を被覆した構造からなる
3次非線形光学効果を示す複合微粒子を高濃度に均一に
形成させることができ、大きな3次の非線形光学特性を
有する非線形光学薄膜を容易に製造することができる。
Next, in the first method for producing a nonlinear optical thin film of the present invention, at least one selected from a metal, a semiconductor, glass, or a ceramic is used for each target, and a metal is formed on the surface of semiconductor fine particles by a multi-source sputtering method. A layer made of composite fine particles having a third-order nonlinear optical effect, which has a layer-covered structure, and a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the layer made of the composite fine particles are sequentially deposited on a substrate. Since it is a method, it is possible to uniformly form a high concentration of composite fine particles having a third-order nonlinear optical effect having a structure in which the surface of semiconductor fine particles is coated with a metal layer, and a nonlinear optic having a large third-order nonlinear optical characteristic. The thin film can be easily manufactured. In the second method for producing a nonlinear optical thin film of the present invention, at least one selected from semiconductor, glass, and ceramics is used for each target, and the surface of the semiconductor fine particles is made of a different kind from the fine particles by the multi-source sputtering method. A layer composed of composite fine particles having a structure covering a semiconductor layer and exhibiting a third-order nonlinear optical effect, and a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the layer composed of the composite fine particles are sequentially deposited on a substrate. Method, it is possible to uniformly form high-concentration composite fine particles having a third-order nonlinear optical effect having a structure in which different types of semiconductor layers are coated on the surface of the semiconductor fine particles, and to obtain large third-order nonlinear optical characteristics. It is possible to easily manufacture a nonlinear optical thin film having

【0026】また、本発明の第3の非線形光学薄膜の製
造方法は、各ターゲットに金属、ガラス、あるいはセラ
ミックスから選ばれる少なくとも1つを用い、多元スパ
ッタ法により、金属微粒子の表面に前記微粒子と異なる
種類の金属層を被覆した構造からなる3次非線形光学効
果を示す複合微粒子からなる層と前記複合微粒子からな
る層の光吸収波長域に光吸収のないガラスまたはセラミ
ックスからなる層とを順次基板上に蒸着する方法である
ので、金属微粒子の表面に異なる種類の金属層を被覆し
た構造からなる3次非線形光学効果を示す複合微粒子を
高濃度に均一に形成させることができ、大きな3次の非
線形光学特性を有する非線形光学薄膜を容易に製造する
ことができる。
In the third method for producing a nonlinear optical thin film of the present invention, at least one selected from metal, glass, and ceramics is used for each target, and the fine particles are formed on the surface of the fine metal particles by the multi-source sputtering method. Substrate in which a layer made of composite fine particles having a third-order nonlinear optical effect having a structure in which different types of metal layers are coated and a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the layer made of the composite fine particles are sequentially formed. Since this is a method of vapor deposition on the upper surface, it is possible to uniformly form high-concentration composite fine particles having a third-order nonlinear optical effect, which has a structure in which different kinds of metal layers are coated on the surface of the metal fine particles, and a large third-order A non-linear optical thin film having non-linear optical characteristics can be easily manufactured.

【0027】[0027]

【実施例】以下実施例を用いて本発明をさらに具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0028】前記各金属微粒子または半導体微粒子と金
属層または半導体層の種々の組合せが考えられるが、半
導体微粒子/金属層、半導体微粒子/半導体層、また
は、金属微粒子/金属層からなる複合微粒子がよく、半
導体微粒子/半導体層からなる複合微粒子においては半
導体微粒子のバンドギャップが半導体層のそれよりも小
さくなる組合せがよい。
Various combinations of the above-mentioned metal fine particles or semiconductor fine particles and metal layers or semiconductor layers are conceivable, but semiconductor fine particles / metal layer, semiconductor fine particles / semiconductor layer, or composite fine particles composed of metal fine particles / metal layer are preferable. In the case of composite fine particles composed of semiconductor fine particles / semiconductor layer, it is preferable that the band gap of the semiconductor fine particles is smaller than that of the semiconductor layer.

【0029】この様な複合微粒子の分散量は、特に限定
するものではないが、あまり少ないと非線形光学特性が
十分出なかったり、あまり多すぎると光の吸収が大きく
なり光の透過率が減少したり、微粒子の凝集等が生じ易
くなるので、0.01〜50wt%程度、好ましくは0.
1〜30 wt%程度がよい。
The dispersion amount of such composite fine particles is not particularly limited, but if it is too small, the nonlinear optical characteristics are not sufficiently obtained, and if it is too large, the light absorption increases and the light transmittance decreases. Or, since the aggregation of fine particles is likely to occur, it is preferably about 0.01 to 50 wt%, and more preferably 0.0 to 50 wt%.
1 to 30 wt% is preferable.

【0030】また、本発明で用いるスパッタ法において
は、通常アルゴンガスや窒素ガス等を用いるのがよい。
また、スパッタリング時のガス圧力は、特に制限するも
のではないが、通常10-2〜10-4 Torrの範囲であ
る。
In the sputtering method used in the present invention, it is usually preferable to use argon gas, nitrogen gas or the like.
The gas pressure during sputtering is not particularly limited, but is usually in the range of 10 -2 to 10 -4 Torr.

【0031】また、金属微粒子または半導体微粒子層に
用いる微粒子の平均半径は、種類により異なるが、例え
ば通常1 nm〜50 nmの範囲が好ましく、金属微粒
子では、明瞭な表面プラズモン共鳴による吸収があるこ
とが好ましく、半導体微粒子では、量子サイズ効果が大
きく現われることが好ましい。
The average radius of the fine particles used in the metal fine particles or the semiconductor fine particle layer varies depending on the type, but is preferably in the range of, for example, 1 nm to 50 nm in general, and the metal fine particles have a clear surface plasmon resonance absorption. It is preferable that the semiconductor fine particles have a large quantum size effect.

【0032】また、半導体微粒子/金属層、半導体微粒
子/半導体層、または、金属微粒子/金属層からなる複
合微粒子の組成比は、組合せの種類により異なるが、例
えば通常体積比で0.5〜0.9の範囲が好ましい。
The composition ratio of the semiconductor fine particles / metal layer, the semiconductor fine particles / semiconductor layer, or the composite fine particles of metal fine particles / metal layer varies depending on the kind of combination, but is usually 0.5 to 0 in volume ratio. A range of 9.9 is preferred.

【0033】従来の構造では、ガラス層中に微粒子を分
散させていたが、本願発明では、半導体微粒子や金属微
粒子を金属層や半導体層により被覆し、この複合層とガ
ラス層とを積層しているため、電場の集中が発生せず、
結果的には、光学感受率の高い非線形光学薄膜を形成す
ることができる。
In the conventional structure, the fine particles are dispersed in the glass layer, but in the present invention, the semiconductor fine particles and the metal fine particles are covered with the metal layer or the semiconductor layer, and the composite layer and the glass layer are laminated. Therefore, the concentration of the electric field does not occur,
As a result, a nonlinear optical thin film having a high optical susceptibility can be formed.

