JPH0473709A - Portable microscope - Google Patents

Portable microscope

Info

Publication number
JPH0473709A
JPH0473709A JP18688190A JP18688190A JPH0473709A JP H0473709 A JPH0473709 A JP H0473709A JP 18688190 A JP18688190 A JP 18688190A JP 18688190 A JP18688190 A JP 18688190A JP H0473709 A JPH0473709 A JP H0473709A
Authority
JP
Japan
Prior art keywords
laser beam
reflected
laser
laser light
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18688190A
Other languages
Japanese (ja)
Other versions
JP2846080B2 (en
Inventor
Katsuaki Murayama
村山 勝明
Tetsurou Murataya
村田谷 鉄郎
Tomisada Koshimizu
小清水 富定
Nobuhiko Nishimura
宣彦 西村
Fujimitsu Masuyama
不二光 増山
Toshiyuki Imazato
敏幸 今里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Tohoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2186881A priority Critical patent/JP2846080B2/en
Publication of JPH0473709A publication Critical patent/JPH0473709A/en
Application granted granted Critical
Publication of JP2846080B2 publication Critical patent/JP2846080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To easily observe the micro change of a structure at a site by using a laser beam as a light source, and image-forming the laser out of the ones reflected from an observation plane only by the intensity of the laser beam passing a diaphram arranged at the rear focusing plane of an optical system. CONSTITUTION:The laser beam from an He-Ne laser source 2 is deflected by an acoustic optical polarizing element 4, and the laser beam 21 deflected in a certain direction is curved by a total reflection mirror part 10, and irradiates an observation targeted plane 13. At this time, the laser beam to be reflected is reflected on the same route as that of a irradiating laser beam when the targeted plane 13 exists on the focal distance of an objective lens 11, and is curved by a half mirror 5, and passes the diaphragm 6 provided with a pin hole arranged at the rear focusing plane, and is made incident on a laser intensity detector 8, then, the intensity of a reflected laser beam is detected. However, the laser beam 23 irradiating a shape discontinuous part such as a micro hollow hole 22 is reflected in a direction different from a parallel plane, and is reflected along the route different from that for the irradiating laser beam 23, and the laser beam is shielded by the diaphragm 6.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、大型機械部品の供用中検査に使用される携帯
顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a portable microscope used for in-service inspection of large mechanical parts.

[従来の技術] 従来、大型機械部品の供用中検査に使用される携帯顕微
鏡としては、携帯用光学顕微鏡が用いられている。また
、詳細な組織調査のためには調査位置の組織をプラスチ
ック膜に写し取り(レプリカ法)、これを電子顕微鏡に
よって調査する方法が行なわれている。
[Prior Art] Conventionally, a portable optical microscope has been used as a portable microscope used for in-service inspection of large mechanical parts. In addition, for detailed tissue investigation, a method is used in which the tissue at the investigation location is copied onto a plastic film (replica method) and this is investigated using an electron microscope.

[発明が解決しようとする課題] 上記携帯用光学顕微鏡は、光源として可視光を用いてい
るので、その分解能に制限があり、該機械部品の金属組
織や微視的に亀裂(長さ約100μm)の観察は可能で
あるが、例えば高温で使用される機械部品において微視
的な亀裂が生成される前に発生する微小な空洞(直径数
μm)や析出るで析出物の分布状況を観察することはで
きながった。
[Problems to be Solved by the Invention] Since the above-mentioned portable optical microscope uses visible light as a light source, its resolution is limited. ), but for example, it is possible to observe the distribution of precipitates in minute cavities (several μm in diameter) and precipitation that occur before microscopic cracks are generated in mechanical parts used at high temperatures. I was unable to do so.

