JPH0472917B2 - - Google Patents
Info
- Publication number
- JPH0472917B2 JPH0472917B2 JP63148709A JP14870988A JPH0472917B2 JP H0472917 B2 JPH0472917 B2 JP H0472917B2 JP 63148709 A JP63148709 A JP 63148709A JP 14870988 A JP14870988 A JP 14870988A JP H0472917 B2 JPH0472917 B2 JP H0472917B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- anodic oxide
- paint
- bath
- minutes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010407 anodic oxide Substances 0.000 claims description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 239000003973 paint Substances 0.000 claims description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 14
- 239000011148 porous material Substances 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 10
- 239000000654 additive Substances 0.000 claims description 4
- 230000000996 additive effect Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 238000010422 painting Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000004115 Sodium Silicate Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229940078494 nickel acetate Drugs 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
【発明の詳細な説明】
イ 発明の目的
(産業上の利用分野)
本発明は、塗料の高温焼付けにおいてクラツク
が入らない耐蝕性に優れるアルミニウム陽極酸化
皮膜の後処理法に関する。
(従来の技術)
アルミニウム及びアルミニウム合金は、腐蝕を
防止する目的に於てその表面に酸化皮膜を電気的
に生成することは周知である。
この酸化皮膜は、電気的に厚膜化するために
150Å〜300Å程度の無数の孔が開口し、この孔に
は、皮膜生成時に使用した酸性の電解液が存在し
て、悪環境においては腐蝕発生の原因となる。
そこで、陽極酸化皮膜への水分子の付着を減少
させること、皮膜孔内の酸分を追い出すこと、皮
膜を封孔することにより耐蝕性を向上させること
が行われており、これらのために比抵抗3000Ωcm
以上、PH6〜8の水に酢酸ニツケルや、トリエタ
ノールアミン等の封孔促進剤を添加した浴を95℃
以上に加熱し、その浴に陽極酸化皮膜を浸漬する
方法が採用され、又、塗装用の封孔のためには、
非塗装品と同じ方法も採用されているが、これは
塗料の密着を向上させるためになるべく軽度に行
なつている。更に、前記処理をした陽極酸化被膜
はその上に塗料を塗布し、その後、塗料と塗料の
反応及び架橋を促進させるために、120〜250℃の
高温で10〜30分間、強制加熱する所謂焼付けを行
つた来た。
(発明が解決しようとする課題)
しかし、前記のように塗料焼付けのために高温
加熱すると陽極酸化皮膜に無数のクラツクが発生
し、商品価値を著しく低下させるもので、このク
ラツクは、陽極酸化皮膜が厚い程、塗装の焼付け
温度が高い程多く発生する傾向にある。
従つて、現在、陽極酸化皮膜を塗装下地とする
場合は、焼付け温度を120℃以下に下げたり、陽
極酸化皮膜を3μm以下に薄くしたりして、クラ
ツクの発生を防止しようとしているが、焼付け温
度を120℃以下に下げると性能が悪化するので、
焼付け時間を延長してこれを補おうとすると生産
性が低下し、又、陽極酸化皮膜を3μm以下に薄
くすると建築用の外装材等として要求される耐蝕
性が得られないものである。
通常、建築用外装材に使用されるアルミニユー
ムの陽極酸化皮膜の膜厚は9μm以上であり、高
層建築に使用するカーテンウオールにおいては
20μm程度である。
本発明は、前記した従来の課題を解消するため
になされたもので、アルミニウム陽極酸化皮膜の
焼付け時のクラツクの発生原因を追求すると、封
孔時に陽極酸化皮膜の主成分である酸化アルミニ
ウムに水分子が付着した状態に於て加熱されれ
ば、体積膨張により皮膜と下地アルミニウムとの
応力の差が増大するために発生することに着目し
てなされたアルミニウム陽極酸化皮膜の後処理法
を提供することを目的としている。
ロ 発明の構成
(課題を解決するための手段)
前記目的を達成するために、本発明のアルミニ
ウム陽極酸化皮膜の後処理法は、比抵抗3000Ωcm
以上、PH6〜8の水を使用した浴を40〜60℃に加
