JPH03168728A - Nonlinear optical material and its production - Google Patents

Nonlinear optical material and its production

Info

Publication number
JPH03168728A
JPH03168728A JP30964589A JP30964589A JPH03168728A JP H03168728 A JPH03168728 A JP H03168728A JP 30964589 A JP30964589 A JP 30964589A JP 30964589 A JP30964589 A JP 30964589A JP H03168728 A JPH03168728 A JP H03168728A
Authority
JP
Japan
Prior art keywords
glass
semiconductor
tellurium
fine particles
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30964589A
Other languages
Japanese (ja)
Inventor
Yasuo Mizuno
水野 康男
Ichiro Tanahashi
棚橋 一郎
Tsuneo Mitsuyu
常男 三露
Atsushi Nishino
敦 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30964589A priority Critical patent/JPH03168728A/en
Publication of JPH03168728A publication Critical patent/JPH03168728A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thin film in which a tellurium-based glass material is uniformly doped with semiconductor fine particles in high density by dispersing the fine particles in the matrix. CONSTITUTION:Since the melting temp. of the tellurium-based glass as a matrix is >=1,000 deg.C, the semiconductor fine particles are hardly decomposed or sublimated, hence the fine particles are dispersed in the glass in large quantities, and the glass composition and kind of the semiconductor can be freely changed. Consequently, the composite glass of the semiconductor and tellurium-based glass is used as a target, and a thin film in which the glass matrix is uniformly doped with the semiconductor fine particles in large quantities is easily obtained by sputtering method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非線形光学効果を利用した光デバイスの基礎を
なす、半導体微粒子をドープしたガラス非線形光学材料
およびその製造方法に関すん従来の技術 従来の技術として例えば イ) J,Opt.Soc.Am,,73,647(1
983)に記載されているCdSxSe1−11をホウ
ケイ酸ガラス(これがガラスマトリックスになる)にド
ープしたシャープカットフィルタガラスを非線形光学材
料に用いるものがあん このガラスはCdO, CdS
, CdSe, S, Ss等とホウケイ酸ガラスを白
金坩堝に入れ1600℃程度の高温で溶融し作製してい
も また o ) J, Appl. Phys. , 63(3
). 957(−1988)に記載されているようなC
dS微粒子をドープした薄膜ガラスがあん この薄膜ガ
ラスはターゲットとしてコーニング製7059ガラスの
上にCdSを載せたものを用t,L  高周波マグネト
ロンスパッタリング法により7o59ガラス(これがガ
ラスマトリックスになる)にCdSを2〜4重量%分敗
させたものであも 発明が解決しようとする課題 従来技術の半導体微粒子をドープしたガラスの製造方法
では次のような問題点かあっ?,イ)シャープカットフ
ィルタガラスの場合、1600℃以上の高温で溶融しな
ければならないため半導体微粒子が分脈 昇華しやすく
、このためCdSx Se1−κをホウケイ酸ガラス中
に数%より多く分散させることが困難であり、またガラ
ス組恩 半導体微粒子の種類も自由に変えることは困難
であった口)スパッタリング法を用いた場合、特に70
59のような二酸化珪素(Si(h)の多いガラスの場
合スパッタリング速度が小さいので薄膜を形或するのに
時間がかかり、また従来のターゲットを用いた方法では
ガラスマトリックスに半導体微粒子が均一に多量にドー
ブされた薄膜を得るのが困難であった 課題を解決するための手段 上記課題を解決するために本発明番上  ガラスマトリ
ックスとしてテルル系ガラスを用いるものである。また
該テルル系ガラスマトリックスに半導体微粒子が均一に
多量にドープされた構造の非線形光学材料を作製する方
法を提供する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a glass nonlinear optical material doped with semiconductor particles, which forms the basis of an optical device that utilizes nonlinear optical effects, and a method for manufacturing the same. For example, a) J, Opt. Soc. Am,,73,647(1
There is a type of sharp-cut filter glass that is used as a nonlinear optical material, which is a borosilicate glass (this becomes the glass matrix) doped with CdSxSe1-11 described in 983).This glass is used for CdO, CdS.
, CdSe, S, Ss, etc. and borosilicate glass are placed in a platinum crucible and melted at a high temperature of about 1600°C. Phys. , 63(3
). C as described in 957 (-1988)
A thin film glass doped with dS fine particles is used.This thin film glass uses Corning 7059 glass as a target with CdS placed on it. Problems to be Solved by the Invention The conventional method for manufacturing glass doped with semiconductor fine particles has the following problems. , b) In the case of sharp-cut filter glass, it is necessary to melt it at a high temperature of 1600°C or higher, so semiconductor fine particles easily sublimate. Therefore, it is difficult to disperse more than a few percent of CdSx Se1-κ in borosilicate glass. In particular, when using the sputtering method, it was difficult to assemble the glass, and it was also difficult to freely change the type of semiconductor particles.
In the case of glass containing a large amount of silicon dioxide (Si(h)) such as No. 59, the sputtering rate is low, so it takes time to form a thin film, and the conventional method using a target does not allow a large amount of semiconductor particles to be uniformly distributed in the glass matrix. Means for solving the problem that it was difficult to obtain a thin film doped with A method for manufacturing a nonlinear optical material having a structure in which semiconductor fine particles are uniformly doped in large amounts is provided.

