JPH042632A - Production of nonlinear optical material - Google Patents

Production of nonlinear optical material

Info

Publication number
JPH042632A
JPH042632A JP9970790A JP9970790A JPH042632A JP H042632 A JPH042632 A JP H042632A JP 9970790 A JP9970790 A JP 9970790A JP 9970790 A JP9970790 A JP 9970790A JP H042632 A JPH042632 A JP H042632A
Authority
JP
Japan
Prior art keywords
glass
powder
nonlinear optical
optical material
source powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9970790A
Other languages
Japanese (ja)
Inventor
Ayumi Tsujimura
歩 辻村
Ichiro Tanahashi
棚橋 一郎
Tsuneo Mitsuyu
常男 三露
Atsushi Nishino
敦 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9970790A priority Critical patent/JPH042632A/en
Publication of JPH042632A publication Critical patent/JPH042632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To homogeneously disperse fine semiconductor particles at a high density by obtaining a thin-filmy glass containing fine semiconductor particles dispersed therein with a specific composite glass employed as a target using a sputtering method. CONSTITUTION:At least one powder selected from a Cd source powder (e.g. CdO), an S source powder (e.g. ZnS), an Se source powder and a Te source powder is mixed with low-melting glass powder and the resultant mixture is sintered to provide composite glass, which is then employed as a target to produce glass containing fine semiconductor particles dispersed therein according to a sputtering method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非線形光学効果を利用した光デバイスの基礎を
なす半導体微粒子分散ガラス非線形光学材料の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a glass nonlinear optical material in which semiconductor fine particles are dispersed, which forms the basis of an optical device that utilizes nonlinear optical effects.

従来の技術 従来の技術としては例えば、ジャーナル・オブ・オプテ
ィカル・ソサエティ・オプ・アメリカ第73巻第647
頁(J、Opt、Soc、Am、 Vol、73  P
Conventional technology Conventional technology includes, for example, Journal of Optical Society Op America, Vol. 73, No. 647.
Page (J, Opt, Soc, Am, Vol, 73 P
.

647 (1983))に記載されているCdS、 S
e、、をホウケイ酸ガラスに分散したカットオフフィル
タガラスを非線形光学材料に用いるものがある。このカ
ットオフフィルタガラスは、Cd5X5el−xとホウ
ケイ酸ガラス材料を白金ルツボに入れ、1600℃程度
の高温で溶融して作製している。
647 (1983)), CdS, S
There is a type of nonlinear optical material that uses a cutoff filter glass in which e.g., is dispersed in borosilicate glass. This cut-off filter glass is produced by placing Cd5X5el-x and borosilicate glass material in a platinum crucible and melting them at a high temperature of about 1600°C.

また、ジャーナル・オブ・アプライド・フィジックス第
63巻第957頁(J、Appl、Phys、  Vo
l。
Also, Journal of Applied Physics, Vol. 63, p. 957 (J, Appl, Phys, Vo
l.

63  P、957 (1988))に開示されている
ようなCdS微粒子分散薄膜ガラスがある。この薄膜ガ
ラスは、ターゲットにコーニング社製7059ガラス上
に粉末のCdSを配置したものを用い、高周波マグネト
ロンスパッタリング法により、前記7059ガラス中に
CdSを2〜4重量%分散させたものである。
63 P, 957 (1988)), there is a CdS fine particle dispersed thin film glass. This thin film glass is obtained by dispersing 2 to 4% by weight of CdS in the 7059 glass using a high frequency magnetron sputtering method using a target in which powdered CdS is placed on 7059 glass manufactured by Corning.

発明が解決しようとする課題 従来の半導体微粒子分散ガラスの製造方法においては、
次のような2つの課題があった。
Problems to be Solved by the Invention In the conventional manufacturing method of semiconductor fine particle dispersed glass,
There were two issues as follows.

■ カットオフフィルタガラスの場合:溶融法ではスパ
ッタリング法に較べて冷却速度が遅いため、Cd5XS
e+−xをホウケイ酸ガラスに1重量%以上均一に分散
させることが困難である。
■ In the case of cut-off filter glass: Since the cooling rate is slower in the melting method than in the sputtering method, Cd5XS
It is difficult to uniformly disperse more than 1% by weight of e+-x in borosilicate glass.

