JPH0472770B2 - - Google Patents

Info

Publication number
JPH0472770B2
JPH0472770B2 JP7723585A JP7723585A JPH0472770B2 JP H0472770 B2 JPH0472770 B2 JP H0472770B2 JP 7723585 A JP7723585 A JP 7723585A JP 7723585 A JP7723585 A JP 7723585A JP H0472770 B2 JPH0472770 B2 JP H0472770B2
Authority
JP
Japan
Prior art keywords
ions
isopropanol
ethanol
aqueous solution
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7723585A
Other languages
Japanese (ja)
Other versions
JPS61251519A (en
Inventor
Kunimasa Takahashi
Michiko Oda
Haruo Shibatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP7723585A priority Critical patent/JPS61251519A/en
Publication of JPS61251519A publication Critical patent/JPS61251519A/en
Publication of JPH0472770B2 publication Critical patent/JPH0472770B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

発明の背景 技術分野 本発明は、ABO3型ペロブスカむト型酞化物の
補造法に関する。曎に具䜓的には、本発明は、こ
の酞化物の公知の補造法においお特定の過皋でむ
゜プロパノヌルを䜿甚するこずによ぀お、粉䜓特
性の優れた該酞化物粉䜓を補造する方法に関す
る。 ペロブスカむト型酞化物は、それ自身あるいは
皮以䞊のこれら酞化物の固溶䜓の圢で、コンデ
ンサヌなどの匷誘電材料や圧電䜓材料ずしお広く
䜿甚されおいる材料である。これらの材料のほず
んどは、その粉末を焌き固めた焌結䜓ずしお補品
化されおいる。その堎合の品質は焌結の床合で著
しく巊右されるものであり、埓぀お良奜な焌結䜓
を䞎えるべき原材料ずしお粉䜓特性の優れた粉末
が望たれおいる。 先行技術 ペロブスカむト型酞化物の補造方法ずしおは、
䞋蚘の方法が知られおいる。 (1) 各成分元玠の酞化物粉末を混合し、この混合
物を高枩に加熱しお固盞反応を起させる方法。 (2) 各成分元玠のむオンを含む氎溶液䞭にしゆう
酞を滎䞋しお各成分元玠をしゆう酞塩ずしお共
沈させ、この共沈しゆう酞塩を熱分解する方
法。 (3) 各成分元玠のアルコキシドの混合物を加氎分
解しお共沈させ、この共沈加氎分解物を熱分解
する方法。 しかしながら、これらの方法には䜕らかの問題
点があ぀お、必ずしも満足すべきものずはいい難
い。たずえば、(1)の固盞反応は高枩か぀長時間が
必芁であるずいう補造工皋䞊の問題があるばかり
でなく、補品粉末にも問題がある。すなわち、こ
の方法で埗られる粉末は焌結し難く、埓぀お焌結
のためには高枩の採甚あるいは焌結促進剀の䜿甚
が必芁ずなるからである。(2)の共沈法には、各成
分のしゆう酞塩の共沈媒䜓である氎に察する溶解
床が異なるので各成分を垌望成分比で共沈させる
こずが困難であ぀お、単䞀盞の組成のものが埗難
いずいう欠点がある。たた、(3)の共沈法は高玔床
で均䞀性の高い補品が埗られるずいう利点がある
けれども、各成分をアルコキシドずしお利甚する
ずころからその補造が容易ではないずいう欠点を
免れない。 山村らは、これらの埓来法の欠点を解消する方
法ずしお、前述(2)のしゆう酞塩法の改良を提案し
おいる。即ち、しゆう酞ぱタノヌルに可溶であ
り、Zrむオン、Tiむオンのしゆう酞塩及びPb、
Ba、SrたたはCaの矀から遞ばれたむオン以䞋
これを総称しおむオンず蚀うのしゆう酞塩は
いずれも゚タノヌルに党く䞍溶である性質を利甚
しお、゚タノヌル䞭でむオンずTiむオンずを
しゆう酞ず反応させおこれらのむオンをしゆう酞
塩ずしお共沈させるこず特開昭59−39722号公
報ならびにむオンずZrむオンたたはZr
Tiむオンずをしゆう酞塩ずしお共沈させるこ
ず特開昭59−131505号公報によ぀お、所望組
成の高玔床䞔぀均䞀粒床の沈柱物ペロブスカむ
ト型酞化物の前駆䜓が埗られ、これを熱分解す
るず極めお焌結し易い掻性なATiO3、AZrO3た
たはZr・TiO3埮粉末が埗られる。そこに開
瀺された技術においお、むオンは圓該硝酞塩の
氎溶液ないし含゚タノヌル氎溶液ずしお䜿甚しお
いる。䞀方、チタンむオン及びゞルコニりムむオ
ンはオキシ硝酞チタンたたはオキシ硝酞ゞルコニ
りムの氎溶液ないし含゚タノヌル溶液ずしお䜿甚
するこずが奜たしいずされおいる。これらむオン
の䟛絊源ずしお塩化物を䜿甚するず共沈柱物䞭に
塩玠むオンが残存しがちで、共沈柱物を高枩焌成
しおも塩玠むオンが残぀お、焌成物すなわち目
的酞化物を焌結する堎合に悪圱響を及がすこず
があるからであり、たたむオンずしおPbを甚
いる堎合には混合氎溶液においお䞍溶性の塩化鉛
が生成するからである。オキシ硝酞チタンの補造
法ずしおは、四塩化チタンをアンモニア氎で加氎
分解しお氎酞化物ずしお沈柱させ、これを過し
お埗た氎酞化チタンを硝酞䞭に投入しお溶解させ
おオキシ硝酞チタン溶液を埗る方法が開瀺されお
おり、オキシ硝酞ゞルコニりム溶液もオキシ塩化
ゞルコニりム原料ずしおた぀たく同様の手法で埗
られるこずが開瀺されおいる。 これらの化合物からのチタンむオンたたはゞル
コニりムむオンずむオンずを゚タノヌルの存圚
䞋にしゆう酞ず反応させおしゆう酞塩共沈物を
埗、これを過、也燥埌、粉砕しお、熱分解が完
党に終了しお重量倉化が最早認められない枩床
700−1000℃で〓焌すれば、目的のペロブスカ
むト型酞化物が埗られるのであるが、開瀺された
ずころによれば生成〓焌物は再床粉砕混合しおお
り、この粉末に぀いお成型および1000−1400℃で
の焌結を行な぀おいる。 即ち、この先行改良技術においおは、共沈柱物
の〓焌によ぀お埗られた埮粉末状のペロブスカむ
ト型酞化物は粒子盞互で融着を起こしおいお盎接
金型成型に䟛するこずができないので、再粉砕混
合工皋が必芁であ぀たのである。 先行改良発明で必芁であるこの再粉砕混合工皋
は、工皋費の増加及び䞍玔物の混入による最終補
品の信頌性の䜎䞋をもたらすばかりでなく、ペロ
ブスカむト型酞化物粉末の特性からい぀おも問題
である。すなわち、これらペロブスカむト型酞化
物粉末をポリ北化ビニリデン暹脂、ポリオキシメ
チレン暹脂、ニトリルブタゞ゚ンゎム等ず耇合し
お、可撓性に富む圧電フむルムを補造する技術の
開発が進められ぀぀あるずころ、この堎合には粒
埄分垃が均䞀で結晶歪のない易分散型の埮粉末が
必芁ずされおいるのであるが、再粉砕混合で埗た
埮粉末では結晶歪が生起しお、期埅する性胜が埗
られなくなるこずが知られおいるからである。 山村及び本発明者らは〓焌物埮粒子の盞互融着
珟象に぀いお鋭意怜蚎を加え、この先行改良技術
においお、出発原料むオンの混合氎溶液に少量残
存する塩玠むオンが〓焌段階においお埮粒子の盞
互融着珟象を誘起しおいる事実を芋出し、曎に塩
玠むオン濃床を所定倀以䞋に䞋げるこずで融着を
抑止できるこずを芋出しお先願発明特願昭60−
13910号を完成した。 先願発明は易分散性の超埮粒状のペロブスカむ
ト型酞化物を埗る優れた方法であるが、゚タノヌ
ルの䜿甚量が倚い為に蒞留粟補工皋に関係する生
産コストの䜎枛が難しいずいう問題点を内包しお
いた。この問題を解決する為に本発明者らは氎溶
液䞭の金属むオン濃床を向䞊させるず、氎溶液に
察する゚タノヌル添加量の削枛が同時に可胜ずな
る事実を芋出し、゚タノヌル䜿甚量を埓来の1/5
−1/10以䞋に枛らしおも所期性状の埮粉末が埗ら
れるこずを確認し、昭和60幎月11日付で特蚱出
願した発明の名称「ペロブスカむト型酞化物の補
造法」なる発明を完成した。 先行技術の問題点 先願発明によ぀お゚タノヌル䜿甚量を倧巟に削
枛するこずが可胜ずな぀たが、゚タノヌルはメタ
ノヌルやむ゜プロパノヌルに比范しお高䟡栌に蚭
定されおいる為に゚タノヌル原単䟡が合成プロセ
スコストの䞭で倧きな比率を占める点に倉わりは
ないずいう問題点が残されおいた。 発明の抂芁 芁 æ—š 本発明者らぱタノヌルず同様の特性、即ち、 (1) しゆう酞を溶解するこずができる。 (2) 氎に任意の割合で溶解する。 (3) 金属しゆう酞塩の溶解を抑止できる。 に加えお゚タノヌルよりも廉䟡ずいう条件を満た
すアルコヌルに぀いお探玢し、次の知芋を埗お本
発明に到぀た。 䞊蚘(1)、(2)の特性を満たすアルコヌルずしおメ
タノヌル、む゜プロパノヌル、ノルマルプロパノ
ヌルを挙げるこずができる。 化孊工業日報瀟「9285の化孊商品」によるず䞊
蚘アルコヌル䟡栌は凡そ次のようになる単䜍