作用 本発明の非線形光学材料は マトリックスとしてのテル
ル系ガラスの溶融温度が1000℃以下であるた吹 半
導体微粒子が分豚 昇華することが少なく、このためガ
ラス中に多量に分散させることが可能であり、またガラ
ス組点 半導体の種類も自由に変えることが可能である
。さらにまた半導体とテルル系ガラスの複合ガラスをタ
ーゲットとして、スパッタリング法を用いて半導体微粒
子がガラスマトリックスに均一に多量にドーブされた薄
膜を作製することが容易である。
Function: The nonlinear optical material of the present invention has a structure in which the tellurium-based glass used as the matrix has a melting temperature of 1000°C or lower.Semiconductor fine particles are less likely to sublimate, and therefore can be dispersed in large quantities in the glass. In addition, the type of glass bonding point semiconductor can be changed freely. Furthermore, by using a sputtering method using a composite glass of semiconductor and tellurium glass as a target, it is easy to produce a thin film in which a glass matrix is uniformly doped with a large amount of semiconductor fine particles.

実施例 本発明のガラスマトリックスにはテルル系ガラスが好ま
しく、特にガラスの安定怯 溶融の容易怯 半導体微粒
子の分解怯 分散性を考慮した場合、少なくともCdO
, B2 0s . Tentを主成分とするガラスが
好まし(1 ここで微粒子としてはCuC1.CuBr等のI−VI
I族金属塩化’aL  CdS,CdSe,CdO,C
dTe,ZnSe,ZnO,ZnTe,HgTe等のI
 I−VI族化合物半導依CdSSe,HgCdTe等
の混晶II−VI族化合物半導4IFSGaAs, G
aN, GaP, Garb, InAs, InP,
 InSb, GaAIAs, InAIAs等のII
I−V族化合物半導体 あるいはSi, Ge等のIV
族半導体が好ましL〜 以下本発明の実施例について詳
細に説明すも(実施例1) 第1表に示す組戒のCdO, B2 0s . Ten
tを主成分とするガラス原材料とCuC lあルイはC
dSi+Se+−x(X=0. 1)とを白金または金
坩堝に入れ850℃で溶凰 かくはんした後300℃に
加熱した金型に流し込んで厚み1mmの板状ガラスとし
た さらに室温まで冷却したガラスを再度300℃にて
1時間加熱してCuC lあるいはCdS※Se+−x
の結晶を或長させt4このガラス中のCuC1ドープ量
は10wt%であり粒子径は30〜60人であっ九 ま
たCdSxSe+−xのドープ量は12wt%であり粒
子径は60〜100人であっ九 上記2種の半導体をド
ープしたガラスの吸収スペクトルから得られたバンドギ
ャップはそれぞれバルクの半導体に比べて0. 9eV
, 0. 7eVブルーシフトしていることから半導体
が量子ドットとなっていることがわかった また上記半導体以外にもCuBr, CdS, CdS
e, CdO, CdTe, ZnSe, ZnO, 
ZnTe, HgTe, HgCdTeもドープするこ
とができtら 第1表 第1表Bに示す組或のテルル系ガラスを合威し粉砕後こ
れに40wt%のCuC1を混合し゛た眞 直径80m
代厚み5mmに或形して500℃で焼結し 複合ガラス
板を作製した 同様にCdSxSe+−x(X−0. 
1)を40wt%混合した複合ガラス板を作製しtラ 
 このようにして作製したガラス板をターゲットに使用
し高周波スパッタリング装置によりこのガラスの薄膜化
を行なった スパッタリングはArガス雰囲気で行なっ
た 膜厚200μmの薄膜ガラスを石英ガラス基板(厚
み0.3mm)上に形戒した徴300℃にて1時間加熱
してCuC lあるいはCdSxSe+−xの結晶を戊
長させ九このガラス中のCuC 1ドープ量は31wt
%であり粒子径は40〜60人であッf’−o  また
CdSXSe+−xのドープ量は28wt%であり粒子
径は50〜90人であっfQ,  上記2種の半導体を
ドープしたガラスの吸収スペクトルから得られたバンド
ギャップはそれぞれバルクの半導体に比べて1. 1e
V, 0. 9eVプルーシフトしていることから半導
体が量子ドットとなっていることがわかっ九 また上記半導体以外にもCuBr, CdS, CdS
e, CdO, CdTe, ZnSe, ZnO, 
ZnTe, HgTe, HgCdTeをガラス中10
〜40wt%混合した複合ガラスを作製することができ
た(実施例3) 実施例2の方法により作製したCuC 1ドープトガラ
ス薄膜およびCdSxSe+−i+(X=0. 1)ド
ープトガラス薄膜を用い光双安定素子を作製し九 この
素子の石英ガラス基板側から波長350nmのレーザ光
(N2光励起色素レーザ光)をスポット径5μmで入射