【0034】以下本発明の具体的実施例について説明す
る。 (実施例1)直径3インチ、純度99.99%のCd
S、Ag、SiO2ターゲットを用いて、アルゴンガス
雰囲気中、高周波マグネトロンスパッタリング装置を用
いてそれぞれのターゲットの印加電力、蒸着時間を制御
しながら、0.5 mm厚の石英基板上に各ターゲット
から蒸着を行なった。図1に作製した薄膜の概略断面図
を示す。
Specific examples of the present invention will be described below. (Example 1) Cd having a diameter of 3 inches and a purity of 99.99%
Using S, Ag, and SiO 2 targets in an argon gas atmosphere with a high-frequency magnetron sputtering device while controlling the applied power and deposition time of each target, each target was placed on a 0.5 mm thick quartz substrate. Deposition was performed. FIG. 1 shows a schematic sectional view of the produced thin film.

【0035】まず、図1に示すように、石英基板4上に
Agの薄膜2を10 nm蒸着し(この時の基板温度は
300℃)、次にCdS微粒子1を形成し(この時の基
板温度は25℃)、さらにAgの薄膜2を蒸着しCdS
微粒子/Ag層からなる複合微粒子を形成した。その
後、SiO2層3を蒸着して積層構造を30層積層した
(この時の基板温度は25℃)。それぞれの大きさは、
CdSの平均粒径が5nm、Ag層の厚みが1.0 n
m、SiO2層の厚みが20 nmであった。
First, as shown in FIG. 1, an Ag thin film 2 was vapor-deposited on a quartz substrate 4 to a thickness of 10 nm (the substrate temperature at this time was 300 ° C.), and then CdS fine particles 1 were formed (the substrate at this time). (Temperature is 25 ° C), and then Ag thin film 2 is vapor-deposited to form CdS.
Composite fine particles composed of fine particles / Ag layer were formed. After that, the SiO 2 layer 3 was vapor-deposited to laminate 30 layers (the substrate temperature at this time was 25 ° C.). Each size is
The average particle size of CdS is 5 nm, and the thickness of the Ag layer is 1.0 n.
m, the thickness of the SiO 2 layer was 20 nm.

【0036】このようにして作製した薄膜の吸収スペク
トルのバンド端は、0.6 eVバルクのCdSに比較
してブルーシフトしていることから複合微粒子量子の量
子サイズ効果が確認できた。さらに、前方入射型縮退4
光波混合法による3次の非線形光学感受率は、バンド端
近傍において5×10-6 esuであった。
Since the band edge of the absorption spectrum of the thin film thus manufactured is blue-shifted as compared with 0.6 eV bulk CdS, the quantum size effect of the composite fine particle quantum was confirmed. Furthermore, front incidence type degeneration 4
The third-order nonlinear optical susceptibility by the light wave mixing method was 5 × 10 −6 esu near the band edge.

【0037】さらに本実施例の比較としてAg層のない
CdS微粒子とSiO2層を交互に30層積層した構造
の薄膜を作製した。この薄膜において、CdS微粒子の
平均粒径は5nm、SiO2層の厚みが20 nmであ
り、前方入射型縮退4光波混合法による3次の非線形光
学感受率は、バンド端近傍において7×10-8 esuであ
った。
Further, as a comparison with this example, a thin film having a structure in which 30 layers of CdS fine particles having no Ag layer and SiO 2 layers were alternately laminated was prepared. In this thin film, the average particle size of the CdS fine particles was 5 nm, the thickness of the SiO 2 layer was 20 nm, and the third-order nonlinear optical susceptibility by the front incidence degenerate four-wave mixing method was 7 × 10 −. It was 8 esu.

【0038】従って、本発明のように、非線形光学薄膜
としてAg層を用いると、光学感受率は著しく高くな
る。
Therefore, when the Ag layer is used as the nonlinear optical thin film as in the present invention, the optical susceptibility is remarkably increased.

【0039】上記構成において、CdS微粒子/Ag層
以外に、ZnS微粒子/Ag層、ZnSe微粒子/Ag
層、CdSe微粒子/Ag層、PbS微粒子/Ag層、
InP微粒子/Ag層、InAs微粒子/Ag層、Ga
As微粒子/Ag層、またはGaAlAs微粒子/Ag
層から成る複合微粒子を形成し、図1と同様な構成の薄
膜においてそれぞれAg層のない微粒子よりも3次の非
線形光学感受率が10〜1000倍大きかった。
In the above structure, in addition to CdS fine particles / Ag layer, ZnS fine particles / Ag layer, ZnSe fine particles / Ag layer
Layer, CdSe fine particles / Ag layer, PbS fine particles / Ag layer,
InP fine particles / Ag layer, InAs fine particles / Ag layer, Ga
As fine particles / Ag layer or GaAlAs fine particles / Ag
The composite fine particles composed of layers were formed, and the third-order nonlinear optical susceptibility was 10 to 1000 times larger than that of the fine particles without Ag layer in the thin film having the same structure as in FIG.

【0040】さらに、本実施例のSiO2に替わりにT
iO2、Al23,SiNを用いてもほぼ同等な特性を
示す薄膜が得られた。
Further, in place of SiO 2 in this embodiment, T
Even if iO 2 , Al 2 O 3 and SiN were used, a thin film showing almost the same characteristics was obtained.

【0041】(実施例2)直径3インチ、純度99.9
9%のCdTe、Au、SiO2ターゲットを用いて、
アルゴンガス雰囲気中、高周波マグネトロンスパッタリ
ング装置を用いてそれぞれのターゲットの印加電力、蒸
着時間を制御しながら、0.5 mm厚の石英基板上に
各ターゲットから蒸着を行なった。作製した薄膜の構成
は、図1に示したものと同様であり、本実施例では、図
1における石英基板4上にAuの薄膜2を蒸着し(この
時の基板温度は400℃)、次にCdTe微粒子1を形
成し(この時の基板温度は50℃)、さらにAuの薄膜
2を蒸着しCdTe微粒子/Au層からなる複合微粒子
を形成した後、SiO2層3を蒸着して積層構造を30
層積層した(この時の基板温度は50℃)。それぞれの
大きさは、CdTe微粒子の平均粒径が6 nm、Au
層の厚みが1.2 nm、SiO2層の厚みが20 nm
であった。
Example 2 Diameter 3 inches, Purity 99.9
Using 9% CdTe, Au, SiO 2 target,
Deposition was performed from each target on a 0.5 mm-thick quartz substrate while controlling the power applied to each target and the deposition time in an argon gas atmosphere using a high-frequency magnetron sputtering device. The structure of the produced thin film is the same as that shown in FIG. 1. In this example, the Au thin film 2 was vapor-deposited on the quartz substrate 4 in FIG. 1 (the substrate temperature at this time was 400 ° C.), and CdTe fine particles 1 are formed on the substrate (at a substrate temperature of 50 ° C. at this time), a thin film 2 of Au is further vapor deposited to form composite fine particles of CdTe fine particles / Au layer, and then a SiO 2 layer 3 is vapor deposited to form a laminated structure. 30
The layers were laminated (the substrate temperature at this time was 50 ° C.). The size of each is such that the average particle size of the CdTe fine particles is 6 nm,
Layer thickness 1.2 nm, SiO 2 layer thickness 20 nm
Met.