また、レプリカ法は、機械部品の調査位置から採取した
レプリカを実験室に持ち帰り、電子顕微鏡等によって調
査するものである。従って、上記携帯光学顕微鏡に比較
して分解能が高い電子顕微鏡を用いることから、上記し
た微小な亀裂等の観察が可能であるが、その場で検査す
ることができず、検査に時間がかかるという問題があっ
た。
In addition, in the replica method, a replica taken from a mechanical part investigation location is taken back to a laboratory and investigated using an electron microscope or the like. Therefore, by using an electron microscope that has a higher resolution than the portable optical microscope mentioned above, it is possible to observe the minute cracks mentioned above, but it is not possible to inspect them on the spot and the inspection takes time. There was a problem.

本発明は上記実情に鑑みてなされたもので、機械部品の
数μm程度の分解能が必要とされる微小な組織変化をそ
の場で容易に観察でき、機械部品の損傷の初期過程を迅
速に検出して機械の品質管理、供用中の定期検査の精度
を向上し得る携帯顕微鏡を提供することを目的とする。
The present invention has been made in view of the above circumstances, and allows for easy observation of minute structural changes in mechanical parts that require a resolution of several micrometers on the spot, and allows for the rapid detection of the initial process of damage to mechanical parts. The purpose of the present invention is to provide a portable microscope that can improve the accuracy of machine quality control and periodic inspection during use.

[課題を解決するための手段] 機械部品の顕微鏡組織を直接観察する携帯顕微鏡におい
て、レーザ光源及び該レーザ光源がらのレーザ光を音響
光学偏光素子及びその後方に配した光学レンズ系によっ
て観察面上に二次元的にかつ収束して走査させるレーザ
光走査機構と、上記走査機構により走査されて観察面か
ら反射したレーザ光のうちレンズ系の後焦点面に配置さ
れた絞りを通過したレーザ光強度のみを測定する反射レ
ーザ光強度11111定機構と、上記測定機構により測
定したレーザ光強度を記憶すると共に上記音響光学偏光
素子の走査速度に同期させて記憶したレーザ光強度に対
応した輝度で画像化する輝度処理手段と、上記観察面と
平行な平面内で上記レーザ光照射系及びレーザ光測定系
を移動させる視野移動機構と、上記各機構を機械部品に
固定する保持機構とを備えたことを特徴とするものであ
る。
[Means for Solving the Problem] In a portable microscope for directly observing the microscopic structure of mechanical parts, a laser light source and a laser beam from the laser light source are directed onto an observation surface using an acousto-optic polarizing element and an optical lens system disposed behind it. A laser beam scanning mechanism that converges and scans in two dimensions, and the intensity of the laser beam that passes through an aperture located at the back focal plane of the lens system among the laser beams scanned by the scanning mechanism and reflected from the observation surface. a reflected laser light intensity 11111 constant mechanism that measures only the reflected laser light intensity; and a fixed mechanism that stores the laser light intensity measured by the measurement mechanism and images with a brightness corresponding to the laser light intensity stored in synchronization with the scanning speed of the acousto-optic polarization element. A field of view moving mechanism that moves the laser beam irradiation system and the laser beam measurement system in a plane parallel to the observation surface, and a holding mechanism that fixes each of the mechanisms to a mechanical component. This is a characteristic feature.

[作用] 光源としてレーザ光を用いたことにより、観察面上への
照射光を可視光よりも収束させることが可能であり、従
って、分解能が向上し、従来の携帯顕微鏡では不可能で
あった微細な組織状態を観察することができる。また、
観察面から反射するレーザ光のうち、光学レンズ系の後
焦点面に配置した絞りを通過したレーザ光強度のみで結
像させることにより、観察面からの反射レーザ光のうち
、光学レンズ系の合焦点に位置する観察面からの反射レ
ーザ光の強度のみを測定することができる。
[Function] By using laser light as a light source, it is possible to converge the irradiated light onto the observation surface more than visible light, thus improving resolution, which was impossible with conventional portable microscopes. Fine structure can be observed. Also,
Of the laser light reflected from the observation surface, by forming an image using only the intensity of the laser light that has passed through the aperture located at the back focal plane of the optical lens system, the laser light reflected from the observation surface is focused on the optical lens system. Only the intensity of the reflected laser light from the observation surface located at the focal point can be measured.