熱し、その中にアルミニウム陽極酸化皮膜を3〜
30分間浸漬した後、強制的に乾燥させ、その後、
塗料を塗布して、陽極酸化皮膜への水分子の付着
を極力抑えると共に、皮膜孔内の酸分を除去し
て、塗料の高温焼付けを可能としたものである。
又、本発明のアルミニウム陽極酸化皮膜の後処
理法は、比抵抗3000Ωcm以上、PH6〜8の水を使
用した浴に0.02〜5g/1の弱アルカリ性添加剤
を加えた浴を40〜60℃に加熱し、その中にアルミ
ニウム陽極酸化皮膜を3〜30分間浸漬した後、強
制的に乾燥させ、その後、塗料を塗布して、陽極
酸化皮膜への水分子の付着を極力抑えると共に、
皮膜孔内の酸分を除去して、塗料の高温焼付けを
可能としたものである。
(作用)
前記した本発明の方法は、A1100−H14材を10
%硝酸中で脱脂した後、12.9%の硫酸浴において
電解処理して20μmの陽極酸化皮膜を生成させ、
その材を流水で5分間洗浄した後、30分間放置し
て自然乾燥させ、空気中に放置するか、デシケー
タに保管して、その後に水溶性アクリル樹脂を塗
布し、200℃で30分間の焼付け処理を行なつた。
その結果は別表に示す通りで、外部雰囲気中に
長時間放置した場合は、クラツクが発生(自然乾
燥であると、空気中の水分を吸着して水和物を形
成してクラツクが発生)したが、自然乾燥ではな
く強制的に乾燥例えば、デシケータに保管した場
合は、長時間の保管でもクラツクの発生が見られ
ないのである(自然乾燥ではなく強制的に乾燥さ
せたため、陽極酸化皮膜への水分子の吸着をより
少なくして、クラツクの発生を防止)。
以上の経緯により発明者は、陽極酸化皮膜の水
分子の付着を極力抑えると共に、孔中の酸分を除
去して、塗装焼付け時の高温加熱においても、ク
ラツクが入らない本発明を完成するに至つたもの
で、この方法は、陽極酸化皮膜の生成後、40〜60
℃に加熱した比抵抗3000Ωcm以上、PH6〜8の浴
に、3〜30分、好ましくは50℃で10分間浸漬処理
するか、又は陽極酸化皮膜の孔中の酸根を化学的
に中和して、処理時間を短縮する為に反応性の低
いケイ酸ソーダやリン酸ソーダ等の薬品を0.02
g/1〜5g/1の濃度範囲で添加した浴に5分
浸漬処理するかすることを特徴としている。
前記条件中、加熱温度に関して40℃以下で酸根
が除去出来ず、60℃以上では陽極酸化皮膜への水
分子の吸着が多く行われ、塗装時にクラツクが発
生する。
又、浸漬時間が3分より短い場合、酸根の除去
か不充分で、塗料を塗布後、酸化皮膜を内部より
腐蝕させ、30分以上では、量産性に問題が生ず
る。
添加薬品の濃度に関しては、0.02g/1より少
ない場合は効果が少なく、5g/1より多い場合
は陽極酸化皮膜との反応が行なわれ、皮膜表面が
粉ふき状態となるから、好ましくは0.1g〜1
g/1の間である。
(実施例)
次に本発明に係るアルミニウム陽極酸化皮膜の
後処理法の実施例を説明する。
実施例 1
A1100−H14材に、20μmの陽極酸化皮膜を生
成後、流水で5分間洗浄しその後、酢酸ニツケル
封孔浴を96℃で30分行なう従来の封孔処理と、イ
オン交換水比抵抗10万Ωcm、PH6.8の浴を50℃で
10分行う本発明の処理とを施し、次にフツ素樹脂
塗料を塗布後、180℃で20分間焼付け処理を行な
つた。その結果、従来の封孔処理ではクラツクを
発生したが、本発明の処理ではクラツクを全く発
生しなかつた。
実施例 2
A6063材に、14μmと25μmの陽極酸化皮膜を生
成した2種の試料を、流水で5分間洗浄し、比抵
抗10万Ωcm、PH6.8のイオン交換水を96℃に加熱
した浴へ20分間浸漬した処理と、0.2g/1のケ
イ酸ソーダを添加した同質のイオン交換水を50℃
に加熱した浴へ7分間浸漬した処理の結果を比較
するため、各試料にアクリルウレタン塗料を塗布
した後、130℃で20分間の焼付け処理を行なつた。
その結果、96℃・イオン交換水浴のものは、何れ
もクラツクを発生したが、50℃・ケイ酸ソーダ浴
のものは、何れもクラツクの発生がなかつた。
実施例 3
A1100材に9μmの陽極酸化皮膜を生成させた
後、流水で5分間洗浄し、次に5000Ωcm、PH7.3
の井戸水に、0.5g/1のピロリン酸ソーダを添
加した浴を50℃に加温し、その中に5分間浸漬処
理を行なつた後、シリコン樹脂塗料を塗布し、
160℃で30分焼付け処理を行なつた結果、クラツ
クの発生がなかつた。
ハ 発明の効果
本発明のアルミニウム陽極酸化皮膜の後処理法
は、比抵抗3000Ωcm以上、PH6〜8の水を使用し
た浴か、この浴に0.02〜5g/1の弱アルカリ性
添加剤を加えた浴を40〜60℃に加熱し、その中に
アルミニウム陽極酸化皮膜を3〜30分間浸漬した
から、皮膜孔内の酸分を追い出すことができると
共に陽極酸化皮膜への水分子の吸着をより少なく
して塗装時のクラツクの発生を防止することがで
きる。又、浸漬後、自然乾燥ではなく強制的に乾
燥させたため、陽極酸化皮膜への水分子の吸着を
より少なくして塗装時のクラツクの発生を防止す
ることができる等の効果を奏する。