【0042】このようにして作製した薄膜の吸収スペク
トルのバンド端は、0.8 eVバルクのCdTeに比
較してブルーシフトしていることから複合微粒子量子の
量子サイズ効果が確認できた。さらに、前方入射型縮退
4光波混合法による3次の非線形光学感受率は、バンド
端近傍において7×10-6 esuであった。
Since the band edge of the absorption spectrum of the thin film thus produced is blue-shifted as compared with 0.8 eV bulk CdTe, the quantum size effect of the composite fine particle quantum was confirmed. Furthermore, the third-order nonlinear optical susceptibility by the front incidence type degenerate four-wave mixing method was 7 × 10 −6 esu near the band edge.

【0043】さらに本実施例の比較としてAu層のない
CdTe微粒子とSiO2層を交互に30層積層した構
造の薄膜を作製した。この薄膜において、CdTe微粒
子の平均粒径は6nm、SiO2層の厚みが20 nmで
あり、前方入射型縮退4光波混合法による3次の非線形
光学感受率は、バンド端近傍において3×10-8 esuで
あった。
Further, as a comparison with this example, a thin film having a structure in which 30 layers of CdTe fine particles without an Au layer and SiO 2 layers were alternately laminated was prepared. In this thin film, the average particle size of the CdTe fine particles was 6 nm, the thickness of the SiO 2 layer was 20 nm, and the third-order nonlinear optical susceptibility by the front incidence type degenerate four-wave mixing method was 3 × 10 −. It was 8 esu.

【0044】従って、本発明のように、非線形光学薄膜
としてAu層を用いると、光学感受率は著しく高くな
る。
Therefore, when the Au layer is used as the nonlinear optical thin film as in the present invention, the optical susceptibility is remarkably increased.

【0045】上記構成において、CdTe微粒子/Au
層以外に、ZnS微粒子/Au層、ZnSe微粒子/A
u層、CdSe微粒子/Au層、PbS微粒子/Au
層、InP微粒子/Au層、InAs微粒子/Au層、
GaAs微粒子/Au層、またはGaAlAs微粒子/
Au層から成る複合微粒子を形成し、図1と同様な構成
の薄膜においてそれぞれAu層のない微粒子よりも3次
の非線形光学感受率が10〜100倍大きかった。
In the above structure, CdTe fine particles / Au
In addition to the layers, ZnS particles / Au layer, ZnSe particles / A
u layer, CdSe fine particles / Au layer, PbS fine particles / Au
Layer, InP fine particles / Au layer, InAs fine particles / Au layer,
GaAs particles / Au layer, or GaAlAs particles /
The composite fine particles made of the Au layer were formed, and the third-order nonlinear optical susceptibility was 10 to 100 times larger than that of the fine particles having no Au layer in the thin film having the same structure as in FIG.

【0046】さらに、本実施例のSiO2に替わりにT
iO2、Al23,SiNを用いてもほぼ同等な特性を
示す薄膜が得られた。
Further, T is used instead of SiO 2 in this embodiment.
Even if iO 2 , Al 2 O 3 and SiN were used, a thin film showing almost the same characteristics was obtained.

【0047】(実施例3)直径3インチ、純度99.9
9%のCdS、PbS、SiO2ターゲットを用いて、
アルゴン雰囲気中高周波マグネトロンスパッタリング装
置を用いてそれぞれのターゲットの印加電力、蒸着時間
を制御しながら、0.5 mm厚の石英基板上に各ター
ゲットから蒸着を行なった。作製した薄膜の構成は、図
1に示したものと同様であり、本実施例では、図1にお
いて石英基板4上にPbSの薄膜2を蒸着し(この時の
基板温度は350℃)、次にCdS微粒子1を形成し
(この時の基板温度は25℃)、さらにPbSの薄膜2
を蒸着しCdS微粒子/PbS層からなる複合微粒子を
形成した後、SiO2層3を蒸着して積層構造を30層
積層した(この時の基板温度は25℃)。それぞれの大
きさは、CdS微粒子の平均粒径が4 nm、PbS層
の厚みが0.8 nm、SiO2層の厚みが20 nmで
あった。
Example 3 Diameter 3 inches, Purity 99.9
Using 9% CdS, PbS, SiO 2 target,
Deposition was performed from each target on a 0.5 mm thick quartz substrate while controlling the power applied to each target and the deposition time in an argon atmosphere using a high frequency magnetron sputtering device. The structure of the produced thin film is the same as that shown in FIG. 1. In this example, the PbS thin film 2 was vapor-deposited on the quartz substrate 4 in FIG. 1 (the substrate temperature at this time was 350 ° C.), and CdS fine particles 1 are formed on the substrate (the substrate temperature at this time is 25 ° C.), and the PbS thin film 2 is further formed.
Was vapor-deposited to form composite fine particles composed of CdS fine particles / PbS layer, and then SiO 2 layer 3 was vapor-deposited to form 30 laminated layers (at this time, the substrate temperature was 25 ° C.). Regarding the respective sizes, the average particle diameter of the CdS fine particles was 4 nm, the thickness of the PbS layer was 0.8 nm, and the thickness of the SiO 2 layer was 20 nm.

【0048】このようにして作製した薄膜の吸収スペク
トルのバンド端は、0.4 eVバルクのCdSに比較
してブルーシフトしていることから複合微粒子量子の量
子サイズ効果が確認できた。さらに、前方入射型縮退4
光波混合法による3次の非線形光学感受率は、バンド端
近傍において7×10-7 esuであった。
Since the band edge of the absorption spectrum of the thin film thus manufactured is blue-shifted as compared with 0.4 eV bulk CdS, the quantum size effect of the composite fine particle quantum was confirmed. Furthermore, front incidence type degeneration 4
The third-order nonlinear optical susceptibility by the light wave mixing method was 7 × 10 −7 esu near the band edge.

【0049】さらに本実施例の比較としてPbS層のな
いCdS微粒子とSiO2層を交互に30層積層した構
造の薄膜を作製した。この薄膜において、CdSの平均
粒径は4nm、SiO2層の厚みが20 nmであり、前
方入射型縮退4光波混合法による3次の非線形光学感受
率は、バンド端近傍において3×10-8 esuであった。
Further, as a comparison of this example, a thin film having a structure in which 30 CdS fine particles without PbS layers and SiO 2 layers were alternately laminated was prepared. In this thin film, the average grain size of CdS was 4 nm, the thickness of the SiO 2 layer was 20 nm, and the third-order nonlinear optical susceptibility by the front incidence type degenerate four-wave mixing method was 3 × 10 −8 in the vicinity of the band edge. It was esu.

【0050】従って、本発明のように、非線形光学薄膜
としてPbS層を用いると、光学感受率は著しく高くな
る。
Therefore, when the PbS layer is used as the nonlinear optical thin film as in the present invention, the optical susceptibility is remarkably increased.