従って、レーザ光照射機構、レーザ光測定機構を上下に
移動させながら各点のレーザ光強度を連続測定し、各点
の積算強度を画像化することによって観察面の法線方向
が携帯顕微鏡の光軸方向と異なっていても鮮明な画像を
得ることができる。
Therefore, by continuously measuring the laser light intensity at each point while moving the laser light irradiation mechanism and laser light measurement mechanism up and down, and by converting the integrated intensity at each point into an image, the normal direction of the observation surface is adjusted to the direction of the light from the portable microscope. Clear images can be obtained even if the direction is different from the axial direction.

[実施例] 以下、図面を参照して本発明の一実施例を説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例に係る携帯顕微鏡の構成図で
ある。同図において、1はレーザ光照射機能及びレーザ
光測定機能を格納したレーザヘッド部である。このレー
ザヘッド部1に格納されるレーザ光照射機能は、He−
Neレーザ源(半導体レーザ光源)2及び音響光学偏光
素子4からなり、レーザ光測定機能は、ハーフミラ−5
、ピンホールを有する絞り6、レーザ光強度検出器8か
らなっている。
FIG. 1 is a configuration diagram of a portable microscope according to an embodiment of the present invention. In the figure, 1 is a laser head section that houses a laser beam irradiation function and a laser beam measurement function. The laser beam irradiation function stored in this laser head section 1 is He-
Consisting of a Ne laser source (semiconductor laser light source) 2 and an acousto-optic polarizing element 4, the laser beam measurement function is performed by a half mirror 5.
, an aperture 6 having a pinhole, and a laser beam intensity detector 8.

上記レーザヘッド部1の側部には、レーザガイド9を介
して全反射ミラ一部10が連結され、この全反射ミラ一
部10に対物レンズ11が上下方向に移動可能に装着さ
れる。焦点調整は、電動モータを内蔵した焦点調整装置
12により上記対物レンズ11を上下動させることによ
って行なわれるが、この操作は図示しない焦点調整遠隔
操作盤を用いて行なわれる。
A total reflection mirror portion 10 is connected to the side of the laser head portion 1 via a laser guide 9, and an objective lens 11 is attached to the total reflection mirror portion 10 so as to be movable in the vertical direction. Focus adjustment is performed by moving the objective lens 11 up and down using a focus adjustment device 12 having a built-in electric motor, and this operation is performed using a focus adjustment remote control panel (not shown).

しかして、上記レーザヘッド部1のHe−Neレーザ源
2からの照射レーザ光3は、音響光学偏光素子4によっ
て2次元的に走査され、ハーフミラ−5及びレーザガイ
ド9を通過して全反射ミラ一部10に入射する。この場
合、上記音響光学偏光素子4による照射レーザ光3の走
査速度及び走査面積は、制御装置14内の電流発振器1
5によって制御される。また、上記制御装置14内には
、測定結果を記憶する記憶装置16が設けられている。
The irradiated laser beam 3 from the He-Ne laser source 2 of the laser head section 1 is two-dimensionally scanned by the acousto-optic polarizing element 4, passes through the half mirror 5 and the laser guide 9, and passes through the total reflection mirror. Part of it is incident on 10. In this case, the scanning speed and scanning area of the irradiated laser beam 3 by the acousto-optic polarizing element 4 are controlled by the current oscillator 1 in the control device 14.
Controlled by 5. Furthermore, a storage device 16 is provided within the control device 14 to store measurement results.

上記全反射ミラ一部10には、全反射ミラー]−〇aが
レーザガイド9に対して45°の角度で配置されており
、レーザガイド9を介して送られてくる照射レーザ光3
を90°下方に屈曲し、対物レンズ11を介して機械部
品の観察対象面13に照射される。この観察対象面13
は、組織観察のために予め研磨、エツチングしたもので
ある。
In the total reflection mirror part 10, a total reflection mirror]-0a is arranged at an angle of 45 degrees with respect to the laser guide 9, and the irradiated laser beam 3 sent through the laser guide 9
is bent downward by 90 degrees and is irradiated onto the observation target surface 13 of the mechanical component via the objective lens 11. This observation target surface 13
has been polished and etched in advance for microstructure observation.