また1600″C以上の高温で溶融しなければ作製でき
ないため、半導体成分の揮発損失は大きく、その組成を
制御することは極めて難しく、またガラス組成自体の制
御も難しい。
Furthermore, since it cannot be manufactured unless it is melted at a high temperature of 1600''C or higher, the volatilization loss of the semiconductor component is large, and it is extremely difficult to control its composition, and it is also difficult to control the glass composition itself.

■ スパッタリング法を用いた場合:従来のターゲット
のように、ガラスの上に半導体の粉末、ペレット、ある
いはチップを配置したものを用いると、半導体微粒子が
均一に分散したガラス薄膜を得ることは難しい。
■ When using the sputtering method: When using a conventional target in which semiconductor powder, pellets, or chips are placed on glass, it is difficult to obtain a glass thin film with uniformly dispersed semiconductor particles.

本発明は、半導体微粒子を高密度で均質に分散させた非
線形光学材料の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a nonlinear optical material in which semiconductor fine particles are uniformly dispersed at high density.

課題を解決するための手段 上記課題を解決するために本発明は、カドミウム源粉末
と、硫黄源粉末、セレン源粉末、テルル源粉末の3者の
内の少なくとも1つと、低融点ガラス粉末とを混合、焼
結して複合ガラスを作製し、この複合ガラスをターゲッ
トとし、スパッタリング法を用いて、化学量論性にすぐ
れた半導体微粒子がガラス中に均一かつ多量に分散した
構造を有する薄膜状の半導体微粒子分散ガラスを製造す
ることを特徴とする。
Means for Solving the Problems In order to solve the above problems, the present invention uses a cadmium source powder, at least one of the following three: a sulfur source powder, a selenium source powder, a tellurium source powder, and a low melting point glass powder. A composite glass is produced by mixing and sintering, and using this composite glass as a target, a thin film with a structure in which semiconductor fine particles with excellent stoichiometry are uniformly and abundantly dispersed in the glass is created using a sputtering method. The method is characterized in that it produces glass in which semiconductor fine particles are dispersed.

作用 本発明の非線形光学材料の製造方法では、溶融温度の低
いマトリックスガラスを用いるため、ターゲットを作製
する際の焼結温度を低くすることができ、半導体成分の
揮発損失を小さく抑えられる。また、ガラス中に半導体
微粒子としてCdS、 CdSeあるいはCdTeを分
散させる場合、原材料としてCdS、 CdSeあるい
はCdTeを用いるよりも、CdOなどのカドミウム源
粉末とZnS、Zn5e、 ZnTeなどの硫黄源粉末
、セレン源粉末、テルル源粉末の3者の内の少なくとも
1つを用いるほうが揮発損失は抑えられる。これらの理
由により、ガラス中に分散した半導体微粒子の化学量論
性がすぐれており、その組成制御も容易となる。
Function: Since the method for manufacturing a nonlinear optical material of the present invention uses a matrix glass with a low melting temperature, the sintering temperature when producing the target can be lowered, and the volatilization loss of the semiconductor component can be suppressed. Furthermore, when dispersing CdS, CdSe, or CdTe as semiconductor particles in glass, rather than using CdS, CdSe, or CdTe as raw materials, a cadmium source powder such as CdO, a sulfur source powder such as ZnS, Zn5e, or ZnTe, or a selenium source is used. Volatilization loss can be suppressed by using at least one of powder and tellurium source powder. For these reasons, the semiconductor fine particles dispersed in the glass have excellent stoichiometry, and their composition can be easily controlled.

また半導体成分がマトリックスガラス中に分散した均質
な複合ガラスをターゲットとして用いスパッタリングを
行うので、半導体微粒子が高濃度で均質に分散した薄膜
状の半導体微粒子分散ガラスを製造できる。
Furthermore, since sputtering is performed using a homogeneous composite glass in which a semiconductor component is dispersed in a matrix glass as a target, a thin film-like semiconductor particle-dispersed glass in which semiconductor particles are uniformly dispersed at a high concentration can be produced.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

実施例1 第1表Aに示す組成を有する低融点ガラス原材料を白金
ルツボに入れ、900°Cで溶融してガラスを作製した
。これを粉砕した後、このガラスに対して40重量%の
CdS含有量となるようCdO粉末とZnS粉末を混合
し、白金ルツボに入れ550″Cで焼結して複合ガラス
(直径100IlllIl、厚さ6mm)を作製した。
Example 1 A low-melting glass raw material having the composition shown in Table 1 A was placed in a platinum crucible and melted at 900°C to produce glass. After pulverizing this, CdO powder and ZnS powder are mixed so that the CdS content is 40% by weight based on the glass, and the mixture is placed in a platinum crucible and sintered at 550"C to make a composite glass (diameter 100IllIIl, thickness 6 mm) was produced.