【表】DETAILED DESCRIPTION OF THE INVENTION A. Object of the Invention (Field of Industrial Application) The present invention relates to a post-treatment method for an aluminum anodic oxide film that exhibits excellent corrosion resistance and does not crack during high-temperature baking of paint. BACKGROUND OF THE INVENTION It is well known that aluminum and aluminum alloys electrically form oxide films on their surfaces for the purpose of preventing corrosion. This oxide film is used to make it electrically thicker.
Numerous pores of approximately 150 Å to 300 Å are opened, and the acidic electrolyte used during film formation is present in these pores, causing corrosion in adverse environments. Therefore, efforts have been made to improve corrosion resistance by reducing the adhesion of water molecules to the anodized film, expelling the acid content in the film pores, and sealing the film. Resistance 3000Ωcm
Above, a bath containing water with a pH of 6 to 8 and a sealing agent such as nickel acetate or triethanolamine was heated at 95°C.
A method of heating above and immersing the anodic oxide film in the bath is adopted, and in order to seal the pores for painting,
The same method as for non-painted products is used, but this is done as lightly as possible to improve the adhesion of the paint. Furthermore, the treated anodic oxide film is coated with a paint, and is then subjected to so-called baking, where it is forcibly heated at a high temperature of 120 to 250°C for 10 to 30 minutes in order to promote the reaction and crosslinking between the paints. I went there. (Problem to be solved by the invention) However, as mentioned above, when heated at high temperatures for baking paint, countless cracks occur in the anodic oxide film, which significantly reduces the commercial value. The thicker the paint and the higher the baking temperature of the paint, the more it tends to occur. Therefore, currently, when using an anodized film as a base for painting, efforts are being made to lower the baking temperature to 120°C or less and to thin the anodized film to 3 μm or less in order to prevent cracks from occurring. Performance will deteriorate if the temperature is lowered below 120℃, so
If an attempt is made to compensate for this by extending the baking time, productivity will drop, and if the anodic oxide film is made thinner than 3 μm, it will not be possible to obtain the corrosion resistance required for exterior materials for buildings, etc. Normally, the thickness of the anodic oxide film on aluminum used for architectural exterior materials is 9 μm or more, and for curtain walls used in high-rise buildings.
