JPH0473605A - Optical waveguide - Google Patents

Optical waveguide

Info

Publication number
JPH0473605A
JPH0473605A JP18633390A JP18633390A JPH0473605A JP H0473605 A JPH0473605 A JP H0473605A JP 18633390 A JP18633390 A JP 18633390A JP 18633390 A JP18633390 A JP 18633390A JP H0473605 A JPH0473605 A JP H0473605A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
waveguide
crossing
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18633390A
Other languages
Japanese (ja)
Inventor
Masaaki Iwasaki
正明 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18633390A priority Critical patent/JPH0473605A/en
Publication of JPH0473605A publication Critical patent/JPH0473605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the loss in a cross waveguide by applying a material which decreases the refractive index of an optical waveguide to the crossing part of the optical waveguide. CONSTITUTION:Two Ti diffusion optical waveguides 2 are formed while crossing on a lithium niobate crystal substrate 1 whose Z-axis is set perpendicularly to a base plate surface by diffusing Ti. Furthermore, a magnesium oxide(MgO) diffusion layer 4 is formed on the surface of the waveguide by diffusing additionally MgO provided with an effect to decrease the refractive index of the base plate on the crossing part 3 of the two optical waveguides to weaken the light confinement of waveguide light in a propagating direction at the rhombic crossing part 3. Thereby, the generation of a multimode component at the crossing part can be suppressed, and the loss due to mode conversion and mode coupling that is the factor of crossover loss can be reduced by crosstalk on crossing optical waveguide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は基板のチャンネル状に形成された光導波路に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical waveguide formed in the shape of a channel in a substrate.

〔従来の技術〕[Conventional technology]

光導波路は、熱拡散、イオン交換、イオン注入等により
基板の表面近くの高屈折率層として形成され、光導波路
中に光を閉じ込め、光スイツチ光変調器などの機能素子
を集積した光集積回路を構成することができる。特に光
集積回路の小型化、集積規模の増大を図るためには、光
導波路が相交わる交差導波路は不可欠である。このとき
、交差部分でのモード変換や交差する光導波路へめクロ
ストークにより交差損失が生じる。導波路形の低損失な
光回路では、この交差損失の低減が課題である。
An optical waveguide is formed as a high refractive index layer near the surface of a substrate by thermal diffusion, ion exchange, ion implantation, etc., and confines light within the optical waveguide.It is an optical integrated circuit that integrates functional elements such as optical switches and optical modulators. can be configured. In particular, in order to reduce the size and increase the scale of integration of optical integrated circuits, intersecting waveguides in which optical waveguides intersect are essential. At this time, crossover loss occurs due to mode conversion at the intersection and crosstalk to the optical waveguides that intersect. Reducing this cross-over loss is an issue in waveguide-type low-loss optical circuits.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように、従来の交差導波路では、導波光が交差
部分を通過する際のモード変換と、交差する光導波路へ
のクロストークにより交差損失が生じる。すなわち、交
差部分の周辺までシングルモードで伝搬してきた導波光
が交差部分ではマルチモードとなり、交差部分通過後、
再びシングルモードとなるため、モード変換、モード結
合、交差する導波路へのクロストークが発生する。
As described above, in conventional crossing waveguides, crossing loss occurs due to mode conversion when guided light passes through the crossing portion and crosstalk to the crossing optical waveguides. In other words, the guided light that has propagated in a single mode to the vicinity of the intersection becomes multimode at the intersection, and after passing through the intersection,
Since it becomes a single mode again, mode conversion, mode coupling, and crosstalk to intersecting waveguides occur.