このガラス板をターゲットに使用して、高周波マグネト
ロンスパンタリング装置により、ガラスの薄膜化を行な
った。スパッタリングはアルゴンガス雰囲気下で行なっ
た。膜厚200μmの薄膜ガラスを石英ガラス基板(厚
さ0.3+nm)上に形成した後、300″Cの電気炉
中で30分間加熱し、CdSの結晶を成長させた。薄膜
ガラス中のCdS分散量は34重量%で、CdとSの化
学量論比は0.97であり、粒径は10〜50人であっ
た。CdS分散ガラスの光吸収スペクトルから得られた
バンドギャップはバルクのCdSに比べ0.9eVブル
ーシフトしていることから、CdSが量子ドツトになっ
ていることがわかった。
Using this glass plate as a target, glass was made into a thin film using a high frequency magnetron sputtering device. Sputtering was performed under an argon gas atmosphere. A thin film glass with a thickness of 200 μm was formed on a quartz glass substrate (thickness 0.3+nm) and then heated in an electric furnace at 300″C for 30 minutes to grow CdS crystals.CdS dispersion in thin film glass The amount was 34% by weight, the stoichiometric ratio of Cd and S was 0.97, and the particle size was 10-50%.The band gap obtained from the optical absorption spectrum of CdS-dispersed glass was that of bulk CdS. It was found that CdS was a quantum dot because it was blue-shifted by 0.9 eV compared to .

なお上記のCdS原材料以外に、CdOとAlzSs、
CdOとGa2S3、CdOとCaS、CdOとSrS
、CdOとpbsあるいはCdOとZrS、を用いても
、CdS微粒子を10〜40重量%含有したガラス薄膜
を作製することができた。またマトリックスガラスに第
1表B−Dに示す組成を有するガラス原材料を用いても
、本実施例と同様なCdS分散ガラスを得ることができ
た。
In addition to the above CdS raw materials, CdO and AlzSs,
CdO and Ga2S3, CdO and CaS, CdO and SrS
, CdO and pbs, or CdO and ZrS, it was possible to produce a glass thin film containing 10 to 40% by weight of CdS fine particles. Further, even when glass raw materials having the compositions shown in Table 1 B to D were used for the matrix glass, a CdS-dispersed glass similar to that of this example could be obtained.

第1表 (単位は重量%) 実施例2 第1表りに示す組成を有する低融点ガラス原材料を白金
ルツボに入れ、800°Cで溶融してガラスを作製した
。これを粉砕した後、このガラスに対して40重量%の
CdSe含有量となるようCdO粉末とZn5e粉末を
混合し、白金ルツボに入れ500℃で焼結して複合ガラ
ス(直径10抛m、厚さ6m+ll)を作製した。また
同じマトリックスガラスに40重量%のCdTe含有量
となるようCdOとZnTeを混合した複合ガラスも作
製した。これらのガラス板を夫々ターゲットに使用して
、高周波マグネトロンスパッタリング装置により、ガラ
スの薄膜化を行なった。スパッタリングはアルゴンガス
雰囲気下で行なった。膜厚200μmの薄膜ガラスを石
英ガラス基板(厚さ0.3mm)上に形成した後、30
0℃の電気炉中で30分間加熱し、CdSeあるいはC
dTeの結晶を成長させた。ガラス中のCdSe分散量
は37重量%で、CdとSeの化学量論比は0.96で
あり、粒径は30〜60人であった。またCdTe分散
量は33重量%で、CdとTeの化学量論比は0.97
であり、粒径は20〜60人であった。上記2種の半導
体を分散させたガラスの吸収スペクトルから得られたバ
ンドギャップはそれぞれバルクの半導体に比べ0.8e
V、0.9eVブルーシフトしていることから、半導体
が量子ドツトになっていることがわかった。
Table 1 (Unit: % by weight) Example 2 A low melting point glass raw material having the composition shown in Table 1 was placed in a platinum crucible and melted at 800°C to produce glass. After pulverizing this, CdO powder and Zn5e powder are mixed so that the CdSe content is 40% by weight based on the glass, and the mixture is placed in a platinum crucible and sintered at 500°C to make a composite glass (diameter 10 mm, thickness A total of 6m+ll) was prepared. A composite glass was also produced by mixing CdO and ZnTe in the same matrix glass so that the CdTe content was 40% by weight. Each of these glass plates was used as a target to form a glass thin film using a high frequency magnetron sputtering device. Sputtering was performed under an argon gas atmosphere. After forming a thin film glass with a film thickness of 200 μm on a quartz glass substrate (thickness 0.3 mm),
CdSe or C
A crystal of dTe was grown. The amount of CdSe dispersed in the glass was 37% by weight, the stoichiometric ratio of Cd and Se was 0.96, and the particle size was 30-60%. In addition, the CdTe dispersion amount is 33% by weight, and the stoichiometric ratio of Cd and Te is 0.97.
The particle size was 20 to 60. The band gap obtained from the absorption spectrum of the glass in which the above two types of semiconductors are dispersed is 0.8e compared to that of the bulk semiconductor.
Since the semiconductor was blue-shifted by 0.9 eV, it was found that the semiconductor was a quantum dot.

なお上記の半導体原材料以外に、CdOとAhSe3、
CdOl!:Gazse3、CdOとPbSe、 Cd
OとA1.Te。
In addition to the above semiconductor raw materials, CdO and AhSe3,
CdOl! : Gazse3, CdO and PbSe, Cd
O and A1. Te.

あるいはCdOとPbTeを用いても、CdSe微粒子
あるいはCdTe微粒子を10〜40重量%含有したガ
ラス薄膜を作製することができた。またマトリックスガ
ラスに第1表A−Cに示す組成を有するガラス原材料を
用いても、本実施例と同様な半導体分散ガラスを得るこ
とができた。
Alternatively, by using CdO and PbTe, a glass thin film containing 10 to 40% by weight of CdSe fine particles or CdTe fine particles could be produced. Further, even when glass raw materials having the compositions shown in Table 1 AC were used for the matrix glass, a semiconductor-dispersed glass similar to that of this example could be obtained.

実施例3 第1表Cに示す組成を有する低融点ガラス原材料を白金
ルツボに入れ、800°Cで溶融してガラスを作製した
。これを粉砕した後、このガラスに対して40重量%の
Cd5g5el−x(χ=0.9)含有量となるようC
dO粉末とZnS粉末とZn5e粉末を混合し、白金ル
ツボに入れ、500°Cで焼結して複合ガラス(直径1
00mm、厚さ6IIII11)を作製した。このガラ
ス板をターゲットに使用して、高周波マグネトロンスパ
ッタリング装置により、ガラスの薄膜化を行なった。ス
パッタリングはアルゴンガス雰囲気下で行なった。膜厚
200μmの薄膜ガラスを石英ガラス基板(厚さ0.3
mm)上に形成した後、300℃の電気炉中で30分間
加熱し、CdS、、 、Se、、、の混晶を成長させた
。ガラス中の分散量は35重量%で、CdとSとSeの
化学量論比は1 :0.88:0.09であり、粒径は
20〜50人であった。Cd5o、 qseo、 +分
散ガラスの吸収スペクトルから得られたバンドギャップ
はバルクのCd5o、 *Seo、 l に比べ0.9
eVブルーシフトしていることから、Cd5o、 *S
eo、 rが量子ドツトになっていることがわかった。
Example 3 A low melting point glass raw material having the composition shown in Table 1 C was placed in a platinum crucible and melted at 800°C to produce glass. After pulverizing this, Cd5g5el-x (χ=0.9) content is 40% by weight based on this glass.
Mix dO powder, ZnS powder, and Zn5e powder, put it in a platinum crucible, and sinter it at 500°C to make composite glass (diameter 1
00 mm and thickness 6III11). This glass plate was used as a target to form a thin glass film using a high frequency magnetron sputtering device. Sputtering was performed under an argon gas atmosphere. A thin film glass with a film thickness of 200 μm was placed on a quartz glass substrate (thickness 0.3
mm) and then heated in an electric furnace at 300°C for 30 minutes to grow mixed crystals of CdS, , Se, . The amount of dispersion in the glass was 35% by weight, the stoichiometric ratio of Cd, S and Se was 1:0.88:0.09, and the particle size was 20-50%. The band gap obtained from the absorption spectrum of Cd5o, qseo, + dispersion glass is 0.9 compared to bulk Cd5o, *Seo, l
Because of the eV blue shift, Cd5o, *S
It turns out that eo and r are quantum dots.

なお、実施例1〜3では、半導体のカドミウム源にCd
Oを用いたが、これ以外にCd(OH)、、CdCO5
、CdC2O4、あるいはCd51O:+を用いても、
同様な半導体微粒子分散ガラス薄膜が得られた。また硫
黄源粉末、セレン源粉末、テルル源粉末の3者のうちの
上記とは異なる2者の組合せ、あるいは3者の組合せの
ものを用いることも可能である。
In addition, in Examples 1 to 3, Cd was used as a cadmium source for the semiconductor.
O was used, but in addition to this, Cd(OH), CdCO5
, CdC2O4, or Cd51O:+,
A similar semiconductor fine particle dispersed glass thin film was obtained. Furthermore, it is also possible to use a combination of two or a combination of three of the three, sulfur source powder, selenium source powder, and tellurium source powder.

実施例4 実施例1に示した方法により作製したCdS分散ガラス
薄膜、あるいは実施例2に示した方法により作製したC
dSe分散ガラス薄膜を用い、光双安定素子を作製した
Example 4 A CdS-dispersed glass thin film produced by the method shown in Example 1 or a CdS-dispersed glass thin film produced by the method shown in Example 2.
An optical bistable device was fabricated using a dSe-dispersed glass thin film.

この素子の石英ガラス基板側から波長380nmあるい
は500nmのレーザ光(NZ光励起色素レザ光)をス
ポット径5μmで入射した。
Laser light (NZ light-excited dye laser light) with a wavelength of 380 nm or 500 nm was applied with a spot diameter of 5 μm from the quartz glass substrate side of this element.

次に入射光の強度と出射光の強度の関係を室温(25°
C)にて測定したところ、それぞれ第1図あるいは第2
図に示したような双安定特性を示した。
Next, we will calculate the relationship between the intensity of the incident light and the intensity of the emitted light at room temperature (25°
C), it was measured in Figure 1 or Figure 2, respectively.
It exhibited bistable characteristics as shown in the figure.

発明の効果 本発明によれば、ガラス組成、半導体組成の制御が容易
で、化学量論性にすぐれた半導体微粒子が低融点ガラス
マトリックスに高濃度に均一に分散した薄膜状の半導体
微粒子分散ガラスを製造できる。このガラス薄膜は大き
な非線形光学特性を有し、その応用として光双安定素子
等を作製することができる。
Effects of the Invention According to the present invention, it is possible to easily control the glass composition and the semiconductor composition, and to provide a thin film-like semiconductor particle-dispersed glass in which semiconductor particles with excellent stoichiometry are uniformly dispersed in a high concentration in a low-melting glass matrix. Can be manufactured. This glass thin film has large nonlinear optical properties, and can be used to fabricate optical bistable devices and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の半導体微粒子分散
ガラスを用いた双安定素子の光双安定特性を示す図であ
る。
FIGS. 1 and 2 are diagrams showing the optical bistability characteristics of a bistable element using the semiconductor fine particle dispersed glass of the present invention, respectively.

Claims (5)

【特許請求の範囲】[Claims] (1)カドミウム源粉末と、硫黄源粉末、セレン源粉末
、テルル源粉末の3者の内の少なくとも1つと、低融点
ガラス粉末とを混合、焼結して複合ガラスを作製し、こ
の複合ガラスをターゲットとし、スパッタリング法を用
いて薄膜状の半導体微粒子分散ガラスを製造することを
特徴とする非線形光学材料の製造方法。
(1) A composite glass is prepared by mixing and sintering a cadmium source powder, at least one of the three sulfur source powder, selenium source powder, and tellurium source powder, and a low melting point glass powder, and then producing the composite glass. 1. A method for producing a nonlinear optical material, the method comprising producing a thin film of semiconductor fine particle-dispersed glass using a sputtering method.
(2)カドミウム源にはCdO、Cd(OH)_2、C
dCO_3、CdC_2O_4あるいはCdSiO_3
を用いることを特徴とする請求項1記載の非線形光学材
料の製造方法。
(2) Cadmium sources include CdO, Cd(OH)_2, C
dCO_3, CdC_2O_4 or CdSiO_3
2. The method of manufacturing a nonlinear optical material according to claim 1, wherein:
(3)硫黄源にはZnS、Al_2S_3、Ga_2S
_3、CaS、SrS、PbSあるいはZrS_2を用
いることを特徴とする請求項1記載の非線形光学材料の
製造方法。
(3) Sulfur sources include ZnS, Al_2S_3, Ga_2S
2. The method of manufacturing a nonlinear optical material according to claim 1, wherein _3, CaS, SrS, PbS, or ZrS_2 is used.
(4)セレン源にはZnSe、Al_2Se_3、Ga
_2Se_3あるいはPbSeを用いることを特徴とす
る請求項1記載の非線形光学材料の製造方法。
(4) Selenium sources include ZnSe, Al_2Se_3, and Ga.
2. The method of manufacturing a nonlinear optical material according to claim 1, wherein _2Se_3 or PbSe is used.
(5)テルル源にはZnTe、Al_2Te_3あるい
はPbTeを用いることを特徴とする請求項1記載の非
線形光学材料の製造方法。
(5) The method for manufacturing a nonlinear optical material according to claim 1, wherein ZnTe, Al_2Te_3, or PbTe is used as the tellurium source.
JP9970790A 1990-04-16 1990-04-16 Production of nonlinear optical material Pending JPH042632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9970790A JPH042632A (en) 1990-04-16 1990-04-16 Production of nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9970790A JPH042632A (en) 1990-04-16 1990-04-16 Production of nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH042632A true JPH042632A (en) 1992-01-07