上記観察対象面13に照射されたレーザ光は、この観察
対象面13で反射されて対物レンズ11を通り、全反射
ミラー10aで90″屈曲され、レーザガイド9を経て
レーザヘッド部1に戻される。このレーザヘッド部1に
戻ってきたレーザ光は、ハーフミラ−5で屈曲され、レ
ンズ系の後焦点面に配置されたピンホールを有する絞り
6により反射レーザ光7が取り出され、レーザ光強度検
出器8によりその強度が検出される。このレーザ光強度
検出器8により検出された反射レーザ光強度は、上記制
御装置14に送られ、一定時間間隔毎に記憶装置16に
記憶される。この記憶装置16に記憶された観察対象面
13がらの反射レーザ光強度は、上記電流発振器15が
らの音響光学偏光素子4の走査信号に同期させてTVモ
ニタ17上に画像表示される。
The laser beam irradiated onto the observation target surface 13 is reflected by the observation target surface 13, passes through the objective lens 11, is bent by 90'' by the total reflection mirror 10a, and is returned to the laser head section 1 via the laser guide 9. The laser beam that has returned to the laser head section 1 is bent by a half mirror 5, and the reflected laser beam 7 is extracted by an aperture 6 having a pinhole placed at the back focal plane of the lens system, and the laser beam intensity is detected. The reflected laser beam intensity detected by the laser beam intensity detector 8 is sent to the control device 14 and stored in the storage device 16 at regular time intervals. The reflected laser light intensity from the observation target surface 13 stored in the device 16 is displayed as an image on the TV monitor 17 in synchronization with the scanning signal of the acousto-optic polarizing element 4 of the current oscillator 15.

これら上述したレーザ光照射系及びレーザ光測定系は、
視野移動機構、つまり、電動モータ駆動のXYステージ
18に固定され、このXYステージ18によって観察対
象面13内の観察位置の移動を行なう。また、上記XY
ステージ18は、観察対象面13の法線方向と顕微鏡本
体の光軸とのずれを補正するための傾斜装置19上に載
置固定される。更に、この傾斜装置19は、被検査機械
部品に固定するための固定用治具20に固定される構造
となっている。
These above-mentioned laser light irradiation system and laser light measurement system are
It is fixed to a visual field movement mechanism, that is, an XY stage 18 driven by an electric motor, and the observation position within the observation target surface 13 is moved by this XY stage 18 . In addition, the above XY
The stage 18 is mounted and fixed on a tilting device 19 for correcting the deviation between the normal direction of the observation target surface 13 and the optical axis of the microscope body. Furthermore, this tilting device 19 has a structure in which it is fixed to a fixing jig 20 for fixing it to a mechanical component to be inspected.

