JPH0473700B2 - - Google Patents

Info

Publication number
JPH0473700B2
JPH0473700B2 JP62244677A JP24467787A JPH0473700B2 JP H0473700 B2 JPH0473700 B2 JP H0473700B2 JP 62244677 A JP62244677 A JP 62244677A JP 24467787 A JP24467787 A JP 24467787A JP H0473700 B2 JPH0473700 B2 JP H0473700B2
Authority
JP
Japan
Prior art keywords
heat
shrinkable
crystalline
weight
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62244677A
Other languages
Japanese (ja)
Other versions
JPS6487229A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62244677A priority Critical patent/JPS6487229A/en
Publication of JPS6487229A publication Critical patent/JPS6487229A/en
Publication of JPH0473700B2 publication Critical patent/JPH0473700B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Cable Accessories (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は熱収縮性成形体に関する。更に詳細に
は、電線、ケーブルや各種パイプ類の防水、防食
等の保護のために用いられる、良好な可繞性をも
ち、耐油性、低温特性及び難燃性に優れた熱収縮
性成形体に関する。 (従来技術及び問題点) 熱収縮性成形体、特に熱収縮性チユーブは、機
器内配線の集合及び端末接続部の絶縁保護の目的
から、また太い電力ケーブル、通信ケーブルのジ
ヨイントの防水保護やパイプライン、鋼管のジヨ
イント部の防食及び保護の目的から広く使用され
るようになつてきている。 このような熱収縮性成形体の素材としてはポリ
エチレン等のオレフイン系樹脂、ポリ塩化ビニル
樹脂、弗素系ゴムなどが知られている。しかし、
これら従来の素材では収縮時に割れたり、膨張倍
率が低くかつたり、また特に低温収縮用材料の場
合、常温での収縮防止のための加工工程が必要で
あつたり、軟かいため傷が付きやすいといつた問
題点が指摘されている。 本発明者らは、熱収縮性成形体の素材として上
記の如き問題のない素材を得る可く鋭意検討を行
つた結果、結晶性エピクロルヒドリン樹脂が上記
問題点を解決しうる素材であることを見出した。
更にこのものは材料自体が適度な強度をもち、可
塑剤なしでも良好な可繞性を有し、耐油性、低温
特性に優れ、かつ製造に際しては電子線架橋効率
がよく、材料の着色化が可能な素材であることも
見出し別途出願した。しかしながら、熱収縮性成
形体の上記用途のうち、とりわけ電気配線用途に
おいては高度の難燃性が要求されており、上記結
晶性エピクロルヒドリン樹脂からなる熱収縮性成
形体では上記電気配線用途において十分なる性能
が得られないというきらいがあつた。従来におけ
るこのような用途に使用されるものとしてはポリ
塩化ビニルを素材としたものが知られているが、
このものは可繞性付与のために通常可塑剤が添加
されており、これが使用中に機器表面に移行して
機器を汚染するという問題を生じた。 (問題点を解決するための手段) 本発明者らは熱収縮性成形体の難燃化という問
題についてさらに検討を重ねた結果、結晶性エピ
クロルヒドリン樹脂に結晶性塩素化ポリエチレン
を混合したものが、熱収縮性成形体としてのエピ
クロルヒドリン樹脂本来の特性を損うことなく、
高度の難燃性を有すると共に、さらに低温セツト
性に優れた成形体を与えることを見出したもので
ある。 本発明は、結晶性エピクロルヒドリン樹脂と結
晶性塩素化ポリエチレンとの混合物からなること
を特徴とする熱収縮性成形体である。 本発明に用いられる結晶性エピクロルヒドリン
樹脂とは、構造式
(Industrial Application Field) The present invention relates to a heat-shrinkable molded article. More specifically, it is a heat-shrinkable molded product that has good sealability, oil resistance, low-temperature properties, and flame retardancy, and is used for waterproofing, anticorrosion, and other protection of electric wires, cables, and various pipes. Regarding. (Prior Art and Problems) Heat-shrinkable molded bodies, especially heat-shrinkable tubes, are used for the purpose of insulating protection of the assembly of internal wiring and terminal connections, as well as waterproof protection of joints of thick power cables and communication cables, and pipes. It is becoming widely used for the purpose of corrosion prevention and protection of joints of lines and steel pipes. Known materials for such heat-shrinkable molded bodies include olefin resins such as polyethylene, polyvinyl chloride resins, and fluorine rubbers. but,
These conventional materials tend to crack during shrinkage, have low expansion ratios, and, especially in the case of low-temperature shrinkable materials, require processing steps to prevent shrinkage at room temperature, and are soft and easily scratched. Problems have been pointed out. The inventors of the present invention conducted intensive studies to obtain a material free from the above-mentioned problems as a material for heat-shrinkable molded articles, and as a result, they discovered that crystalline epichlorohydrin resin is a material that can solve the above-mentioned problems. Ta.
Furthermore, the material itself has appropriate strength, good flexibility even without plasticizers, excellent oil resistance and low-temperature properties, and has good electron beam crosslinking efficiency during manufacturing, which prevents coloring of the material. A separate application was filed under the heading that it is a possible material. However, among the above-mentioned uses of the heat-shrinkable molded product, a high degree of flame retardance is particularly required for electrical wiring use, and the heat-shrinkable molded product made of the crystalline epichlorohydrin resin is sufficient for the above-mentioned electrical wiring use. I was worried that I wouldn't be able to get the desired performance. Conventionally, materials made of polyvinyl chloride are known as materials used for such purposes.
A plasticizer is usually added to this product to give it flexibility, and this has caused a problem in that it migrates to the surface of the equipment during use and contaminates the equipment. (Means for Solving the Problems) The present inventors have further investigated the problem of flame retardant heat-shrinkable molded products, and found that a mixture of crystalline epichlorohydrin resin and crystalline chlorinated polyethylene has been developed. Without impairing the original properties of epichlorohydrin resin as a heat-shrinkable molded product,
It has been discovered that a molded article having a high degree of flame retardancy and further excellent low-temperature setting properties can be obtained. The present invention is a heat-shrinkable molded article comprising a mixture of crystalline epichlorohydrin resin and crystalline chlorinated polyethylene. The crystalline epichlorohydrin resin used in the present invention has the structural formula:

【式】で表わされるクロロメチ ル基を有しポリエーテル結合を主鎖とする結晶性
高分子化合物をいう。特に分子量としては5万〜
100万、好ましくは10万〜50万のものが熱収縮性
素材として適している。 上記エピクロルヒドリン樹脂の結晶度としては
20〜50%のものがよい。結晶度20%未満のもので
は、加熱によつて延伸もしくは膨張させて形成さ
せた形状の冷却後の保持率が悪く熱収縮性材料と
しての性能が失われるので好ましくない。また50
%を超えるものを用いた場合は得られた熱収縮性
材料の低温特性が失われる。 上記結晶性エピクロルヒドリン樹脂の製造方法
としては公知の方法が採用できる。特に有機錫−
リン酸エステル縮合物を重合触媒とする本出願人
の米国特許第3773694号明細書記載の重合方法が
高収率で得られるので好ましい。即ち、上記触媒
の存在下でエピクロルヒドリンを脂肪族又は芳香
族炭化水素を溶媒として重合温度10〜70℃で8〜
15時間重合させることによつて重合収率98%前後
で得ることができる。得られた結晶性エピクロル
ヒドリン樹脂は比重1.4、軟化点115〜120℃、引
張強さ300〜420Kg/cm2、伸び350〜480%、硬度
(シヨアーD)60〜65の物性を有している。 本発明に用いられる結晶性塩素化ポリエチレンと
は、分子量2万〜30万、好ましくは4万〜20万の
ポリエチレンを塩素化して得られる塩素含量20〜
50重量%、残存結晶2〜15%を有する塩素化ポリ
エチレンをいう。このような結晶性塩素化ポリエ
チレンを製造する方法は既に公知である。原料ポ
リエチレンの分子量が2万未満のものは、ポリエ
チレンの塩素化時に生成物が団塊化しやすく好ま
しい塩素化ポリエチレンとはならず、また熱収縮
性成分としての性能を低下させる原因となるので
好ましくない。分子量が30万を超えるものは加工
性が好ましくなく、かつ熱収縮性、低温ヒートセ
ツト性も悪化する。また塩素化ポリエチレンの塩
素含量が20重量%未満のものはポリエチレンの結
晶が15%を超えて残存し可撓性に富んだものとな
らないし、50重量%を超えるものも同様に可撓性
が失われたものとなる。塩素化ポリエチレンの残
存結晶が2%未満のものでは収縮性成形体を製造
する際の膨張倍率の保持率が低下し、また残存結
晶が15%を超えるものは塩素化ポリエチレン自体
の可撓性が悪い。 本発明における結晶性エピクロルヒドリン樹脂
と結晶性塩素化ポリエチレンの混合割合は、前者
が60〜95重量%、後者が40〜5重量%の範囲が適
当である。後者の配合量が5重量%未満では十分
なる難燃効果を与えることができず、また低温セ
ツト性の向上が芳しくない。また40重量%を超え
る配合は結晶性エピクロルヒドリン樹脂自体の保
有する機械的強度を低下させることになる。 本発明において、高度な難燃性を評価する、い
わゆるUL規格に合格する成形体を得るためには、
上記樹脂混合物にさらに他種の難燃剤を添加する
ことが好ましい。このような難燃剤としては、テ
トラブロモビスフエノールA、トリス(クロロブ
ロモプロピル)ホスフエート、テトラブロモ無水
フタル酸、ヘキサクロロシクロペンタジエン及び
その誘導体、テトラブロモブタン、トリス(クロ
ロエチル)ホスフエートの如き有機系難燃剤やこ
れにさらに三酸化アンチモン、ポリ燐酸アンモン
の如き無機系難燃剤を併用したものがある。配合
量は樹脂混合物100重量部に対して有機系難燃剤
3〜20重量部、無機系難燃剤2〜10重量部が適当
である。 熱収縮性成形体の製造方法としては、先ず樹脂
をよく混合し、次いで所定の形状、例えば押出機
等によりチユーブ状に成形し、これを化学的架橋
するか、あるいは電子線を照射して架橋せしめ、
さらに該成形体を軟化点もしくは融点以上に加熱
して延伸もしくは膨張を行わしめてそのまま冷却
固定化することによつて得られる。架橋に際して
は架橋効果を一層高めるためにトリアリルシアヌ
レートやペンタエリスリトール、アクリレート系
モノマーの如き架橋剤を添加することが好まし
い。 延伸もしくは膨張の程度は1.5〜3倍がよく、
加熱温度としては120〜180℃が選ばれる。 (実施例) 実施例 1 分子量35万、結晶度40%のエピクロルヒドリン
樹脂70重量部、分子量10万のポリエチレンを塩素
化して得られた塩素含量30重量%、残存結晶7%
の塩素化ポリエチレン30重量部の混合物を押出機
により肉厚1mm、内径10mmのチユーブに押出した
後、これを1MeVの電子線加速器で15Mradの電
子線を照射した。得られた架橋チユーブを150℃
の加熱炉で加熱し内径20mmになる様に外径制御用
ダイス中で内圧をかけ、冷却後熱収縮性チユーブ
を得た。 得られた熱収縮性チユーブはヒートセツト性
(80℃)に優れ、体積固有抵抗は2×10+15Ω・
cm、低温脆化温度は−30℃であつた。またJIS3号
油の70℃×168時間後の重量変化率は+1.2%であ
り、引張試験による引張強度は310Kg/cm2であつ
た。UL−94規格に基く燃焼試験結果はV−2で
あつた。 実施例 2〜4 分子量25万、結晶度28%のエピクロルヒドリン
樹脂と分子量20万のポリエチレンを塩素化して得
れらた塩素含量35重量%、残存結晶3%の塩素化
ポリエチレンを用いて下記表1の配合物を実施例
1と同様にして架橋チユーブを製造した。 得られた各架橋チユーブについてヒートセツト
温度、体積固有抵抗、低温脆化温度、耐油性
(JIS3号油による70℃×168時間後の重量変化)を
測定し同表に結果を示した。またUL規格に基く
燃焼試験結果も併せて示した。
It refers to a crystalline polymer compound having a chloromethyl group represented by the formula and having a polyether bond as its main chain. In particular, the molecular weight is 50,000~
1 million, preferably 100,000 to 500,000, is suitable as a heat-shrinkable material. The crystallinity of the above epichlorohydrin resin is
20-50% is good. If the crystallinity is less than 20%, the retention rate of the shape formed by stretching or expanding by heating after cooling is poor and the performance as a heat-shrinkable material is lost, which is not preferable. 50 again
%, the resulting heat-shrinkable material will lose its low-temperature properties. A known method can be employed as a method for producing the crystalline epichlorohydrin resin. Especially organic tin