従って、交差導波路の損失を低減するためには、交差部
分のシングルモード化を図らねばならない。
Therefore, in order to reduce the loss of the crossed waveguides, it is necessary to make the crossing portion into a single mode.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は基板に形成された互いに交差する光導波路にお
いて、少なくとも前記光導波路の交差部分に、または交
差部分を除いてその周囲の光導波路に基板の屈折率を低
下させる物質が施されていることを特徴とする光導波路
である。
The present invention provides that, in optical waveguides formed on a substrate that intersect with each other, a substance that reduces the refractive index of the substrate is applied to at least the intersecting portions of the optical waveguides, or the optical waveguides around the optical waveguides excluding the intersecting portions. It is an optical waveguide characterized by:

〔作用〕[Effect]

例えば、ニオブ酸リチウムやタンタル酸リチウム等の光
学的異方性を有する結晶に熱拡散等により形成された光
導波路において、2本の光導波路が交差する交差部、ま
たは交差部の周囲の光導波路に酸化マグネシウムの追拡
散を施すことによって、酸化マグネシウムの追拡散を施
した部分における導波光の伝搬方向に対する閉じ込めが
弱くなり、マルチモード成分の発生を抑制することがで
きる。従って、交差部領域のシングルモード化が図られ
、交差損失の低減かできる。
For example, in an optical waveguide formed by thermal diffusion in a crystal having optical anisotropy such as lithium niobate or lithium tantalate, the optical waveguide at the intersection where two optical waveguides intersect, or around the intersection By applying additional diffusion of magnesium oxide to the area, the confinement in the propagation direction of the guided light in the area subjected to additional diffusion of magnesium oxide becomes weaker, and the generation of multimode components can be suppressed. Therefore, the intersection region can be made into a single mode, and the intersection loss can be reduced.

〔実施例〕 第1図は本発明の一実施例の平面図である。Z軸が基板
表面に垂直なニオブ酸リチウム結晶基板1にTIと拡散
して2本のTi拡散光導波路2を交差して形成する。T
iの拡散は水蒸気を含ませたガス雰囲気中、約1000
℃の温度で行う。さらに菱形の交差部3における導波光
の伝搬方向に対する光閉じ込めを弱くするために、2本
の光導波路の交差部3に基板の屈折率を低下させる効果
を有する酸化マグネシウム(MgO)を追拡散して、第
2図に示すように、導波路表面にMg○拡散層4を形成
する。MgOの追拡散は、900℃程度で行なわれるた
め、拡散したTiの分布を変形させないがMgOが拡散
された表面付近の屈折率は減少する。こうすることで、
交差部でのマルチモード成分の発生は抑制され、交差損
失の要因であるモード変換、モード結合及び交差する光
導波路へのクロストークにより損失が減少する6第2図
は第1図のAA断面図である。酸化マグネシウムを追拡
散することにより、交差部3の光閉じ込めを弱くして、
マルチモード成分を抑制することができる。
[Embodiment] FIG. 1 is a plan view of an embodiment of the present invention. Ti is diffused into a lithium niobate crystal substrate 1 whose Z axis is perpendicular to the substrate surface to form two Ti-diffused optical waveguides 2 intersecting each other. T
The diffusion of i is approximately 1000 in a gas atmosphere containing water vapor.
Perform at a temperature of °C. Furthermore, in order to weaken the optical confinement in the propagation direction of the guided light at the diamond-shaped intersection 3, magnesium oxide (MgO), which has the effect of lowering the refractive index of the substrate, is additionally diffused at the intersection 3 of the two optical waveguides. Then, as shown in FIG. 2, an Mg◯ diffusion layer 4 is formed on the waveguide surface. Since the additional diffusion of MgO is performed at about 900° C., the distribution of diffused Ti is not changed, but the refractive index near the surface where MgO is diffused is decreased. By doing this,
The generation of multimode components at intersections is suppressed, and loss is reduced due to mode conversion, mode coupling, and crosstalk to intersecting optical waveguides, which are the causes of intersection loss.6 Figure 2 is a cross-sectional view taken along line AA in Figure 1. It is. By additionally diffusing magnesium oxide, the light confinement at the intersection 3 is weakened,
Multimode components can be suppressed.