次に上記構成の携帯顕微鏡による観察原理について第2
図を参照して説明する。He−Neレーザ源2からのレ
ーザ光は、音響光学偏光素子4によって任意の方向に偏
向されるが、ある方向に偏向されたレーザ光21は全反
射ミラ一部1oによって屈曲され、対物レンズ11によ
り集光されて観察対象面13上に照射される。このとき
観察対象面13が対物レンズ11の焦点距離上にあれば
反射するレーザ光は照射されたレーザ光とほぼ同等の経
路で反射し、ハーフミラ−5によって屈曲され、後焦点
面に配置されたピンホールを有する絞り6を通過してレ
ーザ光強度検出器8に入射し、反射レーザ光の強度が検
出される。ところが観察対象面13上の微小空穴22の
ような形状不連続部に照射されたレーザ光23は、微小
空穴22によって平行面とは異なる方向に反射され、照
射レーザ光23とは異なる経路に沿って反射され、絞り
6によりそのレーザ光は遮光される。このため微小空穴
22からの反射レーザ光は、レーザ光強度検出器8によ
って検出されることはない。従って、焦点面上の平滑な
観察面に照射されたレーザ光強度のみが得られ、観察面
の凸凹数を観察することができる。
Next, we will discuss the observation principle using the portable microscope with the above configuration in the second section.
This will be explained with reference to the figures. The laser beam from the He-Ne laser source 2 is deflected in any direction by the acousto-optic polarizing element 4, but the laser beam 21 deflected in a certain direction is bent by the total reflection mirror part 1o, and the objective lens 11 The light is focused and irradiated onto the observation target surface 13. At this time, if the observation target surface 13 is on the focal length of the objective lens 11, the reflected laser light will be reflected along a path almost the same as the irradiated laser light, bent by the half mirror 5, and placed on the back focal plane. The reflected laser beam passes through an aperture 6 having a pinhole and enters a laser beam intensity detector 8, where the intensity of the reflected laser beam is detected. However, the laser beam 23 irradiated onto a shape discontinuous portion such as a micro-hole 22 on the observation target surface 13 is reflected by the micro-hole 22 in a direction different from the parallel plane, and takes a different path than the irradiated laser beam 23. The laser beam is reflected along the diaphragm 6 and is blocked by the aperture 6. Therefore, the laser beam reflected from the microhole 22 is not detected by the laser beam intensity detector 8. Therefore, only the intensity of the laser beam irradiated onto the smooth observation surface on the focal plane can be obtained, and the number of irregularities on the observation surface can be observed.

次に本発明に係る携帯顕微鏡を用いて大型機械部品の組
織観察試験を行なった結果について説明する。
Next, the results of a structure observation test of a large mechanical component using the portable microscope according to the present invention will be explained.

調査した大型機械は事業用火力発電ボイラであり、高温
耐圧部である高温管寄せ管台部の金属組織調査を上述し
た携帯顕微鏡を用いて行なったものである。
The large machine investigated was a commercial thermal power boiler, and the metallographic structure of the high-temperature header header, which is a high-temperature and pressure-resistant part, was investigated using the above-mentioned portable microscope.

まず、調査対象個所を研磨砥石、研磨紙及びダイヤモン
ド微粒子を用いて研磨し、化学腐食液を用いて通常の顕
微鏡組織観察時と同様の金属組織を現出させた。その後
、携帯顕微鏡の固定用治具20を用いて調査対象部品に
、その調査対象個所の研磨・腐食面が対物レンズ11の
光軸位置になるように固定し、顕微鏡観察を行なった。
First, the area to be investigated was polished using an abrasive wheel, abrasive paper, and fine diamond particles, and a chemical etching solution was used to reveal the same metal structure as observed under a normal microscope. Thereafter, the part to be investigated was fixed using the fixing jig 20 of a portable microscope so that the polished and corroded surface of the part to be investigated was at the optical axis position of the objective lens 11, and microscopic observation was performed.

上記携帯顕微鏡を用いて観察した調査対象個所の顕微鏡
組織を第3図(微小空洞を示す金属組織の写真)及び第
4図(析出物を示す金属組織の写真)に示す。上記実施
例で示した携帯顕微鏡を使用した結果、第3図に示すよ
うに従来の携帯用光学顕微鏡では観察できなかった数μ
程度の大−きさの空洞が明確に観察された。また、第4
図に示すように従来の携帯用光学顕微鏡では観察できな
かった1μm程度の析出物も観察することができた。
The microscopic structure of the investigation target location observed using the portable microscope is shown in FIG. 3 (photograph of metallographic structure showing microcavities) and FIG. 4 (photograph of metallographic structure showing precipitates). As a result of using the portable microscope shown in the above example, as shown in Fig.
A cavity of approximately 100 mm in size was clearly observed. Also, the fourth
As shown in the figure, it was possible to observe precipitates of about 1 μm, which could not be observed with a conventional portable optical microscope.