The polymerization method described in US Pat. No. 3,773,694 of the present applicant using a phosphoric acid ester condensate as a polymerization catalyst is preferred because it can be obtained in high yield. That is, in the presence of the above catalyst, epichlorohydrin is polymerized using an aliphatic or aromatic hydrocarbon as a solvent at a polymerization temperature of 10 to 70°C.
A polymerization yield of around 98% can be obtained by polymerizing for 15 hours. The obtained crystalline epichlorohydrin resin has physical properties such as a specific gravity of 1.4, a softening point of 115 to 120°C, a tensile strength of 300 to 420 Kg/cm 2 , an elongation of 350 to 480%, and a hardness (Shor D) of 60 to 65. The crystalline chlorinated polyethylene used in the present invention is obtained by chlorinating polyethylene with a molecular weight of 20,000 to 300,000, preferably 40,000 to 200,000, and has a chlorine content of 20 to 200,000.
50% by weight, chlorinated polyethylene with 2-15% residual crystals. Methods for producing such crystalline chlorinated polyethylene are already known. If the molecular weight of the raw material polyethylene is less than 20,000, the product tends to be agglomerated during chlorination of polyethylene, which does not result in a desirable chlorinated polyethylene, and it is also undesirable because it causes a decrease in the performance as a heat-shrinkable component. If the molecular weight exceeds 300,000, processability is unfavorable, and heat shrinkability and low-temperature heat setting properties are also deteriorated. In addition, if the chlorine content of chlorinated polyethylene is less than 20% by weight, more than 15% of polyethylene crystals will remain and it will not be highly flexible, and if the chlorine content exceeds 50% by weight, it will not be flexible. It becomes lost. If the residual crystals in the chlorinated polyethylene are less than 2%, the retention rate of expansion ratio during the production of a shrinkable molded product will decrease, and if the residual crystals exceed 15%, the flexibility of the chlorinated polyethylene itself will decrease. bad. In the present invention, the appropriate mixing ratio of the crystalline epichlorohydrin resin and the crystalline chlorinated polyethylene is 60 to 95% by weight for the former and 40 to 5% by weight for the latter. If the amount of the latter is less than 5% by weight, a sufficient flame retardant effect cannot be provided, and the improvement in low temperature setting property is not satisfactory. Moreover, if the content exceeds 40% by weight, the mechanical strength of the crystalline epichlorohydrin resin itself will be reduced. In the present invention, in order to obtain a molded article that passes the so-called UL standard, which evaluates high flame retardancy,