した 次に入射光の強度と出射光の強度の関係を25℃
で測定したとこる第1図に示した双安定性を示し丸 (実施例4) 実施例2の方法において膜厚を2.5μmとしたCuc
lドープトガラス薄膜およびCdSxSe+−x(X−
0. 1)ドーブトガラス薄膜を用い光双安定素子を作
製したこの素子の石英ガラス基板側から波長350nm
のレーザ光(N2光励起色素レーザ光)をスポット径5
μmで入射した 次に入射光の強度と出射光の強度の関
係を25℃で測定したところ第2図に示したような双安
定性を示し1, 発明の効果 本発明の半導体分散テルル系ガラ入 あるいは半導体と
テルル系ガラスとの複合ガラスをターゲットとしスパッ
タリング法を用いて半導体微粒子をテルル系ガラスマト
リックスに高濃度に均一にドーブした薄膜によれば大き
な非線形光学特性を有するガラス材料を得ることが可能
玄 その応用として光双安定素子等を作製することが出
来も
Examples Tellurium-based glass is preferable for the glass matrix of the present invention, and in particular, considering the stability of the glass, the ease of melting, the risk of decomposition of semiconductor particles, and the dispersibility, at least CdO
, B20s. Glass containing Tent as the main component is preferable (1. Here, the fine particles include I-VI such as CuC1.CuBr).
Group I metal chloride 'aL CdS, CdSe, CdO, C
I of dTe, ZnSe, ZnO, ZnTe, HgTe, etc.
I-VI group compound semiconductor Mixed crystal II-VI compound semiconductor such as CdSSe, HgCdTe 4IFSGaAs, G
aN, GaP, Garb, InAs, InP,
II of InSb, GaAIAs, InAIAs, etc.
IV group compound semiconductor or IV such as Si, Ge, etc.
Preferred are semiconductors from the group L~. Examples of the present invention will be described in detail below (Example 1) CdO, B2 0s . Ten
Glass raw materials containing T as the main component and CuC
dSi+Se+-x (X=0.1) was placed in a platinum or gold crucible and stirred at 850°C, then poured into a mold heated to 300°C to form a sheet glass with a thickness of 1 mm.The glass was further cooled to room temperature. was heated again at 300℃ for 1 hour to form CuCl or CdS*Se+-x
The doping amount of CuC1 in this glass is 10 wt% and the particle size is 30 to 60. (ix) The band gaps obtained from the absorption spectra of glasses doped with the above two types of semiconductors are 0.0. 9eV
, 0. It was found that the semiconductor was a quantum dot because of the 7 eV blue shift.In addition to the above semiconductors, CuBr, CdS, and CdS
e, CdO, CdTe, ZnSe, ZnO,
ZnTe, HgTe, and HgCdTe can also be doped, and a tellurium-based glass having the composition shown in Table 1 and Table 1 B was combined, crushed, and mixed with 40 wt% CuC1.The diameter was 80 m.
It was shaped to a thickness of 5 mm and sintered at 500°C to produce a composite glass plate. Similarly, CdSxSe+-x (X-0.
A composite glass plate containing 40 wt% of 1) was prepared and