It is about 20 μm. The present invention has been made to solve the above-mentioned conventional problems. When investigating the cause of cracks occurring during baking of aluminum anodic oxide film, it was found that water is added to aluminum oxide, which is the main component of the anodic oxide film, during sealing. To provide a post-treatment method for an aluminum anodic oxide film, which focuses on the fact that when heated in a state where molecules are attached, the difference in stress between the film and the underlying aluminum increases due to volume expansion. The purpose is to B. Structure of the invention (means for solving the problem) In order to achieve the above object, the post-treatment method for aluminum anodic oxide film of the present invention has a specific resistance of 3000Ωcm.
As described above, a bath using water with a pH of 6 to 8 is heated to 40 to 60℃, and an aluminum anodized film is placed in it for 3 to 30 minutes.
After soaking for 30 minutes, force dry, then
By applying a paint, the adhesion of water molecules to the anodic oxide film is suppressed as much as possible, and the acid content in the pores of the film is removed, making it possible to bake the paint at a high temperature. In addition, the post-treatment method of the aluminum anodic oxide film of the present invention involves heating a bath containing water with a specific resistance of 3000 Ωcm or more and pH 6 to 8 and a weak alkaline additive of 0.02 to 5 g/1 to 40 to 60°C. After heating and immersing the aluminum anodic oxide film in it for 3 to 30 minutes, it is forcibly dried, and then a paint is applied to minimize the adhesion of water molecules to the anodic oxide film, and
This removes the acid content in the pores of the film, making it possible to bake the paint at high temperatures. (Function) In the method of the present invention described above, A1100-H14 material is
After degreasing in 12.9% nitric acid, electrolytic treatment was performed in a 12.9% sulfuric acid bath to produce a 20μm anodic oxide film.
After washing the material under running water for 5 minutes, let it air dry for 30 minutes, leave it in the air or store it in a desiccator, then apply water-soluble acrylic resin and bake at 200℃ for 30 minutes. I processed it. The results are shown in the attached table. If left in an external atmosphere for a long time, cracks occurred (if air-dried, cracks occurred due to adsorption of moisture in the air and formation of hydrates). However, if the product is forcibly dried rather than air-dried, for example, if it is stored in a desiccator, no cracks will occur even after long-term storage. (Prevents cracks by reducing adsorption of water molecules). Based on the above circumstances, the inventor has succeeded in completing the present invention, which suppresses the adhesion of water molecules to the anodic oxide film as much as possible, removes the acid content in the pores, and does not cause cracks even during high-temperature heating during paint baking. This method, after the formation of the anodic oxide film, takes 40 to 60
Either by immersing it in a bath with a specific resistance of 3000 Ωcm or more heated to ℃ and a pH of 6 to 8 for 3 to 30 minutes, preferably 10 minutes at 50℃, or by chemically neutralizing the acid roots in the pores of the anodic oxide film. , in order to shorten the processing time, chemicals such as sodium silicate and sodium phosphate with low reactivity are used at 0.02%.