【0051】上記構成において、CdS微粒子/PbS
層以外に、ZnS微粒子/PbS層、ZnSe微粒子/
PbS層、CdS微粒子/CdSe層、ZnS微粒子/
CdSeから成る複合微粒子を形成し、図1と同様な構
成の薄膜においてそれぞれ半導体被覆層のない微粒子よ
りも3次の非線形光学感受率が10〜100倍大きかっ
た。
In the above structure, CdS fine particles / PbS
In addition to the layers, ZnS particles / PbS layer, ZnSe particles /
PbS layer, CdS fine particles / CdSe layer, ZnS fine particles /
The composite fine particles made of CdSe were formed, and the third-order nonlinear optical susceptibility was 10 to 100 times higher than that of the fine particles without the semiconductor coating layer in the thin film having the same structure as in FIG.

【0052】さらに、本実施例のSiO2に替わりにT
iO2、Al23,SiNを用いてもほぼ同等な特性を
示す薄膜が得られた。
Further, in place of SiO 2 in this embodiment, T
Even if iO 2 , Al 2 O 3 and SiN were used, a thin film showing almost the same characteristics was obtained.

【0053】(実施例4)直径3インチ、純度99.9
9%のGaAs、GaAlAs、SiO2ターゲットを
用いて、アルゴン雰囲気中高周波マグネトロンスパッタ
リング装置を用いてそれぞれのターゲットの印加電力、
蒸着時間を制御しながら、0.5 mm厚の石英基板上
に各ターゲットから蒸着を行なった。作製した薄膜の構
成は、図1に示したものと同様であり、本実施例では、
図1において石英基板4上にGaAlAsの薄膜2を蒸
着し(この時の基板温度は280℃)、次にGaAs微
粒子1を形成し(この時の基板温度は25℃)、さらに
GaAlAsの薄膜2を蒸着しGaAs微粒子/GaA
lAs層からなる複合微粒子を形成した後、SiO2
3を蒸着して積層構造を30層積層した(この時の基板
温度は25℃)。それぞれの大きさは、GaAs微粒子
の平均粒径が4 nm、GaAlAs層の厚みが0.8
nm、SiO2層の厚みが20 nmであった。
Example 4 Diameter 3 inches, Purity 99.9
9% GaAs, GaAlAs, and SiO 2 targets were used, and the power applied to each target was adjusted using a high-frequency magnetron sputtering device in an argon atmosphere.
Deposition was performed from each target on a quartz substrate having a thickness of 0.5 mm while controlling the deposition time. The structure of the produced thin film is the same as that shown in FIG. 1, and in this embodiment,
In FIG. 1, a GaAlAs thin film 2 is vapor-deposited on a quartz substrate 4 (at this time, the substrate temperature is 280 ° C.), then GaAs fine particles 1 are formed (at this time, the substrate temperature is 25 ° C.), and the GaAlAs thin film 2 is further formed. Vapor deposition of GaAs fine particles / GaA
After forming the composite fine particles composed of the 1As layer, the SiO 2 layer 3 was vapor-deposited to form 30 laminated layers (at this time, the substrate temperature was 25 ° C.). The average size of the GaAs particles is 4 nm and the thickness of the GaAlAs layer is 0.8.
nm, and the thickness of the SiO 2 layer was 20 nm.

【0054】このようにして作製した薄膜の吸収スペク
トルのバンド端は、0.7 eVバルクのGaAsに比
較してブルーシフトしていることから複合微粒子量子の
量子サイズ効果が確認できた。さらに、前方入射型縮退
4光波混合法による3次の非線形光学感受率は、バンド
端近傍において9×10-7 esuであった。
Since the band edge of the absorption spectrum of the thin film thus manufactured is blue-shifted as compared with 0.7 eV bulk GaAs, the quantum size effect of the composite fine particle quantum was confirmed. Furthermore, the third-order nonlinear optical susceptibility obtained by the front incidence type degenerate four-wave mixing method was 9 × 10 −7 esu near the band edge.

【0055】さらに本実施例の比較としてGaAlAs
層のないGaAs微粒子とSiO2層を交互に30層積
層した構造の薄膜を作製した。この薄膜において、Ga
Asの平均粒径は4nm、SiO2層の厚みが20 nm
であり、前方入射型縮退4光波混合法による3次の非線
形光学感受率は、バンド端近傍において6×10-8 esu
であった。
Further, as a comparison of this embodiment, GaAlAs
A thin film having a structure in which 30 layers of GaAs fine particles having no layers and SiO 2 layers were alternately laminated was prepared. In this thin film, Ga
The average particle size of As is 4 nm, and the thickness of the SiO 2 layer is 20 nm.
And the third-order nonlinear optical susceptibility by the front incidence type degenerate four-wave mixing method is 6 × 10 −8 esu near the band edge.
Met.

【0056】従って、本発明のように、非線形光学薄膜
としてGaAlAs層を用いると、光学感受率は著しく
高くなる。
Therefore, when the GaAlAs layer is used as the nonlinear optical thin film as in the present invention, the optical susceptibility is remarkably increased.

【0057】上記構成において、GaAs微粒子/Ga
AlAs層以外に、InP微粒子/InAs層から成る
複合微粒子を形成し、図1と同様な構成の薄膜において
それぞれ半導体被覆層のない微粒子よりも3次の非線形
光学感受率が10〜100倍大きかった。
In the above structure, GaAs fine particles / Ga
In addition to the AlAs layer, composite fine particles composed of InP fine particles / InAs layer were formed, and the third-order nonlinear optical susceptibility was 10 to 100 times larger than the fine particles without the semiconductor coating layer in the thin film having the same structure as in FIG. .

【0058】さらに、本実施例のSiO2に替わりにT
iO2、Al23,SiNを用いてもほぼ同等な特性を
示す薄膜が得られた。
Further, T is used instead of SiO 2 in this embodiment.
Even if iO 2 , Al 2 O 3 and SiN were used, a thin film showing almost the same characteristics was obtained.

【0059】(実施例5)直径3インチ、純度99.9
9%のAu、Ag、SiO2ターゲットを用いて、アル
ゴン雰囲気中高周波マグネトロンスパッタリング装置を
用いてそれぞれのターゲットの印加電力、蒸着時間を制
御しながら、0.5 mm厚の石英基板上に各ターゲッ
トから蒸着を行なった。作製した薄膜の構成は、図1に
示した断面模式図と同様であり、本実施例では、図1に
おいて石英基板4上にAuの薄膜2を蒸着し(この時の
基板温度は400℃)、次にAg微粒子1を形成し(こ
の時の基板温度は25℃)、さらにAuの薄膜2を蒸着
しAg微粒子/Au層からなる複合微粒子を形成した
後、SiO2層3を蒸着して積層構造を30層積層した
(この時の基板温度は25℃)。それぞれの大きさは、
Ag微粒子の平均粒径が3 nm、Au層の厚みが1.
2 nm、SiO2層の厚みが20 nmであった。
Example 5 Diameter 3 inches, Purity 99.9
Using a 9% Au, Ag, and SiO 2 target in an argon atmosphere with a high-frequency magnetron sputtering device, controlling the applied power and deposition time of each target, each target was placed on a 0.5 mm thick quartz substrate. The vapor deposition was performed from. The structure of the produced thin film is similar to that of the schematic cross-sectional view shown in FIG. 1. In this embodiment, the Au thin film 2 is vapor-deposited on the quartz substrate 4 in FIG. 1 (the substrate temperature at this time is 400 ° C.). Then, Ag fine particles 1 are formed (at this time, the substrate temperature is 25 ° C.), a thin film 2 of Au is further deposited to form composite fine particles composed of Ag fine particles / Au layer, and then a SiO 2 layer 3 is deposited. Thirty layers of the laminated structure were laminated (the substrate temperature at this time was 25 ° C.). Each size is
The average particle size of the Ag particles is 3 nm, and the thickness of the Au layer is 1.
The thickness was 2 nm, and the thickness of the SiO 2 layer was 20 nm.