It is preferable to further add another kind of flame retardant to the resin mixture. Examples of such flame retardants include organic flame retardants such as tetrabromobisphenol A, tris (chlorobromopropyl) phosphate, tetrabromo phthalic anhydride, hexachlorocyclopentadiene and its derivatives, tetrabromobutane, and tris (chloroethyl) phosphate. In addition to these, there are also those in which inorganic flame retardants such as antimony trioxide and ammonium polyphosphate are used in combination. Appropriate blending amounts are 3 to 20 parts by weight of the organic flame retardant and 2 to 10 parts by weight of the inorganic flame retardant to 100 parts by weight of the resin mixture. The method for producing a heat-shrinkable molded article is to first mix the resins thoroughly, then mold them into a predetermined shape, for example, a tube shape using an extruder, and then chemically crosslink the product or crosslink it by irradiating it with an electron beam. Seshime,
Further, it can be obtained by heating the molded product above its softening point or melting point to cause stretching or expansion, and then cooling and fixing the molded product as it is. During crosslinking, it is preferable to add a crosslinking agent such as triallylcyanurate, pentaerythritol, or acrylate monomer to further enhance the crosslinking effect. The degree of stretching or expansion is preferably 1.5 to 3 times,
The heating temperature is selected to be 120 to 180°C. (Example) Example 1 70 parts by weight of epichlorohydrin resin with a molecular weight of 350,000 and crystallinity of 40%, chlorine content of 30% by weight, and 7% of residual crystals obtained by chlorinating polyethylene with a molecular weight of 100,000.
A mixture of 30 parts by weight of chlorinated polyethylene was extruded into a tube with a wall thickness of 1 mm and an inner diameter of 10 mm using an extruder, and then irradiated with an electron beam of 15 Mrad using a 1 MeV electron beam accelerator. The resulting crosslinked tube was heated to 150°C.
The tube was heated in a heating furnace, and internal pressure was applied in a die for controlling the outer diameter so that the inner diameter became 20 mm. After cooling, a heat-shrinkable tube was obtained. The resulting heat-shrinkable tube has excellent heat-setting properties (80℃) and a volume resistivity of 2×10 +15 Ω・
cm, and the low-temperature embrittlement temperature was -30°C. Furthermore, the weight change rate of the JIS No. 3 oil after 168 hours at 70°C was +1.2%, and the tensile strength in the tensile test was 310 Kg/cm 2 . The combustion test result based on the UL-94 standard was V-2. Examples 2 to 4 Using chlorinated polyethylene with a chlorine content of 35% by weight and residual crystals of 3% obtained by chlorinating epichlorohydrin resin with a molecular weight of 250,000 and a crystallinity of 28% and polyethylene with a molecular weight of 200,000, the following table 1 was prepared. A crosslinked tube was produced using the same formulation as in Example 1. The heat set temperature, volume resistivity, low temperature embrittlement temperature, and oil resistance (weight change after 168 hours at 70°C using JIS No. 3 oil) were measured for each crosslinked tube obtained, and the results are shown in the same table. Combustion test results based on UL standards are also shown.