Kg。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ABO 3 perovskite oxide. More specifically, the present invention relates to a method for producing an oxide powder having excellent powder properties by using isopropanol in a specific step in a known production method for this oxide. Perovskite oxides, either by themselves or in the form of a solid solution of two or more of these oxides, are widely used as ferroelectric and piezoelectric materials in capacitors and the like. Most of these materials are commercialized as sintered bodies obtained by baking and solidifying their powders. In this case, the quality is significantly influenced by the degree of sintering, and therefore, a powder with excellent powder characteristics is desired as a raw material for producing a good sintered body. Prior art As a method for producing perovskite-type oxides,
The following methods are known. (1) A method in which oxide powders of each component element are mixed and the mixture is heated to a high temperature to cause a solid phase reaction. (2) A method in which oxalic acid is dropped into an aqueous solution containing ions of each component element to coprecipitate each component element as an oxalate salt, and the coprecipitated oxalate salt is thermally decomposed. (3) A method in which a mixture of alkoxides of each component element is hydrolyzed, coprecipitated, and the coprecipitated hydrolyzate is thermally decomposed. However, these methods have some problems and are not necessarily satisfactory. For example, the solid phase reaction (1) not only has problems with the manufacturing process in that it requires high temperatures and long periods of time, but also has problems with the product powder. That is, the powder obtained by this method is difficult to sinter, and therefore requires the use of high temperatures or the use of a sintering accelerator for sintering. In the coprecipitation method (2), it is difficult to coprecipitate each component in the desired ratio because the oxalates of each component have different solubility in water, which is the coprecipitation medium. The disadvantage is that it is difficult to obtain a composition with the same composition. Further, although the coprecipitation method (3) has the advantage of producing a product with high purity and high uniformity, it has the disadvantage that it is not easy to manufacture because each component is used as an alkoxide. Yamamura et al. have proposed an improvement to the oxalate method described in (2) above as a method to overcome the drawbacks of these conventional methods. That is, oxalic acid is soluble in ethanol, and Zr ion, oxalate of Ti ion, Pb,
Utilizing the property that oxalates of ions selected from the group of Ba, Sr, or Ca (hereinafter collectively referred to as A ions) are completely insoluble in ethanol, they can be combined with A ions in ethanol. Ti ions are reacted with oxalic acid to co-precipitate these ions as oxalate salts (Japanese Patent Application Laid-open No. 59-39722), and A ions and Zr ions or (Zr+
A precipitate (precursor of perovskite oxide) with a desired composition and high purity and uniform particle size can be obtained by co-precipitating Ti) ions as a sulfate salt (Japanese Patent Application Laid-Open No. 131505/1983). When this is thermally decomposed, active ATiO 3 , AZrO 3 or A(Zr·Ti)O 3 fine powder, which is extremely easy to sinter, is obtained. In the technique disclosed therein, the A ion is used as an aqueous solution of the nitrate or an ethanol-containing aqueous solution. On the other hand, it is said that titanium ions and zirconium ions are preferably used as an aqueous solution or an ethanol-containing solution of titanium oxynitrate or zirconium oxynitrate. When chloride is used as a source of these ions, chlorine ions tend to remain in the coprecipitate, and even if the coprecipitate is fired at a high temperature, chlorine ions remain and the fired product (i.e., the target oxide) is sintered. This is because when Pb is used as the A ion, insoluble lead chloride is generated in the mixed aqueous solution. The method for producing titanium oxynitrate is to hydrolyze titanium tetrachloride with aqueous ammonia to precipitate it as a hydroxide, and then pour the titanium hydroxide obtained through this process into nitric acid and dissolve it to produce titanium oxynitrate. A method for obtaining the solution is disclosed, and it is