【0060】このようにして作製した薄膜の吸収スペク
トルには、Ag微粒子の表面プラズモン吸収に基づくピ
−クが430nmに見られた。さらに、前方入射型縮退
4光波混合法による3次の非線形光学感受率はそれぞれ
の表面プラズモン吸収波長において3×10-7 esuであ
った。
In the absorption spectrum of the thin film thus produced, a peak due to the surface plasmon absorption of Ag particles was found at 430 nm. Furthermore, the third-order nonlinear optical susceptibility measured by the front incidence type degenerate four-wave mixing method was 3 × 10 −7 esu at each surface plasmon absorption wavelength.

【0061】さらに本実施例の比較としてAu層のない
Ag微粒子とSiO2層を交互に30層積層した構造の
薄膜を作製した。この薄膜において、Agの平均粒径は
3nm、SiO2層の厚みが20 nmであり、前方入射
型縮退4光波混合法による3次の非線形光学感受率は、
バンド端近傍において9×10-9 esuであった。
Further, as a comparison with this example, a thin film having a structure in which 30 Ag layers without an Au layer and 30 SiO 2 layers were alternately laminated was prepared. In this thin film, the average particle diameter of Ag was 3 nm, the thickness of the SiO 2 layer was 20 nm, and the third-order nonlinear optical susceptibility by the front incidence type degenerate four-wave mixing method was
It was 9 × 10 −9 esu in the vicinity of the band edge.

【0062】従って、本発明のように、非線形光学薄膜
としてAu層を用いると、光学感受率は著しく高くな
る。
Therefore, when the Au layer is used as the nonlinear optical thin film as in the present invention, the optical susceptibility is remarkably increased.

【0063】さらに、本実施例のSiO2に替わりにT
iO2、Al23,SiNを用いてもほぼ同等な特性を
示す薄膜が得られた。
Further, in place of SiO 2 in this embodiment, T
Even if iO 2 , Al 2 O 3 and SiN were used, a thin film showing almost the same characteristics was obtained.

【0064】上記構成において、Ag微粒子/Au層の
組合せ以外にAg微粒子/Pt層、Cu微粒子/Au
層、Sn/Au層、Rh/Au層、Pd/Au層、、I
r/Au層から成る複合微粒子を形成し、図1と同様な
構成の薄膜においてそれぞれ金属被覆層のない金属微粒
子よりも3次の非線形光学感受率が10〜100倍大き
かった。
In the above structure, in addition to the combination of Ag particles / Au layer, Ag particles / Pt layer, Cu particles / Au.
Layer, Sn / Au layer, Rh / Au layer, Pd / Au layer, I
The composite fine particles composed of the r / Au layer were formed, and the third-order nonlinear optical susceptibility was 10 to 100 times larger than that of the metal fine particles without the metal coating layer in the thin film having the same structure as in FIG.

【0065】(実施例6)上記の実施例1に示した材料
を用いて光双安定素子を作製し、この素子に波長440
nmのレ−ザ光をスポット径5μmで入射し、入射光
の強度と出射光の強度の関係を室温(25℃)にて測定
したところそれぞれの波長において双安定特性を示し
た。
(Embodiment 6) An optical bistable device was manufactured using the material shown in the above-mentioned embodiment 1, and a wavelength of 440 was applied to this device.
Laser light of nm was incident with a spot diameter of 5 μm, and the relationship between the intensity of the incident light and the intensity of the emitted light was measured at room temperature (25 ° C.), and bistable characteristics were exhibited at each wavelength.

【0066】(実施例7)上記の実施例5に示した材料
を用いて光双安定素子を作製し、この素子に波長430
nmのレ−ザ光をスポット径5μmで入射し、入射光
の強度と出射光の強度の関係を室温(25℃)にて測定
したところそれぞれの波長において双安定特性を示し
た。
(Embodiment 7) An optical bistable device was manufactured using the materials shown in the above-mentioned embodiment 5, and a wavelength 430 was applied to this device.
Laser light of nm was incident with a spot diameter of 5 μm, and the relationship between the intensity of the incident light and the intensity of the emitted light was measured at room temperature (25 ° C.), and bistable characteristics were exhibited at each wavelength.

【0067】[0067]

【発明の効果】以上説明した通り、本発明の第1の非線
形光学材料によれば、半導体微粒子の表面に金属層を被
覆した構造からなる3次非線形光学効果を示す複合微粒
子からなる層と前記複合微粒子からなる層の光吸収波長
域に光吸収のないガラスまたはセラミックスからなる層
とを順次基板上に積層した構成を備えた非線形光学薄膜
であることにより、半導体微粒子の非線形光学特性を金
属被覆層により増大させることが可能な大きな3次の非
線形光学感受率を有する非線形光学薄膜を提供すること
ができる。
As described above, according to the first non-linear optical material of the present invention, a layer of composite fine particles having a third-order non-linear optical effect having a structure in which the surface of semiconductor fine particles is coated with a metal layer The non-linear optical thin film has a structure in which a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of a layer made of composite fine particles is sequentially laminated on a substrate, so that the non-linear optical characteristics of semiconductor fine particles are metal-coated. It is possible to provide a nonlinear optical thin film having a large third-order nonlinear optical susceptibility that can be increased by layers.

【0068】また、本発明の第2の非線形光学材料によ
れば、半導体微粒子の表面に前記微粒子と異なる種類の
半導体層を被覆した構造からなる3次非線形光学効果を
示す複合微粒子からなる層と前記複合微粒子からなる層
の光吸収波長域に光吸収のないガラスまたはセラミック
スからなる層とを順次基板上に積層した構成を備えた非
線形光学薄膜であることにより、半導体微粒子の非線形
光学特性を異なる種類の半導体被覆層により増大させる
ことが可能な大きな3次の非線形光学感受率を有する非
線形光学薄膜を提供することができる。
According to the second nonlinear optical material of the present invention, a layer made of composite fine particles having a third-order nonlinear optical effect, which has a structure in which the surface of semiconductor fine particles is coated with a semiconductor layer of a different type from the fine particles, The nonlinear optical characteristics of semiconductor fine particles are different by being a nonlinear optical thin film having a structure in which a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the layer made of composite fine particles is sequentially laminated on a substrate. It is possible to provide a nonlinear optical thin film having a large third-order nonlinear optical susceptibility that can be increased by various types of semiconductor coating layers.