It is characterized by immersion treatment for 5 minutes in a bath to which a concentration range of g/1 to 5 g/1 is added. Among the above conditions, at a heating temperature of 40°C or lower, acid roots cannot be removed, and at a heating temperature of 60°C or higher, a large amount of water molecules are adsorbed to the anodic oxide film, causing cracks during coating. If the immersion time is shorter than 3 minutes, the removal of acid roots will be insufficient and the oxide film will corrode from the inside after the paint is applied, and if the immersion time is longer than 30 minutes, problems will arise in mass production. Regarding the concentration of the additive chemical, if it is less than 0.02g/1, the effect will be small, and if it is more than 5g/1, a reaction with the anodic oxide film will occur and the film surface will become dusty, so it is preferably 0.1g. ~1
It is between g/1. (Example) Next, an example of the post-treatment method for an aluminum anodic oxide film according to the present invention will be described. Example 1 After forming a 20 μm anodic oxide film on A1100-H14 material, it was washed with running water for 5 minutes, and then subjected to a nickel acetate sealing bath at 96°C for 30 minutes. 100,000Ωcm, PH6.8 bath at 50℃
The treatment of the present invention was carried out for 10 minutes, and then a fluororesin paint was applied, followed by baking treatment at 180° C. for 20 minutes. As a result, cracks occurred in the conventional sealing process, but no cracks occurred in the process of the present invention. Example 2 Two types of samples with anodic oxide films of 14 μm and 25 μm formed on A6063 material were washed with running water for 5 minutes and placed in a bath of ion-exchanged water with a specific resistance of 100,000 Ωcm and a pH of 6.8 heated to 96°C. immersion treatment for 20 minutes, and ion-exchanged water of the same quality to which 0.2 g/1 sodium silicate was added at 50°C.
In order to compare the results of 7-minute immersion in a bath heated to 100°C, each sample was coated with acrylic urethane paint and then baked at 130°C for 20 minutes.
As a result, cracks occurred in all of the samples in the ion exchange water bath at 96°C, but no cracks occurred in any of the samples in the sodium silicate bath at 50°C. Example 3 After forming a 9μm anodic oxide film on A1100 material, it was washed with running water for 5 minutes, and then 5000Ωcm, PH7.3
A bath containing 0.5g/1 sodium pyrophosphate added to well water was heated to 50℃, immersed in it for 5 minutes, and then a silicone resin paint was applied.
As a result of baking at 160°C for 30 minutes, no cracks occurred. C. Effects of the Invention The post-treatment method for aluminum anodic oxide film of the present invention is carried out in a bath using water with a specific resistance of 3000 Ωcm or more and a pH of 6 to 8, or a bath in which a weak alkaline additive of 0.02 to 5 g/1 is added to the bath. Since the aluminum anodic oxide film was heated to 40-60℃ and immersed in it for 3-30 minutes, the acid content in the pores of the film can be expelled, and the adsorption of water molecules to the anodic oxide film can be further reduced. It is possible to prevent cracks from occurring during painting. Furthermore, since the coating was forcibly dried rather than air-dried after dipping, the adsorption of water molecules to the anodic oxide film is further reduced, thereby making it possible to prevent the occurrence of cracks during painting. 【table】
Claims (1)
た浴を40〜60℃に加熱し、その中にアルミニウム
陽極酸化皮膜を3〜30分間浸漬した後、強制的に
乾燥させ、その後、塗料を塗布して、陽極酸化皮
膜への水分子の付着を極力抑えると共に、皮膜孔
内の酸分を除去して、塗料の高温焼付けを可能と
したことを特徴とするアルミニウム陽極酸化皮膜
の後処理法。 2 比抵抗3000Ωcm以上、PH6〜8の水を使用し
た浴に0.02〜5g/1の弱アルカリ性添加剤を加
えた浴を40〜60℃に加熱し、その中にアルミニウ
ム陽極酸化皮膜を3〜30分間浸漬した後、強制的
に乾燥させ、その後、塗料を塗布して、陽極酸化
皮膜への水分子の付着を極力抑えると共に、皮膜
孔内の酸分を除去して、塗料の高温焼付けを可能
としたことを特徴とするアルミニウム陽極酸化皮