第3図に、酸化マグネシウム追拡散をさらに、交差部3
の直前、直後の2本の光導波路にも施した斜視図を示す
、第3図の場合、さらに、2本の光導波路間の交差直前
、直後のモード結合等による損失も低減することができ
る。
In Figure 3, additional diffusion of magnesium oxide is performed at the intersection 3.
In the case of FIG. 3, which shows a perspective view of the two optical waveguides immediately before and after the intersection, it is possible to further reduce losses due to mode coupling, etc., immediately before and after the intersection between the two optical waveguides. .

第4図は本発明の他の実施例の平面図である。FIG. 4 is a plan view of another embodiment of the invention.

Z軸が基板表面に垂直なニオブ酸リチウム結晶基板に2
本のTi拡散光導波路を交差して形成する。拡散は水蒸
気を含ませたガス雰囲気中、約1000℃の温度で行う
、さらに、交差菱形部3の周囲における導波光の伝搬方
向に対する光閉じ込めを弱くするために、2本の光導波
路の交差菱形部3の周囲の光導波路に基板の屈折率を低
下させる効果を有する酸化マグネシウム(MgO)を追
拡散して酸化マグネシウム拡散層4を形成する。追拡散
は、900℃程度で行われるためTi拡散分布を変形さ
せないか、M g Oか拡散された表面付近の屈折率は
減少する。こうすることで交差部でのマルチモード成分
の発生は抑制され、交差損失の要因であるモード変換、
モード結合及び交差する光導波路への20スl−−りに
よる損失か減少する。第5図は第4図のAA断面図であ
る。
2 on a lithium niobate crystal substrate with the Z axis perpendicular to the substrate surface.
Two Ti-diffused optical waveguides are formed to cross each other. Diffusion is performed in a gas atmosphere containing water vapor at a temperature of about 1000°C.Furthermore, in order to weaken the optical confinement in the propagation direction of the guided light around the crossing diamond part 3, the crossing diamond shape of the two optical waveguides is used. Magnesium oxide (MgO), which has the effect of lowering the refractive index of the substrate, is additionally diffused into the optical waveguide around the portion 3 to form a magnesium oxide diffusion layer 4 . Since the additional diffusion is performed at about 900° C., the Ti diffusion distribution is not changed or the refractive index near the surface where M g O is diffused is decreased. By doing this, the generation of multimode components at intersections is suppressed, and mode conversion, which is a cause of intersection loss, is suppressed.
Losses due to mode coupling and intersecting optical waveguides are reduced. FIG. 5 is a sectional view along line AA in FIG. 4.

酸化マグネシウムを追拡散することにより、交差菱形部
周囲の光導波路の光閉じ込めを弱くして、交差部のマル
チモード成分の発生を抑制することができる。
By additionally diffusing magnesium oxide, it is possible to weaken the optical confinement of the optical waveguide around the intersection rhombus and suppress the generation of multimode components at the intersection.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、基板に形成された互いに
交差する光導波路において、少なくともこの光導波路の
交差部分または交差部周囲の光導波路に基板表面から基
板の屈折率を低下させる物質を導入したので、交差部ま
たはその周囲の光導波路における光閉じ込めか弱くなり
、マルチモード成分の発生を抑生じ、交差損失の要因で
あるモード変換、モード結合2交差する光導波路へのク
ロストークを減少させる効果がある。
As explained above, the present invention is characterized in that, in optical waveguides formed on a substrate that intersect with each other, a substance that lowers the refractive index of the substrate is introduced from the substrate surface into at least the intersection of the optical waveguides or the optical waveguide around the intersection. Therefore, the optical confinement in the optical waveguides at or around the intersection becomes weaker, suppressing the generation of multimode components, and reducing mode conversion and mode coupling, which are the causes of intersection loss, and crosstalk between the two intersecting optical waveguides. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す平面図、第2図は第
1図AA線における断面図、第3図は、光導波路の屈折
率を低下させる処理を交差部分の直前、直後にも施した
斜視図である6第4図は本発明の一実施例を示す平面図
、第5図は第4図AA線における断面図である。 1・・・ニオブ酸リチウム、2・・・Ti拡散光導波路
、3・・・交差部、4・・・酸化マグネシウム拡散層。
FIG. 1 is a plan view showing an embodiment of the present invention, FIG. 2 is a sectional view taken along the line AA in FIG. 6. FIG. 4 is a plan view showing one embodiment of the present invention, and FIG. 5 is a sectional view taken along line AA in FIG. 4. DESCRIPTION OF SYMBOLS 1... Lithium niobate, 2... Ti diffused optical waveguide, 3... Crossing part, 4... Magnesium oxide diffusion layer.