【0069】また、本発明の第3の非線形光学材料によ
れば、金属微粒子の表面に前記微粒子と異なる種類の金
属層を被覆した構造からなる3次非線形光学効果を示す
複合微粒子からなる層と前記複合微粒子からなる層の光
吸収波長域に光吸収のないガラスまたはセラミックスか
らなる層とを順次基板上に積層した構成を備えた非線形
光学薄膜であることにより、金属微粒子の非線形光学特
性を異なる種類の金属被覆層により増大させることが可
能な大きな3次の非線形光学感受率を有する非線形光学
薄膜を提供することができる。
According to the third nonlinear optical material of the present invention, a layer made of composite fine particles having a third-order nonlinear optical effect, which has a structure in which the surface of the metal fine particles is coated with a metal layer of a different type from the fine particles, The non-linear optical thin film having a structure in which a layer made of glass or ceramics having no light absorption in the light absorption wavelength range of the layer made of the composite fine particles is sequentially laminated on the substrate, and thus the non-linear optical characteristics of the metal fine particles are different. It is possible to provide a non-linear optical thin film having a large third-order non-linear optical susceptibility that can be increased by various kinds of metal coating layers.

【0070】また、半導体微粒子が、ZnS、CdS、
ZnSe、CdSe、PbS、InP、InAs、Ga
As、またはGaAlAsから選ばれる少なくとも1つ
であるという本発明の好ましい例によれば、これらの半
導体は量子サイズ効果に基づく大きな非線形光学特性を
示し、他の半導体に比べて容易に微粒子化させることが
可能で、また酸化されにくいため、より大きな3次の非
線形光学特性を有する非線形光学材料を提供できる。
The semiconductor fine particles are ZnS, CdS,
ZnSe, CdSe, PbS, InP, InAs, Ga
According to a preferred example of the present invention, which is at least one selected from As and GaAlAs, these semiconductors exhibit large nonlinear optical characteristics based on the quantum size effect, and can be easily atomized as compared with other semiconductors. It is also possible to provide a non-linear optical material having a larger third-order non-linear optical characteristic because it is less likely to be oxidized.

【0071】また、金属微粒子が、金、白金、銀、銅、
錫、ロジウム、パラジウムまたはイリジウムから選ばれ
る少なくとも1つであるという本発明の好ましい例によ
れば、これらの金属は、表面プラズモン吸収や量子サイ
ズ効果に基づく非線形光学特性を示し、他の金属に比べ
て酸素その他の不純物による影響を受け難く、比較的純
粋な金属微粒子を析出させることができるので、より大
きな3次の非線形光学特性を有する非線形光学材料を提
供できる。
The metal fine particles are gold, platinum, silver, copper,
According to a preferred example of the present invention, which is at least one selected from tin, rhodium, palladium, and iridium, these metals exhibit nonlinear optical properties based on surface plasmon absorption and quantum size effect, and are superior to other metals. Since it is less susceptible to oxygen and other impurities and relatively fine metal particles can be deposited, it is possible to provide a nonlinear optical material having a larger third-order nonlinear optical characteristic.

【0072】また、半導体層が、ZnS、CdS、Zn
Se、CdSe、PbS、InP、InAs、GaA
s、またはGaAlAsから選ばれる少なくとも1つで
あるという本発明の好ましい例によれば、これらの半導
体は蒸着条件を制御することにより他の半導体に比べて
容易に薄膜化させることが可能で、また酸化されにくい
ため、異なる種類の半導体微粒子や金属微粒子を容易に
被覆することが可能でより大きな3次の非線形光学特性
を有する非線形光学材料を提供できる。
The semiconductor layer is made of ZnS, CdS, Zn
Se, CdSe, PbS, InP, InAs, GaA
According to a preferred example of the present invention, which is at least one selected from s or GaAlAs, these semiconductors can be easily formed into a thin film as compared with other semiconductors by controlling vapor deposition conditions. Since it is difficult to oxidize, it is possible to easily coat different kinds of semiconductor fine particles and metal fine particles, and it is possible to provide a nonlinear optical material having a larger third-order nonlinear optical characteristic.

【0073】また、金属層が、金、白金、銀、銅、錫、
ロジウム、パラジウムまたはイリジウムから選ばれる少
なくとも1つであるという本発明の好ましい例によれ
ば、これらの金属は、蒸着条件を制御することにより他
の金属に比べて容易に薄膜化させることが可能で、他の
金属に比べて酸素その他の不純物による影響を受け難
く、異なる種類の半導体微粒子や金属微粒子を容易に純
粋な金属層で被覆することが可能で、より大きな3次の
非線形光学特性を有する非線形光学材料を提供できる。
The metal layer is made of gold, platinum, silver, copper, tin,
According to the preferable example of the present invention, which is at least one selected from rhodium, palladium, and iridium, these metals can be easily formed into a thin film as compared with other metals by controlling vapor deposition conditions. Compared to other metals, it is less affected by oxygen and other impurities, different kinds of semiconductor fine particles and metal fine particles can be easily covered with a pure metal layer, and has a larger third-order nonlinear optical characteristic. A non-linear optical material can be provided.

【0074】また、ガラス、セラミックスまたは基板
が、SiO2、TiO2、Al23,SiNから選ばれる
少なくとも1つであるという本発明の好ましい例によれ
ば、このようなガラス、セラミックスまたは基板がは、
化学的に安定であり、光学的に広い範囲で透明であるの
で、大きな3次の非線形光学特性を有する非線形光学材
料を提供できる。
According to a preferred example of the present invention in which the glass, ceramics or substrate is at least one selected from SiO 2 , TiO 2 , Al 2 O 3 and SiN, such glass, ceramics or substrate is used. But
Since it is chemically stable and optically transparent in a wide range, it is possible to provide a nonlinear optical material having a large third-order nonlinear optical characteristic.

【0075】次に本発明の第1の非線形光学薄膜の製造
方法は、各ターゲットに金属、半導体、ガラス、あるい
はセラミックスから選ばれる少なくとも1つを用い、多
元スパッタ法により、半導体微粒子の表面に金属層を被
覆した構造からなる3次非線形光学効果を示す複合微粒
子からなる層と前記複合微粒子からなる層の光吸収波長
域に光吸収のないガラスまたはセラミックスからなる層
とを順次基板上に蒸着する方法であるので、半導体微粒
子の表面に金属層を被覆した構造からなる3次非線形光
学効果を示す複合微粒子を高濃度に均一に形成させるこ
とができ、大きな3次の非線形光学特性を有する非線形
光学薄膜を容易に提供できる。
Next, in the first method for producing a nonlinear optical thin film of the present invention, at least one selected from a metal, a semiconductor, glass, or a ceramic is used for each target, and a metal is formed on the surface of semiconductor fine particles by a multi-source sputtering method. A layer made of composite fine particles having a third-order nonlinear optical effect, which has a layer-covered structure, and a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the layer made of the composite fine particles are sequentially deposited on a substrate. Since it is a method, it is possible to uniformly form a high concentration of composite fine particles having a third-order nonlinear optical effect having a structure in which the surface of semiconductor fine particles is coated with a metal layer, and a nonlinear optic having a large third-order nonlinear optical characteristic. A thin film can be easily provided.