膜の後処理法。[Claims] 1. A bath containing water with a specific resistance of 3000 Ωcm or more and a pH of 6 to 8 is heated to 40 to 60°C, and the aluminum anodic oxide film is immersed in the bath for 3 to 30 minutes, and then forced to dry. An aluminum anode characterized in that it is made possible to bake the paint at a high temperature by applying a paint to the anodic oxide film to minimize the adhesion of water molecules to the anodic oxide film and to remove acid content in the film pores. Post-treatment method for oxide film. 2 A bath containing water with a specific resistance of 3000 Ωcm or more and a pH of 6 to 8 and a weak alkaline additive of 0.02 to 5 g/1 is heated to 40 to 60°C, and an aluminum anodic oxide film is placed in the bath at 40 to 60°C. After being immersed for a minute, it is forcibly dried, and then the paint is applied to minimize the adhesion of water molecules to the anodic oxide film, as well as to remove the acid content in the film pores, making it possible to bake the paint at high temperatures. A post-treatment method for an aluminum anodic oxide film, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14870988A JPH01316495A (en) | 1988-06-16 | 1988-06-16 | Post-treatment of anodic oxide film of aluminum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14870988A JPH01316495A (en) | 1988-06-16 | 1988-06-16 | Post-treatment of anodic oxide film of aluminum |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01316495A JPH01316495A (en) | 1989-12-21 |
JPH0472917B2 true JPH0472917B2 (en) | 1992-11-19 |
Family
ID=15458844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14870988A Granted JPH01316495A (en) | 1988-06-16 | 1988-06-16 | Post-treatment of anodic oxide film of aluminum |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01316495A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50133241A (en) * | 1974-04-10 | 1975-10-22 | ||
JPS59132978A (en) * | 1983-01-21 | 1984-07-31 | Nippon Light Metal Co Ltd | Ground treatment for powder coating of aluminum material |
-
1988
- 1988-06-16 JP JP14870988A patent/JPH01316495A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50133241A (en) * | 1974-04-10 | 1975-10-22 | ||
JPS59132978A (en) * | 1983-01-21 | 1984-07-31 | Nippon Light Metal Co Ltd | Ground treatment for powder coating of aluminum material |
Also Published As
Publication number | Publication date |
---|---|
JPH01316495A (en) | 1989-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5194138A (en) | Method for creating a corrosion-resistant aluminum surface | |
US3563785A (en) | Method of resin coating of the metal and resin-coated metal product therefor | |
US1946151A (en) | Protecting aluminum from corrosion | |
JPS59166677A (en) | Improvement for producing phosphate salt film | |
US2544139A (en) | Process for enameling aluminumrich alloys | |
KR20200066603A (en) | Method for manufacturing electrode foil for surface-mounted aluminum electrolytic capacitors | |
JP2013534562A (en) | Pretreatment process for aluminum and high etch cleaner used therein | |
US1946153A (en) | Protecting aluminum from corrosion | |
KR100898270B1 (en) | Method of treating surface of magnesium product | |
US1923539A (en) | Production of anticorrosive protective coatings on light metals | |
US3345276A (en) | Surface treatment for magnesiumlithium alloys | |
US2548420A (en) | Method of producing lustrous zinc | |
US3790453A (en) | Corrosion protected anodized aluminum surfaces | |
US2288007A (en) | Corrosion resistant film on zinc | |
US3687740A (en) | Heat resistant chromate conversion coatings | |
JPH0472917B2 (en) | ||
US2719796A (en) | Process for enameling aluminum | |
US3625737A (en) | Protective coating and method of making | |
US1946152A (en) | Protecting aluminum from corrosion | |
US3400058A (en) | Electrochemical process for andic coating of metal surfaces | |
US2795518A (en) | Process for treating steel, zinc, and aluminum to increase corrosion resistance | |
US2798829A (en) | Process for enhancing the corrosion resistance of certain coated aluminum surfaces | |
US3615897A (en) | Black films for metal surfaces | |
BE561524A (en) | PROCESS FOR MANUFACTURING COATINGS FOR MAGNESIUM SURFACES | |
KR100849886B1 (en) | The coat with paint transactiona drug a epoxy coating method |