Claims (1)

【特許請求の範囲】 1、周囲よりも屈折率の高い領域で成る複数本の交差す
る光導波路において、少なくとも前記光導波路の交差部
に前記光導波路の屈折率を低下させる物質が施されてい
ることを特徴とする光導波路。 2、周囲よりも屈折率の高い領域で成る複数本の交差す
る光導波路において、少なくとも前記光導波路の交差菱
形周囲の光導波路領域に当該光導波路の屈折率を低下さ
せる物質が施されていることを特徴とする光導波路。
[Claims] 1. In a plurality of intersecting optical waveguides each consisting of a region having a higher refractive index than the surrounding area, a substance that lowers the refractive index of the optical waveguide is applied at least to the intersection of the optical waveguides. An optical waveguide characterized by: 2. In a plurality of intersecting optical waveguides each consisting of a region having a higher refractive index than the surrounding area, at least the optical waveguide region around the intersecting rhombus of the optical waveguide is coated with a substance that reduces the refractive index of the optical waveguide. An optical waveguide featuring:
JP18633390A 1990-07-13 1990-07-13 Optical waveguide Pending JPH0473605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18633390A JPH0473605A (en) 1990-07-13 1990-07-13 Optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18633390A JPH0473605A (en) 1990-07-13 1990-07-13 Optical waveguide

Publications (1)

Publication Number Publication Date
JPH0473605A true JPH0473605A (en) 1992-03-09

Family

ID=16186515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18633390A Pending JPH0473605A (en) 1990-07-13 1990-07-13 Optical waveguide

Country Status (1)

Country Link
JP (1) JPH0473605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611145A1 (en) * 1993-02-09 1994-08-17 Nikon Corporation Optical waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611145A1 (en) * 1993-02-09 1994-08-17 Nikon Corporation Optical waveguide

Similar Documents

Publication Publication Date Title
JP2894735B2 (en) Optical circuit
US4983006A (en) Polarization-independent optical waveguide switch
US3923373A (en) Coupling to graded index waveguide
US7463808B2 (en) Optical waveguide, optical device, and manufacturing method of the optical waveguide
JPH0473605A (en) Optical waveguide
CN213092051U (en) Electro-optical switch based on lithium niobate waveguide
JP5467414B2 (en) Optical functional waveguide
JPS6396626A (en) Waveguide type light control element
JP2004037587A (en) Optical modulator and method for manufacturing the same
JP3220003B2 (en) Polarization separation element
JPS6086530A (en) Waveguide type optical switch
JPH03231206A (en) Optical waveguide
JPH0697286B2 (en) Optical circuit and manufacturing method thereof
JPS6343105A (en) Single mode optical waveguide
JPH03259204A (en) Optical wavegiide substrate by diffusion of material for increasing refractive index
JPH01201628A (en) Optical switch
JPS62127829A (en) Waveguide type liquid crystal matrix switch
JP2903543B2 (en) Optical branch circuit
JPS6236608A (en) Waveguide typemode splitter
JPH0310206A (en) Optical waveguide of linbo3 and production thereof
JPH07230013A (en) Intersection waveguide structure and optical switch using the same
KR100374345B1 (en) Method for manufacturing buried optical waveguide
JPS61134731A (en) Production of optical control circuit
JPH07168042A (en) Light control device and its manufacture
JPS63256904A (en) Light guide element