【0076】また、本発明の第2の非線形光学薄膜の製
造方法は、各ターゲットに半導体、ガラス、あるいはセ
ラミックスから選ばれる少なくとも1つを用い、多元ス
パッタ法により、半導体微粒子の表面に前記微粒子と異
なる種類の半導体層を被覆した構造からなる3次非線形
光学効果を示す複合微粒子からなる層と前記複合微粒子
からなる層の光吸収波長域に光吸収のないガラスまたは
セラミックスからなる層とを順次基板上に蒸着する方法
であるので、半導体微粒子の表面に異なる種類の半導体
層を被覆した構造からなる3次非線形光学効果を示す複
合微粒子を高濃度に均一に形成させることができ、大き
な3次の非線形光学特性を有する非線形光学薄膜を容易
に提供できる。
In the second method for producing a nonlinear optical thin film of the present invention, at least one selected from semiconductor, glass, or ceramics is used for each target, and the fine particles are formed on the surface of the semiconductor fine particles by the multi-source sputtering method. Substrate in which a layer made of composite fine particles having a third-order nonlinear optical effect and having a structure of coating different types of semiconductor layers and a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the layer made of the composite fine particles are sequentially formed. Since this is a method of vapor deposition on the upper surface, it is possible to uniformly form high-concentration composite fine particles having a third-order nonlinear optical effect having a structure in which semiconductor layers of different types are coated on the surface of the semiconductor fine particles, and to obtain a large third-order It is possible to easily provide a nonlinear optical thin film having nonlinear optical characteristics.

【0077】また、本発明の第3の非線形光学薄膜の製
造方法は、各ターゲットに金属、ガラス、あるいはセラ
ミックスから選ばれる少なくとも1つを用い、多元スパ
ッタ法により、金属微粒子の表面に前記微粒子と異なる
種類の金属層を被覆した構造からなる3次非線形光学効
果を示す複合微粒子からなる層と前記複合微粒子からな
る層の光吸収波長域に光吸収のないガラスまたはセラミ
ックスからなる層とを順次基板上に蒸着する方法である
ので、金属微粒子の表面に異なる種類の金属層を被覆し
た構造からなる3次非線形光学効果を示す複合微粒子を
高濃度に均一に形成させることができ、大きな3次の非
線形光学特性を有する非線形光学薄膜を容易に提供でき
る。
In the third method for producing a nonlinear optical thin film of the present invention, at least one selected from metal, glass, and ceramics is used for each target, and the fine particles are formed on the surface of the metal fine particles by the multi-source sputtering method. Substrate in which a layer made of composite fine particles having a third-order nonlinear optical effect having a structure in which different types of metal layers are coated and a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the layer made of the composite fine particles are sequentially formed. Since this is a method of vapor deposition on the upper surface, it is possible to uniformly form high-concentration composite fine particles having a third-order nonlinear optical effect, which has a structure in which different kinds of metal layers are coated on the surface of the metal fine particles, and a large third-order It is possible to easily provide a nonlinear optical thin film having nonlinear optical characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における非線形光学薄膜の概略
断面図
FIG. 1 is a schematic cross-sectional view of a nonlinear optical thin film according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 微粒子 2 被覆層 3 ガラス 4 基板 1 fine particles 2 coating layer 3 glass 4 substrate

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】半導体微粒子が金属層により被覆された構
造を有し3次非線形光学効果を示す複合微粒子層と、前
記複合微粒子層の光吸収波長域に光吸収のないガラスま
たはセラミックスからなる層とを交互に基板上に積層し
た非線形光学薄膜。
1. A composite fine particle layer having a structure in which semiconductor fine particles are covered with a metal layer and exhibiting a third-order nonlinear optical effect, and a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the composite fine particle layer. A non-linear optical thin film in which and are alternately laminated on a substrate.
【請求項2】半導体微粒子が前記半導体微粒子と異なる
種類の半導体層により被覆された構造を有し3次非線形
光学効果を示す複合微粒子層と、前記複合微粒子層の光
吸収波長域に光吸収のないガラスまたはセラミックスか
らなる層とを交互に基板上に積層した非線形光学薄膜。
2. A composite fine particle layer having a structure in which semiconductor fine particles are covered with a semiconductor layer of a type different from that of said semiconductor fine particles, and showing a third-order nonlinear optical effect; and a light absorption wavelength range of said composite fine particle layer. A non-linear optical thin film in which layers made of non-glass or ceramics are alternately laminated on a substrate.
【請求項3】金属微粒子が前記金属微粒子と異なる種類
の金属層により被覆された構造を有し3次非線形光学効
果を示す複合微粒子層と、前記複合微粒子層の光吸収波
長域に光吸収のないガラスまたはセラミックスからなる
層とを交互に基板上に積層した非線形光学薄膜。
3. A composite fine particle layer having a structure in which metal fine particles are coated with a metal layer of a type different from that of said metal fine particles and exhibiting a third-order nonlinear optical effect, and a light absorption wavelength range of said composite fine particle layer. A non-linear optical thin film in which layers made of non-glass or ceramics are alternately laminated on a substrate.
【請求項4】半導体微粒子が、ZnS、CdS、ZnS
e、CdSe、PbS、InP、InAs、GaAs、
またはGaAlAsから選ばれる少なくとも1つである
ことを特徴とする請求項1または2記載の非線形光学薄
膜。
4. The semiconductor fine particles are ZnS, CdS, ZnS.
e, CdSe, PbS, InP, InAs, GaAs,
Alternatively, the nonlinear optical thin film according to claim 1 or 2, wherein the nonlinear optical thin film is at least one selected from GaAlAs.
【請求項5】金属微粒子が、金、白金、銀、銅、錫、ロ
ジウム、パラジウムまたはイリジウムから選ばれる少な
くとも1つであることを特徴とする請求項3記載の非線
形光学薄膜。
5. The nonlinear optical thin film according to claim 3, wherein the fine metal particles are at least one selected from gold, platinum, silver, copper, tin, rhodium, palladium and iridium.
【請求項6】半導体層が、ZnS、CdS、ZnSe、
CdSe、PbS、InP、InAs、GaAs、また
はGaAlAsから選ばれる少なくとも1つであること
を特徴とする請求項2記載の非線形光学薄膜。
6. The semiconductor layer comprises ZnS, CdS, ZnSe,
The nonlinear optical thin film according to claim 2, which is at least one selected from CdSe, PbS, InP, InAs, GaAs, and GaAlAs.
【請求項7】金属層が、金、白金、銀、銅、錫、ロジウ
ム、パラジウムまたはイリジウムから選ばれる少なくと
も1つであることを特徴とする請求項1または3記載の
非線形光学薄膜。
7. The nonlinear optical thin film according to claim 1, wherein the metal layer is at least one selected from gold, platinum, silver, copper, tin, rhodium, palladium and iridium.
【請求項8】ガラスまたはセラミックスからなる層が、
SiO2、TiO2、Al23,SiNから選ばれる少な
くとも1つであることを特徴とする請求項1〜3いずれ
かに記載の非線形光学薄膜。
8. A layer made of glass or ceramics,
Nonlinear optical thin film according to any one of claims 1 to 3, wherein the SiO 2, TiO 2, Al 2 O 3, is at least one selected from SiN.
【請求項9】基板が、SiO2、TiO2、Al23,S
iNから選ばれる少なくとも1つであることを特徴とす
る請求項1〜3いずれかに記載の非線形光学薄膜。
9. The substrate is SiO 2 , TiO 2 , Al 2 O 3 or S.
At least one selected from iN, The nonlinear optical thin film in any one of Claims 1-3.
【請求項10】各ターゲットに金属、半導体、ガラス、
あるいはセラミックスから選ばれる少なくとも1つを用
い、多元スパッタ法により、半導体微粒子の表面に金属
層を被覆した構造からなる3次非線形光学効果を示す複
合微粒子からなる層と前記複合微粒子からなる層の光吸
収波長域に光吸収のないガラスまたはセラミックスから
なる層とを順次基板上に蒸着することにより積層し、か
つ、前記金属層を被覆する際の基板温度が前記半導体微
粒子を形成する際の基板温度よりも高いことを特徴とす
る非線形光学薄膜の製造方法。
10. A target made of metal, semiconductor, glass,
Alternatively, by using at least one selected from ceramics, the light of the layer composed of the composite particles and the layer composed of the composite particles, which has a third-order nonlinear optical effect and has a structure in which the surface of the semiconductor particles is coated with a metal layer by the multi-source sputtering method. Layers made of glass or ceramics that do not absorb light in the absorption wavelength range are sequentially deposited on the substrate by stacking, and the substrate temperature at the time of coating the metal layer is the substrate temperature at the time of forming the semiconductor fine particles. A method for manufacturing a non-linear optical thin film, characterized by being higher than the above.
【請求項11】各ターゲットに半導体、ガラス、あるい
はセラミックスから選ばれる少なくとも1つを用い、多
元スパッタ法により、半導体微粒子の表面に前記微粒子
と異なる種類の半導体層を被覆した構造からなる3次非
線形光学効果を示す複合微粒子からなる層と前記複合微
粒子からなる層の光吸収波長域に光吸収のないガラスま
たはセラミックスからなる層とを順次基板上に蒸着する
ことにより積層し、かつ、前記半導体層を被覆する際の
基板温度が前記半導体微粒子を形成する際の基板温度よ
りも高いことを特徴とする非線形光学薄膜の製造方法。
11. A third-order nonlinear structure having a structure in which at least one selected from semiconductor, glass, and ceramics is used for each target, and the surface of semiconductor fine particles is coated with a semiconductor layer of a different type from the fine particles by a multi-source sputtering method. A layer made of composite fine particles exhibiting an optical effect and a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the layer made of the composite fine particles are sequentially laminated on the substrate, and the semiconductor layer is formed. A method for producing a non-linear optical thin film, wherein the substrate temperature at the time of coating is higher than the substrate temperature at the time of forming the semiconductor fine particles.
【請求項12】各ターゲットに金属、ガラス、あるいは
セラミックスから選ばれる少なくとも1つを用い、多元
スパッタ法により、金属微粒子の表面に前記微粒子と異
なる種類の金属層を被覆した構造からなる3次非線形光
学効果を示す複合微粒子からなる層と前記複合微粒子か
らなる層の光吸収波長域に光吸収のないガラスまたはセ
ラミックスからなる層とを順次基板上に蒸着することに
より積層し、かつ、前記金属層を被覆する際の基板温度
が前記金属微粒子を形成する際の基板温度よりも高いこ
とを特徴とする非線形光学薄膜の製造方法。
12. A third-order nonlinear structure in which at least one selected from metal, glass, and ceramics is used for each target, and the surface of metal fine particles is coated with a metal layer of a different type from the fine particles by a multi-source sputtering method. A layer made of composite fine particles exhibiting an optical effect and a layer made of glass or ceramics that does not absorb light in the light absorption wavelength range of the layer made of the composite fine particles are sequentially laminated on the substrate, and the metal layer is formed. A method for producing a non-linear optical thin film, characterized in that the substrate temperature at the time of coating is higher than the substrate temperature at the time of forming the metal fine particles.
JP11818395A 1995-05-17 1995-05-17 Nonlinear optical thin film and its production Pending JPH08313946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11818395A JPH08313946A (en) 1995-05-17 1995-05-17 Nonlinear optical thin film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11818395A JPH08313946A (en) 1995-05-17 1995-05-17 Nonlinear optical thin film and its production

Publications (1)

Publication Number Publication Date
JPH08313946A true JPH08313946A (en) 1996-11-29

Family

ID=14730203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11818395A Pending JPH08313946A (en) 1995-05-17 1995-05-17 Nonlinear optical thin film and its production

Country Status (1)

Country Link
JP (1) JPH08313946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083550A (en) * 2006-09-28 2008-04-10 Dainippon Printing Co Ltd Nonlinear optical material and its manufacturing method
JP2010258401A (en) * 2009-03-30 2010-11-11 Saito Research Institute Of Technology Co Ltd Controlling method of optical and electromagnetic effect assisting layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083550A (en) * 2006-09-28 2008-04-10 Dainippon Printing Co Ltd Nonlinear optical material and its manufacturing method
JP2010258401A (en) * 2009-03-30 2010-11-11 Saito Research Institute Of Technology Co Ltd Controlling method of optical and electromagnetic effect assisting layer

Similar Documents

Publication Publication Date Title
US5113473A (en) Nonlinear, optical thin-films and manufacturing method thereof
JPH08313946A (en) Nonlinear optical thin film and its production
JPH08146477A (en) Nonlinear optical thin film and its production
JPH03294829A (en) Nonlinear optical thin film and production thereof
JPH0365526A (en) Production of fine particle-dispersed glass
JPH05142605A (en) Nonlinear optical material and its production
JPH09203915A (en) Nonlinear optical thin film and its production
JP2945258B2 (en) Manufacturing method of nonlinear optical material
JPH11142898A (en) Nonlinear optical element and its production
JP2795590B2 (en) Nonlinear optical material and manufacturing method thereof
JP2885418B2 (en) Method for producing semiconductor-doped glass thin film
JPH05142604A (en) Nonlinear optical material and its production
JPH0825766B2 (en) Method for producing gold fine particle dispersed glass
JP3243307B2 (en) Nonlinear optical element and method of manufacturing the same
JPH0473720A (en) Manufacture of nonlinear optical material
CN113238426B (en) Optical limiting device based on quantum dot nonlinearity and nonlinear film preparation method thereof
JP3413892B2 (en) Manufacturing method of ultrafine particle dispersion material
JP2001249370A (en) Nonlinear optical element and method of manufacture
JP2881961B2 (en) Nonlinear optical material and manufacturing method thereof
JP2851694B2 (en) Nonlinear optical thin film
JPH0473722A (en) Nonlinear optical material and its manufacture
JPH11242250A (en) Method for producing non-linear optical material
JP3341361B2 (en) Manufacturing method of ultrafine particle dispersion material
JPH06208149A (en) Non-linear optical material and manufacture thereof
JP2000250080A (en) Manufacture of nonlinear optical material