Using the glass plate prepared in this way as a target, this glass was made into a thin film using a high-frequency sputtering device. Sputtering was performed in an Ar gas atmosphere. A thin film of glass with a thickness of 200 μm was placed on a quartz glass substrate (thickness: 0.3 mm). The CuC 1 doping amount in this glass was 31wt by heating at 300℃ for 1 hour to elongate the CuCl or CdSxSe+-x crystals.
%, and the particle size is 40 to 60 people. The band gaps obtained from the spectra are 1. 1e
V, 0. The fact that there is a 9 eV pull shift indicates that the semiconductor is a quantum dot.9 In addition to the above semiconductors, there are also CuBr, CdS, and CdS.
e, CdO, CdTe, ZnSe, ZnO,
ZnTe, HgTe, HgCdTe in glass
Composite glass containing ~40 wt% mixture could be produced (Example 3) An optical bistable device was fabricated using the CuC 1 doped glass thin film and the CdSxSe+-i+ (X=0.1) doped glass thin film produced by the method of Example 2. A laser beam with a wavelength of 350 nm (N2 light-excited dye laser beam) was incident on the quartz glass substrate side of this device with a spot diameter of 5 μm.Next, the relationship between the intensity of the incident light and the intensity of the emitted light was determined at 25°C.
The bistability shown in Figure 1 was measured using a circle (Example 4).
l-doped glass thin film and CdSxSe+-x(X-
0. 1) A wavelength of 350 nm from the quartz glass substrate side of an optically bistable device fabricated using a doped glass thin film.
Laser light (N2 light excited dye laser light) with a spot diameter of 5
When the relationship between the intensity of the incident light and the intensity of the emitted light was measured at 25°C, it showed bistability as shown in Figure 2. Alternatively, by targeting a composite glass of a semiconductor and tellurium glass and using a sputtering method to create a thin film in which a tellurium glass matrix is uniformly doped with semiconductor fine particles at a high concentration, a glass material with large nonlinear optical properties can be obtained. It is possible to create optical bistable devices as an application of this technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明の半導体ドープト
ガラスを用いた双安定素子の光双安定特性を示す図であ
FIG. 1 and FIG. 2 are diagrams showing the optical bistable characteristics of a bistable device using the semiconductor-doped glass of the present invention, respectively.