disclosed that a zirconium oxynitrate solution can also be obtained in a similar manner as a raw material for zirconium oxychloride. Titanium ions or zirconium ions from these compounds and A ions are reacted with oxalic acid in the presence of ethanol to obtain an oxalate coprecipitate, which is filtered, dried, and pulverized to prevent thermal decomposition. The desired perovskite-type oxide can be obtained by firing at a temperature (700-1000°C) at which it is completely finished and no weight change is observed; however, according to the disclosure, the fired product cannot be fired again. The powder is ground and mixed, and this powder is molded and sintered at 1000-1400°C. That is, in this prior improved technique, the finely powdered perovskite-type oxide obtained by sintering the coprecipitate cannot be directly used for molding because the particles are fused to each other. A re-grinding and mixing step was necessary. This re-grinding and mixing step, which is necessary in the prior improved invention, not only increases the process cost and reduces the reliability of the final product due to the contamination of impurities, but also always poses a problem due to the characteristics of perovskite oxide powder. . In other words, the development of technology for manufacturing highly flexible piezoelectric films by combining these perovskite-type oxide powders with polyvinylidene fluoride resin, polyoxymethylene resin, nitrile butadiene rubber, etc. is progressing. In some cases, an easily dispersible fine powder with a uniform particle size distribution and no crystal distortion is required, but fine powder obtained by re-grinding and mixing causes crystal distortion, making it difficult to obtain the expected performance. This is because it is known that it will not be possible. Yamamura and the present inventors have conducted extensive studies on the mutual fusion phenomenon of fine particles of baked goods, and in this advanced improved technology, a small amount of chlorine ions remaining in the mixed aqueous solution of starting material ions cause the mutual fusion phenomenon of fine particles during the firing stage. They found that fusion was induced by lowering the chloride ion concentration to a predetermined value or less, and obtained an earlier invention (patent application filed in 1983).
No. 13910) was completed. The prior invention is an excellent method for obtaining easily dispersible ultrafine perovskite oxides, but it involves the problem that it is difficult to reduce production costs related to the distillation purification process due to the large amount of ethanol used. Was. In order to solve this problem, the present inventors discovered that by increasing the concentration of metal ions in an aqueous solution, it is possible to simultaneously reduce the amount of ethanol added to the aqueous solution, reducing the amount of ethanol used to 1/5 of the conventional amount.
- Confirmed that a fine powder with the desired properties could be obtained even if the reduction was reduced to 1/10 or less, and completed the invention entitled "Method for producing perovskite oxide" for which a patent application was filed on April 11, 1985. did. Problems with the prior art The invention of the prior application made it possible to significantly reduce the amount of ethanol used, but since ethanol is priced higher than methanol and isopropanol, the unit price of ethanol is low. The problem remained that it still occupies a large proportion of the synthesis process cost. SUMMARY OF THE INVENTION The present inventors have discovered that the present invention has similar properties to ethanol, namely: (1) It can dissolve oxalic acid. (2) Soluble in water in any proportion. (3) Dissolution of metal oxalates can be inhibited. In addition, we searched for an alcohol that satisfies the condition of being cheaper than ethanol, and obtained the following knowledge, leading to the present invention. Examples of alcohols that satisfy the above characteristics (1) and (2) include methanol, isopropanol, and normal propanol. According to Kagaku Kogyo Nippo's ``9285 Chemical Products,'' the above alcohol prices are approximately as follows (unit:
Kg).