【表】 (発明の効果) 本発明の熱収縮性成形体はヒートセツト性が60
〜90℃と低く、しかも常温下での収縮はなく、ま
たこれにより得られた収縮保護膜は耐油性及び低
温特性に優れ、特に高度な難燃性を有している。
[Table] (Effects of the invention) The heat-shrinkable molded article of the present invention has a heat set property of 60
The temperature is as low as ~90°C, and there is no shrinkage at room temperature, and the resulting shrinkage protective film has excellent oil resistance and low-temperature properties, and has particularly high flame retardancy.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶性エピクロルヒドリン樹脂と結晶性塩素
化ポリエチレンとの混合物からなることを特徴と
する熱収縮性成形体。
1. A heat-shrinkable molded article comprising a mixture of crystalline epichlorohydrin resin and crystalline chlorinated polyethylene.
JP62244677A 1987-09-29 1987-09-29 Heat-shrinkable molded material Granted JPS6487229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62244677A JPS6487229A (en) 1987-09-29 1987-09-29 Heat-shrinkable molded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62244677A JPS6487229A (en) 1987-09-29 1987-09-29 Heat-shrinkable molded material

Publications (2)

Publication Number Publication Date
JPS6487229A JPS6487229A (en) 1989-03-31
JPH0473700B2 true JPH0473700B2 (en) 1992-11-24

Family

ID=17122306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62244677A Granted JPS6487229A (en) 1987-09-29 1987-09-29 Heat-shrinkable molded material

Country Status (1)

Country Link
JP (1) JPS6487229A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69920811T2 (en) * 1998-06-25 2005-11-24 Hitachi Building Systems Co., Ltd. Running rail lubrication device for lift
JP4514178B2 (en) * 2001-03-09 2010-07-28 ニッタ株式会社 Flame retardant resin tube

Also Published As

Publication number Publication date
JPS6487229A (en) 1989-03-31

Similar Documents

Publication Publication Date Title
US3900533A (en) Flame retardant polyethylene composition and coating process
WO2012127463A1 (en) Flame retardant composition and flame retarded high impact polypropylene
EP0630941A1 (en) A crosslinked, flame-retardant resin composition and the insulated wire having layer using the above composition
JPS6051503B2 (en) Soft resin composition
CN106459565A (en) Polymer composition and heat-shrinkable article
JPH0473700B2 (en)
JP3246004B2 (en) Halogen-free flame retardant composition and tube
JP3175355B2 (en) Heat-shrinkable tube made of resin composition
EP0073613A2 (en) Heat-shrinkable tubes
US3956567A (en) Insulated high voltage wire coated with a flame retardant composition and process of preparing the same
JP3383924B2 (en) Flame retardant polyester elastomer composition and molded article therefrom
JPH06313071A (en) Heat-resistant, flame-retarding and oil-resistant resin composition and insulated wire and heat-shrinkable tube made of the composition
KR102023837B1 (en) Flame retardant thermoplastic resin composition, insulater prepared using the same and preparation method for the same
JPS6116932A (en) Production of crosslinked formed product of fluorine-containing elastomer
CN117467210B (en) Wind power generation cable with high wear resistance
JPH11269379A (en) Resin composition and its molded product
JPS62285940A (en) Flexible flame-retarding resin composition
JPS6268843A (en) Impact-resistant resin composition
JPH0473699B2 (en)
KR100477424B1 (en) Polyamide resin composition for extrusion tubing and excellent flame retardancy
JPH059347A (en) Flame retarder composition
KR20090105489A (en) Highly flame-retardant, halogen-free heat-shrink tubing and resin composition for the same
JP3215283B2 (en) Flame retardant polyethylene terephthalate resin composition
JPH0334776B2 (en)
JPH0675919B2 (en) Heat shrink tube