[発明の効果] 以上詳記したように本発明によれば、従来の携借用顕微
鏡では観察できなかった機械部品の数μm程度の分解能
が必要とされる微小な組織変化をその場で容易に観察で
き、機械部品の損傷の初期過程を迅速に検出することが
できる。このため機械の品質管理、供用中の定期検査の
精度を向上でき、機械の安全運転、維持管理技術に寄与
することができる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to easily observe minute structural changes on the spot that require a resolution of several micrometers in mechanical parts, which could not be observed with conventional portable microscopes. can be observed and the early stages of damage to mechanical parts can be quickly detected. Therefore, it is possible to improve the accuracy of machine quality control and periodic inspection during use, and contribute to safe machine operation and maintenance technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る携帯顕微鏡の側面図、
第2図は同実施例における観察原理を説明するための図
、第3図及び第4図は同実施例に係る携帯顕微鏡により
観察された微小空洞及び析出物を示す金属組織の写真で
ある。 1・・・レーザヘッド部、2・・・He−Neレーザ源
、3・・・照射レーザ光、4・・・音響光学偏光素子、
5・・・ハーフミラ−6・・・絞り、7・・・反射レー
ザ光、8・・・レーザ光強度検出器、9・・・レーザガ
イド、10・・・全反射ミラ一部、11・・・対物レン
ズ、12・・・焦点調整装置、13・・・観察対象面、
14・・・制御装置、15・・・電流発振器、16・・
・記憶装置、17・・・TVモニタ、18・・・XYス
テージ、19・・・傾斜装置、20・・・固定用治具。
FIG. 1 is a side view of a portable microscope according to an embodiment of the present invention;
FIG. 2 is a diagram for explaining the observation principle in the same example, and FIGS. 3 and 4 are photographs of metal structures showing microcavities and precipitates observed with the portable microscope according to the same example. DESCRIPTION OF SYMBOLS 1... Laser head part, 2... He-Ne laser source, 3... Irradiation laser light, 4... Acousto-optic polarizing element,
5...Half mirror 6...Aperture, 7...Reflected laser beam, 8...Laser light intensity detector, 9...Laser guide, 10...Part of total reflection mirror, 11... - Objective lens, 12... Focus adjustment device, 13... Observation target surface,
14...Control device, 15...Current oscillator, 16...
-Storage device, 17...TV monitor, 18...XY stage, 19...tilting device, 20...fixing jig.

Claims (1)

【特許請求の範囲】 機械部品の顕微鏡組織を直接観察する携帯顕微鏡におい
て、 レーザ光源及び該レーザ光源からのレーザ光を音響光学
偏光素子及びその後方に配した光学レンズ系によって観
察面上に二次元的にかつ収束して走査させるレーザ光走
査機構と、上記走査機構により走査されて観察面から反
射したレーザ光のうちレンズ系の後焦点面に配置された
絞りを通過したレーザ光強度のみを測定する反射レーザ
光強度測定機構と、 上記測定機構により測定したレーザ光強度を記憶すると
共に上記音響光学偏光素子の走査速度に同期させて記憶
したレーザ光強度に対応した輝度で画像化する輝度処理
手段と、 上記観察面と平行な平面内で上記レーザ光照射系及びレ
ーザ光測定系を移動させる視野移動機構と、 上記各機構を機械部品に固定する保持機構とを具備した
ことを特徴とする携帯顕微鏡。
[Scope of Claim] A portable microscope for directly observing the microscopic structure of mechanical parts, comprising a laser light source and a two-dimensional projection of the laser light from the laser light source onto an observation surface using an acousto-optic polarizing element and an optical lens system disposed behind it. A laser beam scanning mechanism that scans the laser beam in a focused and convergent manner, and of the laser beam scanned by the scanning mechanism and reflected from the observation surface, only the intensity of the laser beam that passes through the aperture located at the back focal plane of the lens system is measured. a reflected laser light intensity measuring mechanism; and a brightness processing means for storing the laser light intensity measured by the measuring mechanism and creating an image at a brightness corresponding to the stored laser light intensity in synchronization with the scanning speed of the acousto-optic polarizing element. A mobile phone comprising: a field-of-view movement mechanism that moves the laser beam irradiation system and the laser beam measurement system in a plane parallel to the observation surface; and a holding mechanism that fixes each of the mechanisms to mechanical parts. microscope.
JP2186881A 1990-07-13 1990-07-13 Portable microscope Expired - Fee Related JP2846080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2186881A JP2846080B2 (en) 1990-07-13 1990-07-13 Portable microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2186881A JP2846080B2 (en) 1990-07-13 1990-07-13 Portable microscope