【衚】 ノルマルプロパノヌルはメタノヌル、む゜プロ
パノヌルのように倧量生産はなされおいないもの
ず予枬されるので本発明の本来の目的には合臎し
ない。 メタノヌルが䟡栌的には最も有利であるので゚
タノヌルの代りにメタノヌルを埓来の反応条件量
甚いおPbTiO3前駆䜓沈柱合成反応を詊みたずこ
ろ、液䞭に゚タノヌル䜿甚時では最高で仕蟌み
量の0.04wtしか溶出しなか぀た鉛が、0.7wt
も溶出しおくる事実が芋出された。本発明者らの
先行発明においおは、チタンの溶出量のみを考慮
するこずで沈柱䞭のPbTi比の制埡が可胜ずな
぀おいたこずからしお倚量の鉛の留出は沈柱組成
の厳密な制埡を実質䞊䞍胜ずする点で奜たしくな
い。埓぀お、メタノヌルぱタノヌルの代替には
䞍適圓ず考えられる。 む゜プロパノヌルおよびノルマルプロパノヌル
を倫々゚タノヌルの代りに䜿甚しおPbTiO3前駆
䜓沈柱合成反応を詊みたずころ、液䞭ぞの鉛の
溶出ぱタノヌル䜿甚時ず同様氎準であり、
TiPb比の制埡も容易になされるこずを芋出し
た。曎に生成する沈柱も4A玙で充分に別で
きるこずが刀明した。 即ち、山村ら特開昭59−39722号公報、特開
昭59−131505号公報、山村および本発明者ら
特願昭60−13910号および本発明者ら昭和60
幎月11日付で出願した発明の名称「ペロブスカ
むト型酞化物の補造法」なる特蚱出願で提唱し
お来たしゆう酞塩沈柱合成時に溶解床制埡剀ずし
お゚タノヌルを添加する方法はアルコヌルをむ゜
プロパノヌル及びノルマルプロパノヌルに代えお
も所期性状の前駆䜓沈柱を䞎えるこずが明らかず
な぀た。 たた、沈柱䞭に含たれる未反応しゆう酞及び反
応で生成する硝酞を陀く為に埓来ぱタノヌル掗
浄を実斜しおいたが、この掗浄工皋にむ゜プロパ
ノヌル及びノルマルプロパノヌルを甚いおも掗液
䞭に鉛が䜙分に溶け出すなどの悪圱響は党く生起
しないこずが確認された。たた、掗浄甚アルコヌ
ル量も砕解条件を遞ぶこずで倧巟に䜎枛できるこ
ずも、゚タノヌルの堎合ず同じであるこずが確認
された。 曎に先願発明で開瀺した高むオン濃床氎溶液ず
氎溶液容に察する0.5−容のアルコヌルの添
加による前駆䜓沈柱の合成手法がむ゜プロパノヌ
ル及びノルマルプロマノヌルにも適甚が可胜なこ
ずを芋出した。 効 果 本発明に埓぀おしゆう酞塩共沈物を圢成させる
時、先願発明によ぀おは成し埗なか぀た補造コス
トの倧巟䜎枛を蚈るこずができる。即ち、甚いる
アルコヌルを゚タノヌルからむ゜プロパノヌルに
転換するこずによ぀おKg圓りの賌入䟡栌が270円
から180−190円ぞず䞋がり初期投資額の30−33
もの䜎廉化を蚈るこずが可胜ずなる。曎に、この
こずは蒞留操䜜等で生じる損倱の補充費甚の䜎枛
をも意味するこずは圓業者には自明のこずであ
る。 本発明に埓぀おしゆう酞塩共沈物を圢成させる
時、構成元玠むオン氎溶液ないし含む゜プロパノ
ヌル氎溶液にしゆう酞を含むアルコヌル溶液を滎
䞋するこずで、粉末特性の優れたペロブスカむト
型酞化物を䞎える前駆䜓化合物が埗られる。即
ち、しゆう酞塩ずしお沈柱した前駆䜓化合物を
過、也燥および砕解しおから仮焌しお埗た酞化物
ぱタノヌルを甚いた先行技術同様、埮现粒子盞
互の融着状態をずらず、線回折䞊完党な正方晶
ペロブスカむト型酞化物結晶構造を䞎える。 発明の具䜓的説明 ペロブスカむト型酞化物前駆䜓沈柱の補造 本発明で察象ずするペロブスカむト型酞化物は
ABO3型のものであ぀お、元玠がBa、Sr、Ca
およびPbからなる矀から遞ばれた少なくずも
皮の元玠であり、元玠がTiおよびZrからなる
矀から遞ばれた少なくずも皮の元玠であるも
の、である。 本発明で甚いるTi及びZrはいずれも硝酞酞化
チタン及び硝酞酞化ゞルコニりムずしお反応に䟛
される。 本発明の方法で合成可胜なペロブスカむト型酞
化物ずしおは、PbTiO3、PbZrO3、PbTi・Zr
O3、BaTiO3、SrTiO3、CaTiO3、BaZrO3、
SrZrO3およびCaZrO3等を挙げるこずができる。 これらの化合物を合成するに必芁な元玠の氎
溶性化合物を適宜組み合わせしゆう酞塩沈柱圢成
反応に䟛するこずができるが、塩化物以倖の塩、
特に硝酞塩、が最も適圓である。いずれの堎合に
も、各皮むオンを溶解した氎溶液ないし含゚タノ
ヌル氎溶液においお、Ti、Zr、た
たはTiZrが0.05以䞋、奜たしくは
0.02以䞋、になるように原料の玔床を遞定するこ
ずが必芁であるこずは先願発明ず同じである。 共 沈 ペロブスカむト型酞化物前駆䜓は、元玠むオ
ンおよび元玠むオンを䞎える各元玠の化合物の
氎溶液たたは含む゜プロパノヌル氎溶液をむ゜プ
ロパノヌルの存圚䞋にしゆう酞ず反応させお、共
沈柱物ずしお埗られる。 具䜓的には、該氎溶液に癜濁が生じない皋床の
む゜プロパノヌルを加えたのち、しゆう酞のむ゜
プロパノヌル溶液を奜たしくは激しく攪拌しなが
ら滎䞋する。逆にしゆう酞のむ゜プロパノヌル溶
液に該氎溶液もしくは該含む゜プロパノヌル氎溶
液溶液を滎䞋する手法を甚いおもよい。金属むオ
ンの皮類によ぀おはその氎溶液にむ゜プロパノヌ
ルを加えるず癜濁等の䞍安定さがでおくるので、
各元玠のむオンの溶液はむ゜プロパノヌル䞍含の
氎溶液の方が奜たしいこずがある。特に氎溶液䞭
のむオン濃床を0.2−モルに高めた系で
反応を行う堎合には含む゜プロパノヌル氎溶液を
調補する必芁はない。たた、このような高いむオ
ン濃床氎溶液に察しおは該氎溶液容に察しおし
ゆう酞ず共に加えるむ゜プロパノヌル量が0.5−
容でも充分に所期性状を持぀ペロブスカむト型
酞化物粉末を埗るこずができる。 しゆう酞量は少なくずも各元玠金属むオンをし
ゆう酞塩に完党に転化させる量であるこずが必芁
であるが理論量の25増皋床の添加が奜たしい。
しゆう酞塩圢成反応の枩床は、℃から宀枩近傍
にずるこずができる。 しゆう酞の添加にずもな぀お、癜色沈柱が生成
する。これを過しお癜色ケヌキを埗る。ケヌキ
䞭に含たれる硝酞むオン、未反応しゆう酞および
塩玠むオン等を陀くために、む゜プロパノヌル䞭
にケヌキを再分散させお、残存母液をむ゜プロパ
ノヌルで眮換陀去するこずが奜たしい。 埗られた癜色ケヌキは也燥埌、砕解しおペロブ
スカむト型酞化物前駆䜓粉末ずする。この段階で
の砕解は、埌に続く〓焌に際しお、適切な量の酞
玠の流通を確保する䞊で重芁である。なお、也燥
ケヌキは匱い磚砕力で容易に埮粉化できるし、こ
の段階で粒子を完党分散状態にする必芁もないの
で、砕解手段からの䞍玔物の混入の恐れはない。 ペロブスカむト型酞化物埮粉末の補造 前蚘前駆䜓粉末を適圓枩床、たずえば500−
1000℃、で〓焌する。この〓焌枩床は䜎枩である
こずが望たしいが、熱分解が完党に終了する枩床
が化合物によ぀お異なるので、重量倉化が最早認
められない枩床で〓焌を行なうこずが必芁であ
る。 以䞋実隓䟋をも぀お本発明の内容を曎に具䜓的
に説明する。 実隓䟋 実斜䟋  垂販のテトラむ゜プロピルチタン200mlã‚’è’žç•™
æ°Ž2800mlに滎䞋しお氎酞化物を埗、これを過し
た埌、玔氎400mlで回掗浄を繰返しお氎酞化チ
タンを埗た。これを氷冷した垂販特玚硝酞80mlに
加え、昌倜攟眮埌過しお、オキシ硝酞チタン溶
液を埗た。Ti濃床をTiO2ずしお重量分析法で決
定しお0.1256−Timlの結果が埗られた。オキ
シ硝酞チタン溶液17mlを特玚硝酞鉛玔床99.5wt
13.417ず玔氎189.4mlの混合溶液に加え、
TiPb原子比1.11の溶液を埗おこれを℃
に冷华した。この混合溶液を激しく攪拌しおいる
䞭に、しゆう酞氎和物20.379を含む℃に冷
华されたむ゜プロパノヌル1505mlを玄60ml分の
速床でロヌタリヌポンプを甚いお泚加し、癜色沈
柱を埗た。この癜色沈柱をブフナヌ過噚を甚い
お枛圧過しお埗た癜色ケヌキを490mlのむ゜プ
ロパノヌルに攪拌分散させお過する操䜜を回
繰返しお埗た癜色ケヌキを110℃で也燥した埌、
メノり乳鉢で粉砕し、空気䞭で700℃で時間焌
成した。BET衚面積9.0m2、TiPb原子比
1.05、線により求められる結晶圢は正方晶
PbTiO3であり、その202面回折ピヌクから求め
た結晶粒埄344Å、BET衚面積から求めた平均二
次粒子埄0.083ÎŒmの特性をも぀PbTiO3粉末が埗
られた。過剰のTiに盞圓する分はPbTi3O7ずし
お存圚するこずが線回折から確認された。 このチタン酞鉛粉末を走査型電子顕埮鏡を甚い
お芳察したずころ、0.1ÎŒm以䞋の埮现な粒子の集
合䜓であるこずが認められた。曎に、このチタン
酞鉛を氎䞭で玄30秒、超音波掗浄噚で振動を加え
お懞濁させ、懞濁液の䞀郚をスポむトで電顕詊料
台に萜した埌、也燥し、通垞の凊理を行぀た埌に
粒子状態を芳察したずころ、埮粒子が盞互融着な
く分散しおいる状態が認められた。 実斜䟋  実斜䟋ず同じ手法で埗たオキシ硝酞チタン
Ti0.1240ml15mlを垂販特玚硝酞鉛
11.281ず玔氎42.8mlの混合溶液に加え、TiPb
原子比1.14の溶液を埗おこれを0.5℃に冷华
した。しゆう酞氎和物17.135を含む0.5℃に
冷华されたむ゜プロパノヌル116mlを䞊蚘混合溶
液を激しく攪拌しおいる䞭に玄ml分の速床で
泚加しお癜色沈柱を埗た。実斜䟋の手順で
過、掗浄、也燥粉砕、焌成空気䞭700℃で時
間を行ない、BET衚面積2.6m2、線より
結晶粒埄が500Åの正方晶PbTiO3のみの存圚が
確認された粉末を埗た。衚面積より求めた平均二
次粒埄は0.29ÎŒmであり、走査型電子顕埮鏡によ
る芳察では粒子盞互の融着珟象は認められなか぀
た。
[Table] Since normal propanol is not expected to be mass-produced like methanol and isopropanol, it does not meet the original purpose of the present invention. Since methanol is the most advantageous in terms of price, we attempted a PbTiO 3 precursor precipitation synthesis reaction using methanol in place of ethanol in the amount used under conventional reaction conditions. The lead that only eluted was 0.7wt%.
It was also found that the particles were also eluted. In the inventors' previous invention, it was possible to control the Pb/Ti ratio in the precipitate by considering only the amount of titanium eluted. This is undesirable in that it makes effective control virtually impossible. Therefore, methanol is considered unsuitable as a substitute for ethanol. When a PbTiO 3 precursor precipitation synthesis reaction was attempted using isopropanol and normal propanol in place of ethanol, the elution of lead into the solution was at the same level as when ethanol was used.
It has been found that the Ti/Pb ratio can also be easily controlled. Furthermore, it was found that the formed precipitate could be sufficiently separated using 4A paper. Namely, Yamamura et al.
The method of adding ethanol as a solubility control agent during oxalate precipitation synthesis, which has been proposed in the patent application filed on April 11, 2007, entitled "Production method of perovskite oxide", is based on the method of adding ethanol as a solubility control agent during oxalate precipitation synthesis. It has become clear that even if propanol is used instead, a precursor precipitate with the desired properties can be obtained. In addition, ethanol washing was conventionally carried out to remove unreacted oxalic acid contained in the precipitate and nitric acid produced by the reaction, but even if isopropanol and n-propanol are used in this washing process, lead still remains in the washing solution. It was confirmed that there were no adverse effects such as excessive dissolution. It was also confirmed that the amount of cleaning alcohol can be significantly reduced by selecting the crushing conditions, just as in the case of ethanol. Furthermore, it has been found that the method of synthesizing the precursor precipitation by adding 0.5 to 4 volumes of alcohol to 1 volume of the high ionic concentration aqueous solution and the aqueous solution disclosed in the prior invention can also be applied to isopropanol and n-promanol. Effects When forming an oxalate coprecipitate according to the present invention, it is possible to achieve a significant reduction in manufacturing costs, which could not be achieved with the prior invention. In other words, by converting the alcohol used from ethanol to isopropanol, the purchase price per kg decreases from 270 yen to 180-190 yen, which is 30-33% of the initial investment amount.
It becomes possible to reduce the cost of goods. Furthermore, it is obvious to those skilled in the art that this also means a reduction in the cost of replenishing losses caused by distillation operations and the like. When forming an oxalate co-precipitate according to the present invention, an alcohol solution containing oxalic acid is added dropwise to an aqueous solution of constituent element ions or an aqueous solution containing isopropanol, thereby forming a precursor that provides a perovskite-type oxide with excellent powder properties. A compound is obtained. That is, the oxide obtained by filtering, drying, crushing, and calcining the precursor compound precipitated as an oxalate does not have fine particles fused to each other, as in the prior art using ethanol. X-ray diffraction gives a perfect tetragonal perovskite oxide crystal structure. Detailed description of the invention Production of perovskite oxide precursor precipitate The perovskite oxide targeted by the present invention is
ABO type 3 , in which the A element is Ba, Sr, Ca
and at least one selected from the group consisting of Pb
The element B is at least one element selected from the group consisting of Ti and Zr. Both Ti and Zr used in the present invention are subjected to the reaction as titanium oxide nitrate and zirconium oxide nitrate. Perovskite-type oxides that can be synthesized by the method of the present invention include PbTiO 3 , PbZrO 3 , Pb(Ti・Zr)
O3 , BaTiO3 , SrTiO3 , CaTiO3 , BaZrO3 ,
Examples include SrZrO 3 and CaZrO 3 . The water-soluble compounds of element A necessary for synthesizing these compounds can be suitably combined and subjected to the sulfate precipitate formation reaction, but salts other than chlorides,
In particular, nitrates are most suitable. In either case, in the aqueous solution or ethanol-containing aqueous solution in which various ions are dissolved, C/Ti, C/Zr, or C/(Ti+Zr) is 0.05 or less, preferably
It is the same as the prior invention that it is necessary to select the purity of the raw material so that it is 0.02 or less. Co-precipitation The perovskite-type oxide precursor is obtained as a coprecipitate by reacting an aqueous solution or isopropanol-containing aqueous solution of a compound of each element that provides element A ions and B element ions with oxalic acid in the presence of isopropanol. Specifically, after adding isopropanol to the aqueous solution to an extent that no clouding occurs, an isopropanol solution of oxalic acid is added dropwise, preferably with vigorous stirring. Alternatively, a method may be used in which the aqueous solution or the isopropanol-containing aqueous solution is dropped into an isopropanol solution of oxalic acid. Depending on the type of metal ion, adding isopropanol to the aqueous solution may cause instability such as clouding.
An aqueous solution containing no isopropanol may be preferable as the solution of ions of each element. In particular, when the reaction is carried out in a system in which the A ion concentration in the aqueous solution is increased to 0.2-1 mol/ml, it is not necessary to prepare an isopropanol-containing aqueous solution. In addition, for such a high ion concentration aqueous solution, the amount of isopropanol added together with oxalic acid per volume of the aqueous solution is 0.5-
Even with a volume of 4, it is possible to obtain a perovskite-type oxide powder having sufficient desired properties. The amount of oxalic acid must be at least an amount that completely converts each elemental metal ion into an oxalate salt, but it is preferable to add about 25% more than the theoretical amount.
The temperature of the oxalate formation reaction can be from 0°C to around room temperature. A white precipitate forms upon addition of oxalic acid. After this process, a white cake is obtained. In order to remove nitrate ions, unreacted oxalic acid, chloride ions, etc. contained in the cake, it is preferable to redisperse the cake in isopropanol and remove the remaining mother liquor by replacing it with isopropanol. The obtained white cake is dried and then crushed to obtain a perovskite-type oxide precursor powder. Crushing at this stage is important in ensuring the flow of an appropriate amount of oxygen during the subsequent sintering. Note that the dry cake can be easily pulverized by a weak grinding force, and there is no need to completely disperse the particles at this stage, so there is no risk of contamination with impurities from the pulverizing means. Production of perovskite type oxide fine powder The precursor powder is heated to an appropriate temperature, for example, 500-
Bake at 1000℃. It is desirable that the calcination temperature be low, but since the temperature at which thermal decomposition is completely completed varies depending on the compound, it is necessary to carry out the calcination at a temperature at which no weight change is observed. The content of the present invention will be explained in more detail below using experimental examples. Experimental Examples Example 1 200 ml of commercially available tetraisopropyl titanium was dropped into 2800 ml of distilled water to obtain hydroxide. After this was filtered, washing was repeated three times with 400 ml of pure water to obtain titanium hydroxide. This was added to 80 ml of ice-cooled commercially available special grade nitric acid, and the mixture was left to stand day and night and then filtered to obtain a titanium oxynitrate solution. The Ti concentration was determined gravimetrically as TiO 2 and a result of 0.1256 g-Ti/ml was obtained. Add 17ml of titanium oxynitrate solution to special grade lead nitrate (purity 99.5wt)
%) 13.417g and 189.4ml of pure water,
Obtain a solution of Ti/Pb (atomic ratio) = 1.11 and store it at 1°C.
It was cooled to While stirring this mixed solution vigorously, 1505 ml of isopropanol cooled to 1°C containing 20.379 g of oxalic acid dihydrate was added at a rate of about 60 ml/min using a rotary pump, resulting in a white precipitate. I got it. This white precipitate was filtered under reduced pressure using a Buchner filter, the white cake obtained was stirred and dispersed in 490 ml of isopropanol, and the filtering operation was repeated three times. The white cake obtained was dried at 110°C.
It was ground in an agate mortar and fired in air at 700°C for 2 hours. BET surface area 9.0m 2 /g, Ti/Pb (atomic ratio)
= 1.05, the crystal shape determined by X-rays is tetragonal
A PbTiO 3 powder was obtained which was PbTiO 3 and had a crystal grain size of 344 Å determined from its 202 plane diffraction peak and an average secondary particle size of 0.083 ÎŒm determined from its BET surface area. It was confirmed by X-ray diffraction that the amount corresponding to the excess Ti was present as PbTi 3 O 7 . When this lead titanate powder was observed using a scanning electron microscope, it was found to be an aggregate of fine particles of 0.1 ÎŒm or less. Furthermore, this lead titanate was suspended in water for about 30 seconds by applying vibrations using an ultrasonic cleaner, and a portion of the suspension was dropped onto an electron microscope sample stage using a dropper, then dried and subjected to normal processing. When the state of the particles was observed after performing this, it was observed that the fine particles were dispersed without mutual fusion. Example 2 15 ml of titanium oxynitrate (Ti = 0.1240 g/ml) obtained by the same method as Example 1 was mixed with commercially available special grade lead nitrate.
In addition to a mixed solution of 11.281g and 42.8ml of pure water, Ti/Pb
A solution with (atomic ratio)=1.14 was obtained and cooled to 0.5°C. 116 ml of isopropanol cooled to 0.5° C. containing 17.135 g of oxalic acid dihydrate was poured into the above mixed solution at a rate of about 5 ml/min while stirring vigorously to obtain a white precipitate. Filtration, washing, drying, crushing, and calcination (in air at 700°C for 2 hours) were carried out according to the procedure of Example 1, and the BET surface area was 2.6 m 2 /g, and the presence of only tetragonal PbTiO 3 with a crystal grain size of 500 Å was observed by X-rays. A powder was obtained in which it was confirmed that The average secondary particle diameter determined from the surface area was 0.29 ÎŒm, and observation using a scanning electron microscope did not show any fusion phenomenon between particles.

Claims (1)

【特蚱請求の範囲】[Claims]  ABO3型ペロブスカむト型酞化物ただし、
はBa、Sr、CaおよびPbからなる矀から遞ばれ
た少なくずも皮の元玠を瀺し、はTiおよび
Zrからなる矀から遞ばれた少なくずも皮の元
玠を瀺すを構成すべき元玠のむオンを含む氎溶
液ないし含む゜プロパノヌル氎溶液をむ゜プロパ
ノヌルの存圚䞋にシナり酞ず接觊させお該酞化物
の前駆䜓の沈柱を生成させ、この前駆䜓沈柱を熱
分解するこずを特城ずする、ペロブスカむト型酞
化物の補造方法。
1 ABO 3 type perovskite oxide (however,
A represents at least one element selected from the group consisting of Ba, Sr, Ca and Pb, and B represents Ti and
At least one element selected from the group consisting of Zr) is brought into contact with oxalic acid in the presence of isopropanol to precipitate a precursor of the oxide. 1. A method for producing a perovskite-type oxide, the method comprising producing a perovskite-type oxide, and thermally decomposing the precursor precipitate.
JP7723585A 1985-04-11 1985-04-11 Production of perovskite type oxide Granted JPS61251519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7723585A JPS61251519A (en) 1985-04-11 1985-04-11 Production of perovskite type oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7723585A JPS61251519A (en) 1985-04-11 1985-04-11 Production of perovskite type oxide

Publications (2)

Publication Number Publication Date
JPS61251519A JPS61251519A (en) 1986-11-08
JPH0472770B2 true JPH0472770B2 (en) 1992-11-19

Family

ID=13628200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7723585A Granted JPS61251519A (en) 1985-04-11 1985-04-11 Production of perovskite type oxide

Country Status (1)

Country Link
JP (1) JPS61251519A (en)

Also Published As

Publication number Publication date
JPS61251519A (en) 1986-11-08

Similar Documents

Publication Publication Date Title
US5900223A (en) Process for the synthesis of crystalline powders of perovskite compounds
US5445806A (en) Process for preparing fine powder of perovskite-type compound
US3577487A (en) Preparation of submicron sized alkaline earth titanate and zirconate powders
JPH04502303A (en) Method for producing submicron ceramic powders of perovskite compounds with controlled stoichiometry and particle size
JP3319807B2 (en) Perovskite-type compound fine particle powder and method for producing the same
JPH0159967B2 (en)
JP3772354B2 (en) Manufacturing method of ceramic powder
JPH0246531B2 (en)
JPH0818871B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JPS61251516A (en) Production of perovskite type oxide
JPH0472770B2 (en)
JPH0524089B2 (en)
JPH0524090B2 (en)
JPH01294527A (en) Production of metallic oxide of perovskite type of abo3 type
JPS61251517A (en) Production of perovskite type oxide
JPS63151673A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPH0159205B2 (en)
JPH0249251B2 (en)
JPH0524859B2 (en)
JPH05116943A (en) Production of barium titanate powder
JPS6284B2 (en)
JPH01294529A (en) Production of oxide of perovskite type of abo3 type
JPH0784345B2 (en) Manufacturing method of perovskite ceramics
JP3309466B2 (en) Method for producing lead-containing composite oxide powder
JPH01122907A (en) Production of perovskite oxide powder