Family

ID=14254540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9970790A Pending JPH042632A (en) 1990-04-16 1990-04-16 Production of nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH042632A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504796A (en) * 1973-05-17 1975-01-18
US5955528A (en) * 1996-07-04 1999-09-21 Fuji Xerox Co., Ltd. Polymeric composite material and process for manufacturing the same
JP2007015307A (en) * 2005-07-08 2007-01-25 Fuji Mach Mfg Co Ltd Squeegee head, and scraping member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504796A (en) * 1973-05-17 1975-01-18
US5955528A (en) * 1996-07-04 1999-09-21 Fuji Xerox Co., Ltd. Polymeric composite material and process for manufacturing the same
JP2007015307A (en) * 2005-07-08 2007-01-25 Fuji Mach Mfg Co Ltd Squeegee head, and scraping member

Similar Documents

Publication Publication Date Title
JPH0823645B2 (en) Non-linear optical thin film and manufacturing method thereof
Lu et al. Ultrabroadband mid-infrared emission from Cr2+-doped infrared transparent chalcogenide glass ceramics embedded with thermally grown ZnS nanorods
Chen et al. Tunable Green Light-Emitting CsPbBr3 Based Perovskite-Nanocrystals-in-Glass Flexible Film Enables Production of Stable Backlight Display
Apte et al. Homogeneous growth of CdS/CdSSe nanoparticles in glass matrix
JPH042632A (en) Production of nonlinear optical material
JP2679354B2 (en) Nonlinear optical material and manufacturing method thereof
Wang et al. Band gap tuning of PbSe quantum dots by SrO addition in silicate glasses
Sonawane et al. Preparation and optical study of CdS nanocrystals embedded phosphate glass
Hayashi et al. Quantum size effect of ZnSe microcrystal-doped SiO2 glass thin films prepared by RF-sputtering method
JP2881961B2 (en) Nonlinear optical material and manufacturing method thereof
JP3086490B2 (en) Method for producing fine particle dispersed glass
Shailajha et al. Spectral studies on CuO in sodium–calcium borophosphate glasses
Risbud Nucleation and coalescence phenomena in the transformation of semiconductor-doped glasses
Liu et al. Role of precursor concentrations on the formation of ternary Pb1− xSrxSe QDs in silicate glasses
JP2951367B2 (en) Glass composition for fine particle-dispersed glass and fine particle-dispersed glass using the same
Ko Optical absorption behaviour of metal/semiconductor hybrid nanoparticle composites
JP2851694B2 (en) Nonlinear optical thin film
Morad et al. Tunable emission glass ceramic nanocomposites via devitrification of glassy Na2O-GeO2-MnO2 for optoelectronic and optical limiting applications
JPH03164724A (en) Nonlinear optical material and production thereof
JPH03168728A (en) Nonlinear optical material and its production
JPH04113334A (en) Production of nonlinear optical material
Hasan et al. Effect of germanium content on the optical constants of GexS1-x thin films
JPH03180821A (en) Nonlinear optical material and production thereof
JPH03164721A (en) Nonlinear optical material and production thereof
Huang et al. The synergistic effect of lead-free quantum dots and SnO 2 in glass-ceramics for broadband white-emission