Publications (2)

Publication Number Publication Date
JPH0473709A true JPH0473709A (en) 1992-03-09
JP2846080B2 JP2846080B2 (en) 1999-01-13

Family

ID=16196317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2186881A Expired - Fee Related JP2846080B2 (en) 1990-07-13 1990-07-13 Portable microscope

Country Status (1)

Country Link
JP (1) JP2846080B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168117A (en) * 1983-11-14 1985-08-31 ボ−シユ アンド ロ−ム インコ−ポレイテイド Small portable microscope
JPS60156444U (en) * 1984-03-28 1985-10-18 株式会社東芝 Electric iron plate observation device
JPS61219919A (en) * 1985-03-27 1986-09-30 Olympus Optical Co Ltd Scan type optical microscope
JPS61264314A (en) * 1985-05-20 1986-11-22 Olympus Optical Co Ltd Scanning type optical microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168117A (en) * 1983-11-14 1985-08-31 ボ−シユ アンド ロ−ム インコ−ポレイテイド Small portable microscope
JPS60156444U (en) * 1984-03-28 1985-10-18 株式会社東芝 Electric iron plate observation device
JPS61219919A (en) * 1985-03-27 1986-09-30 Olympus Optical Co Ltd Scan type optical microscope
JPS61264314A (en) * 1985-05-20 1986-11-22 Olympus Optical Co Ltd Scanning type optical microscope

Also Published As

Publication number Publication date
JP2846080B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
KR100743591B1 (en) Confocal Self-Interference Microscopy Which Excluding Side Lobes
EP0665417A2 (en) Atomic force microscope combined with optical microscope
EP2257845B1 (en) Optical system that selectively provides either of a collimated light beam or a convergent light beam
CN111257227B (en) Dark field confocal microscopic measurement device and method based on polarization autocorrelation
JP3227106B2 (en) Inner diameter measuring method and inner diameter measuring device
CN111257226B (en) Dark field confocal microscopic measurement device and method based on polarization autocorrelation
JP5592108B2 (en) Interference confocal microscope and light source imaging method
JP4603177B2 (en) Scanning laser microscope
JPH077653B2 (en) Observation device by scanning electron microscope
JPH11173821A (en) Optical inspecting device
JP2846080B2 (en) Portable microscope
JP2007113941A (en) Device and method for inspecting defect
JPH07167793A (en) Phase difference semiconductor inspection device and its production method
JP2008241791A (en) Optical tweezers system
JP2009259711A (en) Line lighting device, line lighting method, optical inspection device, and optical processing apparatus
JPH06249632A (en) Three-dimensional shape measuring instrument
JP2000193434A (en) Foreign substance inspecting device
JPH09113240A (en) Method and device for detecting three-dimensional information of light transmitting substance
CN112309808B (en) Transmission electron microscope sample rod system with optical focusing and focal spot continuous scanning
JPH07139931A (en) Apparatus for irradiating laser in laser scan microscope
Farell Principles of Laser Scanning Microscopes: Part I: Confocal optical systems, 2D and 3D scanning, confocal effect and extended focus image, and scanning mechanisms
JPH05297278A (en) Optical device for irradiation with laser beam
Senesac et al. Fabrication of integrated diffractive micro-optics for MEMS applications
TW202331241A (en) Method and system for detecting depth of damaged layer on surface of silicon wafer wherein detection cost is reduced and the detection time is shortened
JP2024007885A (en) Measurement device and measurement method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees