JPH047371B2 - - Google Patents

Info

Publication number
JPH047371B2
JPH047371B2 JP58000372A JP37283A JPH047371B2 JP H047371 B2 JPH047371 B2 JP H047371B2 JP 58000372 A JP58000372 A JP 58000372A JP 37283 A JP37283 A JP 37283A JP H047371 B2 JPH047371 B2 JP H047371B2
Authority
JP
Japan
Prior art keywords
mol
polymer
aromatic polyester
unit
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58000372A
Other languages
Japanese (ja)
Other versions
JPS59124925A (en
Inventor
Kan Yoshimura
Masahiko Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP37283A priority Critical patent/JPS59124925A/en
Publication of JPS59124925A publication Critical patent/JPS59124925A/en
Publication of JPH047371B2 publication Critical patent/JPH047371B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、溶融重合および溶融成形可能であ
り、且つ機械的物性の優れた新規な全芳香族ポリ
エステルに関するものである。 近年、繊維、フイルムまたは成形品の何れかを
問わず、剛性、耐熱性および耐薬品性の優れた素
材に対する要望が高まつている。ポリエステル
は、一般成形品の用途を広く認められるに致つて
いるが、多くのポリエステルは、曲げ弾性率のよ
うな機械的物性が劣るため、高強度が要求される
用途には適していなかつた。この機械的物性を向
上させる為に、炭酸カルシウムやガラス繊維等の
補強材をブレンドする方法が知られているが、材
料の比重が大きくなるため、プラスチツクの特徴
である軽量の長所が減じ、さらに成形時において
は、成形機の摩耗等が激しく、実用上の問題点が
多い。補強材の必要がなく、高強度が要求される
用途に適しているポリエステルとして近年では、
液晶性ポリエステルが注目されるようになつた。
特に注目を集めるようになつたのは、ジヤーナ
ル・オブ・ポリマー・サイエンス、ポリマー・ケ
ミストリー・エデイシヨン、14巻(1976年)2043
頁にW・J.ジヤクソンがポリエチレンテレフタレ
ートとヒドロキシ安息香酸とからなる熱液晶高分
子を発表してからである。この中でジヤクソン
は、この液晶高分子がポリエチレンテレフタレー
トの5倍以上の剛性、4倍以上の強度、25倍以上
の衝撃強度を発揮することを報告し、高機能性樹
脂への新しい可能性を示した。以降、特開昭53−
65421(デユポン)、特開昭54−50594(セラニー
ズ)、特開昭55−21491(ICI)、特開昭55−50022
(ローヌ・プーラン)、特開昭55−106220(フアイ
バーインダストリー)等と強度、剛性の向上と、
溶融成形性の両立を狙つて液晶ポリエステルの開
発が続けられている。しかしながら既に百種類に
余る液晶ポリエステルが提案されているにもかか
わらず、成形分として成功したものは未だない。
これは、これらのポリマーが溶融状態で高度な配
向性を示し、その結果、機械的物性に大きな異方
性を生じるためである。本発明者らは、機械的物
性の異方性を緩和すべく鋭意検討した結果、本発
明に到達した。 本発明の要旨は、下記(A)、(B)、(C)および(D)の式
で表わされる構造単位 および からなり、単位(A)および(D)は実質的に等モル量で
存在し、単位(A)を5〜20モル%、単位(B)を35〜65
モル%、単位(C)を15〜45モル%および単位(D)を5
〜20モル%の割合で含み、少なくとも0.4dl/g
の対数粘度を有することを特徴とする全芳香族ポ
リエステルに存する。 本発明の全芳香族ポリエステルは、溶融状態で
液晶性を示し、溶融成形可能で、かつ成形物の物
性の異方性が少ないという特徴を有する。 以下、本発明を詳細に説明するに、本発明の全
芳香族ポリエステルは、本質的に前示4つの構造
単位(A)、(B)、(C)および(D)よりなる。 構造単位(A)は、テレフタロイル基であり、テレ
フタル酸またはその誘導体例えばアルキルエステ
ルから誘導される。単位(A)は全芳香族ポリエステ
ルの5〜20モル%、好ましくは8〜15モル%の濃
度で、かつ構造単位(D)と等モル量存在する。 構造単位(B)は、p−オキシベンゾイル基であ
り、p−ヒドロキシ安息香酸またはその誘導体例
えばアルキルエステルから誘導される。単位(B)
は、全芳香族ポリエステルの35〜65モル%、好ま
しくは45〜55モル%の濃度で存在する。 構造単位(C)は、m−オキシベンゾイル基であ
り、m−ヒドロキシ安息香酸またはその誘導体例
えばアルキルエステルから誘導される。単位(C)
は、全芳香族ポリエステルの15〜45モル%、好ま
しくは25〜35モル%の濃度で存在する。 構造単位(D)は、1,4−ジオキシナフチル基で
あり、1,4−ナフタレンジオールまたはその誘
導体例えばアルキルエステルから誘導される。単
位(D)は、全芳香族ポリエステルの5〜20モル%、
好ましくは8〜15モル%の濃度で、かつ構造単位
(A)と等モル量存在する。 構造単位(A)と(B)はバラ置換体であり、剛直な構
造を形成することにより、全芳香族ポリエステル
の機械的物性を高める効果を有する。一方、構造
単位(C)と(D)は分子構造が全芳香族ポリエステルの
主鎖に対し、非対照性を示すため、単位(A)と(B)か
ら発現する分子構造上の剛直性を緩和させる効果
を有する。すなわち、溶融成形が可能な液晶温度
領域を有する全芳香族ポリエステルが製造されう
る。又、特に、単位(C)のm−ヒドロキシル基は主
鎖の方向を直鎖状から60゜の方向に曲げる効果を
有するので、成形物の物性の異方性を減少させる
効果を有する。従つて重合物中の単位(A)と(B)の濃
度に対する単位(C)と(D)の濃度の割合を調節するこ
とにより、溶融成形可能で高い機械的物性を有
し、かつ物性の異方性が少ない重合物を得ること
ができる。本発明の全芳香族ポリエステルは、少
なくとも0.4dl/gの対数粘度(対数粘度とは、
相対粘度の自然対数値を試料溶液の濃度で除した
ものであり、本測定では、粘度溶媒はテトラクロ
ロエタン/フエノール=1/1(重量比)の混合
溶媒を用い、0.5wt%の濃度で測定した。)を有し
ており、例えば0.5〜1.5dl/gの対数粘度をも
つ。 溶融状態において異方性を示すことができるも
のであるか否かの判断は、偏光顕微鏡による光学
的方法が適当である。即ちヒートステージを装着
した偏光顕微鏡下で透過又は反射によつて光学異
方性をみる。室温から徐々に昇温して行くと異方
性を示さないポリマーは、融点において直ちに等
方性融体に変つてしまうのが観察されるが、異方
性を示すポリマーは、一般に結晶状態から、ある
温度を境に液晶状態となり、かなり広い温度範囲
(温度幅として例えば10℃以上)にわたつて安定
な液晶状態を示す。その後温度が上昇して等方性
融体に変化する。この様な光学異方性を観察する
ことで異方性と判断するのが最も簡便な方法であ
る。 本発明の全芳香族ポリエステルは、溶融重合法
により製造しうる。即ちテレフタル酸、p−ヒド
ロキシ安息香酸、m−ヒドロキシ安息香酸および
1,4−ナフタレンジオール(これらは誘導体で
あつてもよい)を混合溶融し、通常常圧下で250
℃〜35℃程度の温度に加熱して重合する。重合反
応を促進するため(100%反応させるため)には、
副生物(酢酸、酢酸エステル等)を、系外に除去
する必要があり、このため常圧下での副生物の留
出が停止した時点で、例えば1mmHg以下迄減圧
にして副生物の留出を続けながら重合反応を行な
い、反応率がほゞ100%で生成ポリマーの重合度
が十分上がつた時点で反応を終了させる。なお、
本発明の全芳香族ポリエステルは、反応温度250
℃〜300℃でも充分製造しうるという利点を有す
る。 本発明の全芳香族ポリエステルは、300℃以下
の温度でも溶融成型でき、成型品は高い剛性(弾
性率)を有するので、薄肉の設型が必要な小型密
部品(例えば、コネクター、ソケツト、ボビン等
の電子材料部品)の材料に有用である。 以下、実施例によつて本発明を具体的に説明す
るが、本発明はその要旨をこえない限り以下の実
施例に限定されるものではない。 実施例1および比較例1〜3 テレフタル酸16.6g、p−アセトキシ安息香酸
90.0g、m−アセトキシ安息香酸54.0gおよび
1,4−ナフタレンジアセテート24.4gを撹拌後
のついた重合管中に仕込み、窒素で3回バージし
た後、重合管を290℃のオイル浴に入れた。窒素
気流下で1時間撹拌し、この間に大部分の酢酸を
留出させた。次いで0.5Torrの真空にした後、30
分間撹拌し重合を完了させた。このポリマーの対
数粘度は0.75であつた。 このポリマーは、260℃から測定温度上限の350
℃までの温度範囲において、溶融状態で光学異方
性を示した。光学異方性は、ツアイス社のヒート
ステージを装着したニコン偏光顕微鏡POH型を
用いて観察した。 このポリマーを押出機によりストランド状とし
て、ソニツクモジユラス(ASTM F89−68)を
測定し、他のポリマーのソニツクモジユラス値と
併せて表−1に示した。ソニツクモジユラス値
は、(株)東洋精機製作所のダイナミツクモジユラス
テスター、Dynamic Modulus Tester PPM
−5R を使用し、ストランド状のポリマーの中
を伝わる音速(ν)を測定し、ラプラスの式 E=ρν2 E:ソニツクモジユラス ρ:密度(密度勾配管使用) ν:音速 より計算した。
The present invention relates to a novel wholly aromatic polyester that can be melt-polymerized and melt-molded and has excellent mechanical properties. In recent years, there has been an increasing demand for materials with excellent rigidity, heat resistance, and chemical resistance, whether fibers, films, or molded products. Although polyester has become widely accepted for use in general molded products, many polyesters have poor mechanical properties such as flexural modulus, so they are not suitable for applications that require high strength. In order to improve this mechanical property, it is known to blend reinforcing materials such as calcium carbonate and glass fiber, but this increases the specific gravity of the material, which reduces the lightweight advantage of plastic. During molding, the molding machine is subject to severe wear, which causes many practical problems. In recent years, polyester has been used as a material that does not require reinforcement and is suitable for applications that require high strength.
Liquid crystalline polyester has started to attract attention.
Particularly noteworthy was the Journal of Polymer Science, Polymer Chemistry Edition, Volume 14 (1976) 2043.
This was after W. J. Jackson announced a thermo-liquid crystal polymer consisting of polyethylene terephthalate and hydroxybenzoic acid on page 1. Among them, Jackson reported that this liquid crystal polymer exhibits more than 5 times the stiffness, 4 times the strength, and 25 times the impact strength of polyethylene terephthalate, opening new possibilities for high-performance resins. Indicated. Since then, JP-A-53-
65421 (DuPont), JP 54-50594 (Celanese), JP 55-21491 (ICI), JP 55-50022
(Rhône-Poulenc), JP-A-55-106220 (Fiber Industry), etc., and improved strength and rigidity,
The development of liquid crystalline polyester is continuing with the aim of achieving both melt moldability. However, although more than 100 types of liquid crystalline polyesters have been proposed, none have yet been successful as molded components.
This is because these polymers exhibit a high degree of orientation in the molten state, resulting in large anisotropy in mechanical properties. The present inventors have arrived at the present invention as a result of intensive studies aimed at alleviating the anisotropy of mechanical properties. The gist of the present invention is a structural unit represented by the following formulas (A), (B), (C) and (D). and The units (A) and (D) are present in substantially equimolar amounts, with 5 to 20 mol% of the unit (A) and 35 to 65 mol% of the unit (B).
mol%, unit (C) 15 to 45 mol% and unit (D) 5
Contains ~20 mol% and at least 0.4 dl/g
It is a wholly aromatic polyester characterized by having a logarithmic viscosity of . The wholly aromatic polyester of the present invention exhibits liquid crystallinity in a molten state, can be melt-molded, and has the characteristics of having little anisotropy in the physical properties of a molded product. The present invention will be explained in detail below. The wholly aromatic polyester of the present invention essentially consists of the above four structural units (A), (B), (C) and (D). Structural unit (A) is a terephthaloyl group and is derived from terephthalic acid or its derivatives such as alkyl esters. The unit (A) is present in a concentration of 5 to 20 mol%, preferably 8 to 15 mol% of the wholly aromatic polyester, and in an equimolar amount with the structural unit (D). Structural unit (B) is a p-oxybenzoyl group and is derived from p-hydroxybenzoic acid or a derivative thereof such as an alkyl ester. Unit (B)
is present in a concentration of 35 to 65 mol% of the wholly aromatic polyester, preferably 45 to 55 mol%. Structural unit (C) is an m-oxybenzoyl group and is derived from m-hydroxybenzoic acid or a derivative thereof such as an alkyl ester. Unit (C)
is present in a concentration of 15 to 45 mol% of the wholly aromatic polyester, preferably 25 to 35 mol%. Structural unit (D) is a 1,4-dioxynaphthyl group and is derived from 1,4-naphthalene diol or a derivative thereof such as an alkyl ester. Unit (D) is 5 to 20 mol% of the wholly aromatic polyester,
Preferably at a concentration of 8 to 15 mol% and structural units
It is present in an equimolar amount with (A). Structural units (A) and (B) are disparate substitutes, and by forming a rigid structure, they have the effect of improving the mechanical properties of the wholly aromatic polyester. On the other hand, since the molecular structure of structural units (C) and (D) exhibits asymmetrical properties with respect to the main chain of the wholly aromatic polyester, the rigidity of the molecular structure developed from units (A) and (B) is It has a relaxing effect. That is, a wholly aromatic polyester having a liquid crystal temperature range in which melt molding is possible can be produced. In particular, the m-hydroxyl group of unit (C) has the effect of bending the direction of the main chain from a straight chain to a direction of 60°, and therefore has the effect of reducing the anisotropy of the physical properties of the molded product. Therefore, by adjusting the ratio of the concentration of units (C) and (D) to the concentration of units (A) and (B) in the polymer, it is possible to obtain a polymer that is melt moldable and has high mechanical properties. A polymer with less anisotropy can be obtained. The wholly aromatic polyester of the present invention has a logarithmic viscosity of at least 0.4 dl/g (logarithmic viscosity means
It is the natural logarithm of the relative viscosity divided by the concentration of the sample solution. In this measurement, a mixed solvent of tetrachloroethane/phenol = 1/1 (weight ratio) was used as the viscosity solvent, and the measurement was performed at a concentration of 0.5 wt%. did. ), and has a logarithmic viscosity of, for example, 0.5 to 1.5 dl/g. An optical method using a polarizing microscope is suitable for determining whether or not a material can exhibit anisotropy in a molten state. That is, optical anisotropy is observed by transmission or reflection under a polarizing microscope equipped with a heat stage. When the temperature is gradually increased from room temperature, polymers that do not exhibit anisotropy are observed to immediately change to an isotropic melt at the melting point, but polymers that exhibit anisotropy generally change from a crystalline state to a certain state. It becomes a liquid crystal state at a certain temperature, and exhibits a stable liquid crystal state over a fairly wide temperature range (temperature range of 10°C or more, for example). Thereafter, the temperature increases and the melt changes to an isotropic melt. The simplest method is to determine anisotropy by observing such optical anisotropy. The wholly aromatic polyester of the present invention can be produced by a melt polymerization method. That is, terephthalic acid, p-hydroxybenzoic acid, m-hydroxybenzoic acid, and 1,4-naphthalenediol (which may be derivatives) are mixed and melted, and the mixture is usually heated at 250° C. under normal pressure.
Polymerize by heating to a temperature of about 35°C to 35°C. In order to accelerate the polymerization reaction (to achieve 100% reaction),
It is necessary to remove by-products (acetic acid, acetic ester, etc.) from the system.For this reason, when the distillation of by-products under normal pressure has stopped, the pressure is reduced to, for example, 1 mmHg or less, and distillation of by-products is continued. The polymerization reaction is continued, and the reaction is terminated when the reaction rate is approximately 100% and the degree of polymerization of the resulting polymer has sufficiently increased. In addition,
The fully aromatic polyester of the present invention has a reaction temperature of 250
It has the advantage that it can be produced satisfactorily even at temperatures between 300°C and 300°C. The fully aromatic polyester of the present invention can be melt-molded even at temperatures below 300°C, and the molded product has high rigidity (modulus of elasticity). It is useful for materials such as electronic material parts). EXAMPLES The present invention will be specifically explained below with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Example 1 and Comparative Examples 1 to 3 16.6 g of terephthalic acid, p-acetoxybenzoic acid
90.0 g, m-acetoxybenzoic acid 54.0 g, and 1,4-naphthalene diacetate 24.4 g were charged into a polymerization tube after stirring, and after purging with nitrogen three times, the polymerization tube was placed in an oil bath at 290°C. Ta. The mixture was stirred for 1 hour under a nitrogen stream, during which time most of the acetic acid was distilled off. Then after applying a vacuum of 0.5 Torr, 30
The polymerization was completed by stirring for a minute. The logarithmic viscosity of this polymer was 0.75. This polymer has a temperature range from 260°C to 350°C.
It exhibited optical anisotropy in the molten state in the temperature range up to °C. Optical anisotropy was observed using a Nikon polarizing microscope POH model equipped with a Zeiss heat stage. This polymer was made into a strand using an extruder, and its Sonic modulus (ASTM F89-68) was measured, and the results are shown in Table 1 along with the Sonic modulus values of other polymers. The Sonic Modulus value is measured using the Dynamic Modulus Tester PPM manufactured by Toyo Seiki Seisakusho Co., Ltd.
-5R was used to measure the sound velocity (ν) traveling through the strand-like polymer, and calculated from Laplace's equation E=ρν 2 E: Sonic modulus ρ: density (using density gradient tube) ν: sound velocity .

【表】【table】

【表】 実施例 2〜14 テレフタル酸、p−アセトキシ安息香酸、m−
アセトキシ安息香酸および1,4−ナフタレンジ
アセテートの組成を変えて実施例1と同様にして
ポリマーを生成した。得られた全芳香族ポリエス
テルのソニツクモジユラスを表−2に示す。
[Table] Examples 2 to 14 Terephthalic acid, p-acetoxybenzoic acid, m-
Polymers were produced in the same manner as in Example 1 except that the compositions of acetoxybenzoic acid and 1,4-naphthalene diacetate were varied. The sonic modulus of the obtained wholly aromatic polyester is shown in Table 2.

【表】 実施例15および比較例4 実施例1で得たポリマーを押出機にかけて5mm
φのストランド状にし、このストランドより3mm
角のチツプを切り出し圧縮強度を測定した。圧縮
強度は1mm/秒で、初めの厚さの10%変形に要す
る最大荷重を断面積で除し圧縮強度とした
(ASTMD−1621)。試験片のケ数はストランド
に平行方向および直角方向で夫々5である。測定
装置はテンシロン試験機(東洋ボールドウイン)
を用いた。表−3に、代表的な液晶性ポリエステ
ル(三菱化成工業(株)製、固有粘度0.66(テトラク
ロルエチレン/フエノールの50/50(重量比)混
合溶媒中1g/dlの濃度で30℃で測定)のポリエ
チレンテレフタレート40モル%とp−アセトキシ
安息香酸60モル%より生成)の圧縮強度を測定し
併せて示す。
[Table] Example 15 and Comparative Example 4 The polymer obtained in Example 1 was extruded to 5 mm
Make it into a φ strand, 3mm from this strand.
A corner chip was cut out and the compressive strength was measured. The compressive strength was 1 mm/sec, and the maximum load required to deform 10% of the initial thickness was divided by the cross-sectional area (ASTMD-1621). The number of test pieces is 5 in the parallel and perpendicular directions to the strands. The measuring device is Tensilon testing machine (Toyo Baldwin)
was used. Table 3 shows representative liquid crystalline polyesters (manufactured by Mitsubishi Chemical Industries, Ltd.) with an intrinsic viscosity of 0.66 (measured at 30°C at a concentration of 1 g/dl in a 50/50 (weight ratio) mixed solvent of tetrachlorethylene/phenol). ) (produced from 40 mol% polyethylene terephthalate and 60 mol% p-acetoxybenzoic acid) was measured and is also shown.

【表】 更に実施例1で得たポリマーを射出成型機(日
精樹脂(株)製AU−30型)で80×80×3(mm)の平
板をフイルムゲートを用いて成形した。シリンダ
ー温度300〜345℃とした。同じく比較例4で用い
たと同じポリマーも同様に成形した。シリンダー
温度230〜250℃とした。平板は、樹脂の流れ方向
(MD)とそれに直角の方向(TD)に短冊型に切
り出し、曲げ弾性率と曲げ強度を測定した
(ASTMD790)。測定装置はテンシロン試験機
(東洋ボールドウイン)を用いた。結果を表−4
に示す。
[Table] Further, the polymer obtained in Example 1 was molded into a flat plate of 80 x 80 x 3 (mm) using an injection molding machine (model AU-30, manufactured by Nissei Plastics Co., Ltd.) using a film gate. The cylinder temperature was 300-345°C. The same polymer used in Comparative Example 4 was also molded in the same manner. The cylinder temperature was set at 230-250°C. The flat plate was cut into strips in the resin flow direction (MD) and the direction perpendicular to it (TD), and the flexural modulus and flexural strength were measured (ASTMD790). The measuring device used was a Tensilon testing machine (Toyo Baldwin). Table 4 shows the results.
Shown below.

【表】 比較例 6 実施例1において、1,4−ナフタレンジアセ
テートの代わりに2,6−ナフタレンジアセテー
トを用いて、テレフタル酸:P−アセテトキシ安
息香酸:m−アセトキシ安息香酸:2,6−ナフ
タレンジアセテート=10:50:30:10(モル比)
となるように仕込んだ他は、実施例1と同様に重
合を行なつた。 得られたポリマーを、実施例15におけると同様
に、射出成形機で80×80×3(mm)の平板に成形
し、MD方向とTD方向に切り出して、曲げ弾性
率を測定した。結果を表−5に示す。 比較例 7 実施例1において、テレフタル酸:P−アセト
キシ安息香酸:m−アセトキシ安息香酸:1,4
−ナフタレンジアセテート=10:75:5:10(モ
ル比)で仕込んだ他は、実施例1と同様に重合を
行なつた。 得られたポリマーについて、実施例15と同様に
平板に成形し、曲げ弾性率を測定した。結果を表
−5に示す。 比較例 8 ポリエチレンテレフタレート、P−アセトキシ
安息香酸、m−アセトキシ安息香酸、1,4−ナ
フタレンジアセテート及びテレフタル酸を、生成
ポリマー中の構成単位の割合が、a:b:c:
d:e=20:40:20:5:15(モル比)となるよ
うに仕込み、その他は実施例1と同様にして重合
を行なつた。但し、a〜eは、以下の通りであ
る。 (e) −O−CH2CH2−O− 得られたポリマーについて、比較例6と同様に
平板に成形し、曲げ弾性率を測定した。結果を表
−5に示す。
[Table] Comparative Example 6 In Example 1, using 2,6-naphthalene diacetate instead of 1,4-naphthalene diacetate, terephthalic acid: P-acetetoxybenzoic acid: m-acetoxybenzoic acid: 2,6 - Naphthalene diacetate = 10:50:30:10 (molar ratio)
Polymerization was carried out in the same manner as in Example 1, except that the ingredients were charged so as to be as follows. The obtained polymer was molded into a flat plate of 80 x 80 x 3 (mm) using an injection molding machine in the same manner as in Example 15, and cut out in the MD direction and TD direction, and the flexural modulus was measured. The results are shown in Table-5. Comparative Example 7 In Example 1, terephthalic acid: P-acetoxybenzoic acid: m-acetoxybenzoic acid: 1,4
Polymerization was carried out in the same manner as in Example 1, except that -naphthalene diacetate was charged at a molar ratio of 10:75:5:10. The obtained polymer was molded into a flat plate in the same manner as in Example 15, and the flexural modulus was measured. The results are shown in Table-5. Comparative Example 8 Polyethylene terephthalate, P-acetoxybenzoic acid, m-acetoxybenzoic acid, 1,4-naphthalene diacetate, and terephthalic acid were mixed in the ratio of the constituent units in the produced polymer: a:b:c:
Polymerization was carried out in the same manner as in Example 1 except that the molar ratio of d:e was 20:40:20:5:15. However, a to e are as follows. (e) -O-CH 2 CH 2 -O- The obtained polymer was molded into a flat plate in the same manner as Comparative Example 6, and the flexural modulus was measured. The results are shown in Table-5.

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記(A)、(B)、(C)および(D)の式で表わされる構
造単位 および からなり、単位(A)および(D)は実質的に等モル量で
存在し、単位(A)を5〜20モル%、単位(B)を35〜65
モル%、単位(C)を15〜45モル%および単位(D)を5
〜20モル%の割合で含み、少なくとも0.4dl/g
の対数粘度を有することを特徴とする全芳香族ポ
リエステル。
[Claims] 1 Structural units represented by the following formulas (A), (B), (C) and (D) and The units (A) and (D) are present in substantially equimolar amounts, with 5 to 20 mol% of the unit (A) and 35 to 65 mol% of the unit (B).
mol%, unit (C) 15 to 45 mol% and unit (D) 5
Contains ~20 mol% and at least 0.4 dl/g
A wholly aromatic polyester characterized by having a logarithmic viscosity of
JP37283A 1983-01-05 1983-01-05 Fully aromatic polyester Granted JPS59124925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37283A JPS59124925A (en) 1983-01-05 1983-01-05 Fully aromatic polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37283A JPS59124925A (en) 1983-01-05 1983-01-05 Fully aromatic polyester

Publications (2)

Publication Number Publication Date
JPS59124925A JPS59124925A (en) 1984-07-19
JPH047371B2 true JPH047371B2 (en) 1992-02-10

Family

ID=11471956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37283A Granted JPS59124925A (en) 1983-01-05 1983-01-05 Fully aromatic polyester

Country Status (1)

Country Link
JP (1) JPS59124925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42183E1 (en) 1994-11-22 2011-03-01 Immersion Corporation Interface control
US9046922B2 (en) 2004-09-20 2015-06-02 Immersion Corporation Products and processes for providing multimodal feedback in a user interface device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173730A (en) * 1984-09-20 1986-04-15 Nippon Telegr & Teleph Corp <Ntt> Liquid crystal polyester

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518395A (en) * 1974-06-07 1976-01-23 Eastman Kodak Co
JPS55135134A (en) * 1979-04-06 1980-10-21 Du Pont Fiberrforming polyester copolymer and its filament

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518395A (en) * 1974-06-07 1976-01-23 Eastman Kodak Co
JPS55135134A (en) * 1979-04-06 1980-10-21 Du Pont Fiberrforming polyester copolymer and its filament

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42183E1 (en) 1994-11-22 2011-03-01 Immersion Corporation Interface control
US9046922B2 (en) 2004-09-20 2015-06-02 Immersion Corporation Products and processes for providing multimodal feedback in a user interface device

Also Published As

Publication number Publication date
JPS59124925A (en) 1984-07-19

Similar Documents

Publication Publication Date Title
JPS63284221A (en) Aromatic polyester and polyesteramide
JPS63101448A (en) Injection molding composition
EP0088741B1 (en) Liquid crystal copolyesters and a process for making them
JPH03146518A (en) Polyester resin and resin composition exhibiting anisotropicity when melted
US4377681A (en) Liquid crystal copolyesters
JPH0414704B2 (en)
EP0088742B1 (en) Liquid crystal copolyesters
JPS61163929A (en) Liquid crystal composition
JPH047371B2 (en)
US4444980A (en) Liquid crystal copolyesters
JPH0466892B2 (en)
JPS58167643A (en) Reinforced polyalkylene terephthalate, manufacture and use
JP2699465B2 (en) Molding
JP2544731B2 (en) Wholly aromatic polyester
JPS61157527A (en) Wholly aromatic polyester capable of forming anisotropic molten phase
JPH0413381B2 (en)
JPH0774285B2 (en) Foam resin molded product
JPH0533256B2 (en)
JPH0452286B2 (en)
JPH045044B2 (en)
JPS60186527A (en) Copolymerized polyester
JPH01266132A (en) Copolyester
JPS60188421A (en) Copolyester
JPH02279721A (en) Aromatic polyester carbonate and its production
JPH02279722A (en) Aromatic polyester carbonate and its production