Claims (4)

【特許請求の範囲】[Claims] (1)半導体微粒子をテルル系ガラスマトリックスに分
散させたことを特徴とする非線形光学材料。
(1) A nonlinear optical material characterized in that semiconductor fine particles are dispersed in a tellurium-based glass matrix.
(2)テルル系ガラスマトリックスが少なくともCdO
、B_2O_3、TeO_2を主成分とするガラスであ
ることを特徴とする請求項1記載の非線形光学材料。
(2) The tellurium-based glass matrix is at least CdO
, B_2O_3, and TeO_2 as main components.
(3)半導体とテルル系ガラスとを混合溶融して半導体
微粒子をテルル系ガラスマトリックスに分散させた半導
体ドープトテルルガラスを作製することを特徴とする非
線形光学材料の製造方法。
(3) A method for manufacturing a nonlinear optical material, which comprises manufacturing a semiconductor-doped tellurium glass in which semiconductor particles are dispersed in a tellurium-based glass matrix by mixing and melting a semiconductor and tellurium-based glass.
(4)半導体とテルル系ガラスの複合ガラスをターゲッ
トとしてスパッタリング法を用いて半導体微粒子をテル
ル系ガラスマトリックスに分散させた半導体ドープトテ
ルルガラス薄膜を作製することを特徴とする非線形光学
材料の製造方法。
(4) A method for producing a nonlinear optical material, which comprises producing a semiconductor-doped tellurium glass thin film in which semiconductor fine particles are dispersed in a tellurium-based glass matrix using a sputtering method using a composite glass of a semiconductor and tellurium-based glass as a target. .
JP30964589A 1989-11-29 1989-11-29 Nonlinear optical material and its production Pending JPH03168728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30964589A JPH03168728A (en) 1989-11-29 1989-11-29 Nonlinear optical material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30964589A JPH03168728A (en) 1989-11-29 1989-11-29 Nonlinear optical material and its production

Publications (1)

Publication Number Publication Date
JPH03168728A true JPH03168728A (en) 1991-07-22

Family

ID=17995539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30964589A Pending JPH03168728A (en) 1989-11-29 1989-11-29 Nonlinear optical material and its production

Country Status (1)

Country Link
JP (1) JPH03168728A (en)

Similar Documents

Publication Publication Date Title
Xia et al. Surface passivation of CdSe quantum dots in all inorganic amorphous solid by forming Cd1− xZnxSe shell
Isaacs et al. Growth and optical properties of TlGaSe2 and β-TlInS2
US5113473A (en) Nonlinear, optical thin-films and manufacturing method thereof
Munishwar et al. Influence of electron-hole recombination on optical properties of boro-silicate glasses containing CdS quantum dots
Yin et al. Excitation-wavelength-and size-dependent photo-darkening and photo-brightening of photoluminescence from PbS quantum dots in glasses
JPH03294830A (en) Nonlinear optical material and production thereof
Li et al. Broadband absorption mechanism based on quantum dot glass for filtering field
JPH03168728A (en) Nonlinear optical material and its production
Sonawane et al. Preparation and optical study of CdS nanocrystals embedded phosphate glass
Wang et al. V5+-doped CsPbBr3 quantum dots tellurite glass for shortwave shielding
JPH042632A (en) Production of nonlinear optical material
RU2699639C1 (en) Nonlinear monocrystal of lithium chalcogenides of general formula ligaxin1-xte2 and a method for production thereof
JP3086490B2 (en) Method for producing fine particle dispersed glass
Risbud Nucleation and coalescence phenomena in the transformation of semiconductor-doped glasses
US5134095A (en) Matrix glass composition for glass doped with dispersed microcrystallites
JP2881961B2 (en) Nonlinear optical material and manufacturing method thereof
JP2851694B2 (en) Nonlinear optical thin film
JPH03164721A (en) Nonlinear optical material and production thereof
Liu et al. Role of precursor concentrations on the formation of ternary Pb1− xSrxSe QDs in silicate glasses
Mahato et al. Nobel Prize in Chemistry 2023: discovery and synthesis of quantum dots.
JP2619249B2 (en) Method for producing semiconductor-doped glass thin film
JPH03164724A (en) Nonlinear optical material and production thereof
JPH03180821A (en) Nonlinear optical material and production thereof
JP2803229B2 (en) Method for producing semiconductor fine particle dispersed glass
JPH0473720A (en) Manufacture of nonlinear optical material