JPH04725A - Compound semiconductor heterojunction structure - Google Patents

Compound semiconductor heterojunction structure

Info

Publication number
JPH04725A
JPH04725A JP10092190A JP10092190A JPH04725A JP H04725 A JPH04725 A JP H04725A JP 10092190 A JP10092190 A JP 10092190A JP 10092190 A JP10092190 A JP 10092190A JP H04725 A JPH04725 A JP H04725A
Authority
JP
Japan
Prior art keywords
compound semiconductor
layer
inp
substrate
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10092190A
Other languages
Japanese (ja)
Other versions
JP2773782B2 (en
Inventor
Tatsuya Ohori
達也 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10092190A priority Critical patent/JP2773782B2/en
Publication of JPH04725A publication Critical patent/JPH04725A/en
Application granted granted Critical
Publication of JP2773782B2 publication Critical patent/JP2773782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To provide a compound semiconductor heterojunction structure capable of restraining side gate effects by a method wherein crystal in which an In composition rate is as small as possible and concurrently band gap energy is as large as possible is utilized in a buffer layer existing between an InP substrate and an active layer. CONSTITUTION:An InP and a buffer layer 11 of a lattice mismatching chemical compound semiconductor are formed on an InP crystal substrate 10, and further a layer 12 of a chemical compound semiconductor having a lattice matching characteristic with InP is formed on the buffer layer 11. For instance, the lattice mismatching chemical compound has about 1% or more of lattice mismatching against InP, and the lattice matching chemical compound semiconductor has only about 0.1% or less of lattice mismatching against InP. Hereupon, in the buffer layer 11, a film thickness and a composition are selected so as not to cause transition caused by lattice mismatching, and band gap energy is larger than that of InP which is a substrate, and a transition metal or oxygen is doped.

Description

【発明の詳細な説明】 Σ概要; FET型半導体装1を形成するのに適した化合物半導体
ヘテロ接合構造に関し、 InP基板の上に成長した化合物半導体の結晶に高抵抗
特性を持たせた化合物半導体ヘテロ接合構造を提供する
ことを目的とし、 InP結晶基板と、前記InP基板と格子整合する第1
の化合物半導体の層とを含む化合物半導体ヘテロ接合構
造において、前記InP基板と前記第1の化合物半導体
層との間に第2の化合物半導体層が形成され、前記第2
の化合物半導体層は、前記InP基板と格子不整合であ
る材料からなり、前記InP基板との間および前記第1
の化合物半導体層との間の格子不整合を原因とする転位
か発生しないように膜厚と組成が選択され、かつ実効的
バンドギヤラグエネルギは前記InP基板より大きく、
遷移金属あるいは酸素をドーピングするように構成する
[Detailed Description of the Invention] ΣSummary; Concerning a compound semiconductor heterojunction structure suitable for forming the FET type semiconductor device 1, a compound semiconductor in which a compound semiconductor crystal grown on an InP substrate has high resistance characteristics is provided. For the purpose of providing a heterojunction structure, an InP crystal substrate and a first layer lattice matched with the InP substrate are provided.
In the compound semiconductor heterojunction structure including a layer of a compound semiconductor, a second compound semiconductor layer is formed between the InP substrate and the first compound semiconductor layer, and a second compound semiconductor layer is formed between the InP substrate and the first compound semiconductor layer.
The compound semiconductor layer is made of a material that is lattice mismatched with the InP substrate, and is formed between the compound semiconductor layer and the first compound semiconductor layer.
The film thickness and composition are selected so as not to generate dislocations due to lattice mismatch with the compound semiconductor layer, and the effective band gear lag energy is larger than that of the InP substrate,
It is configured to be doped with a transition metal or oxygen.

ε産業上の利用分野コ 本発明は化合物半導体のヘテロ接合構造に関L、特にF
ET型半導体装置を形成するのに適した化合物半導体ヘ
テロ接合構造に関する。
εIndustrial Application Field The present invention relates to the heterojunction structure of compound semiconductors, particularly F
The present invention relates to a compound semiconductor heterojunction structure suitable for forming an ET type semiconductor device.

InGa八3はへキャリアの移動度がGaAsよりも高
く、高速動作する半導体装置の素材として注目されてい
る。しかし、実用化するためにはまだ解決すべき課題を
有している。
InGa83 has higher carrier mobility than GaAs and is attracting attention as a material for semiconductor devices that operate at high speed. However, there are still issues to be solved in order to put it into practical use.

ε従来の技術] GaAS基板上のAlGaAs層とGaA3層を用いた
高電子移動度トランジスタ(Hiah Electro
n Nobility Transistor、 HE
 M T )と呼ばれる電界効果トランジスタか知られ
ている。このトランジスタは、二次元電子カスにおける
電子の移動度が極めて高く、高速動作を行なう。
εPrior art] High electron mobility transistor (Hiah Electro
n Nobility Transistor, HE
A field effect transistor called M T ) is known. This transistor has extremely high electron mobility in the two-dimensional electron scum and operates at high speed.

共通の基板上に多数の素子を集積化していくと、サイド
ゲート効果と呼ばれる素子間の干渉効果が集W回路動作
の重大な障害となってくる。これは簡単に言うと、ある
素子に接続する:8iiに加えた電圧が隣の素子の動作
に影響してしまう(しきい優待性の劣化)効果である。
When a large number of elements are integrated on a common substrate, an interference effect between elements called a side gate effect becomes a serious obstacle to the operation of the integrated W circuit. Simply put, this is an effect in which the voltage applied to the 8ii connected to a certain element affects the operation of the adjacent element (deterioration of threshold preference).

GaAS −A lGaAs系の半導体装置の場合、こ
のサイドゲート効果は、二次元キャリア・ガスの走行す
るチャンネル層と基板との間に十分高い抵抗をもった層
をバッファ層として挿入することによって抑制できるこ
とが知られている。このような高抵抗層は結晶成長法が
MOCVD法の場合GaASやAIGaASノ結晶中に
遷移金属や酸素をドーピングすることによって得られて
いる。
In the case of GaAS-AlGaAs-based semiconductor devices, this side gate effect can be suppressed by inserting a layer with sufficiently high resistance as a buffer layer between the channel layer through which the two-dimensional carrier gas travels and the substrate. It has been known. Such a high resistance layer is obtained by doping a transition metal or oxygen into a GaAS or AIGaAS crystal when the crystal growth method is MOCVD.

最近HEMTをより高性能化するなめに従来のGaAS
に替えてInP基板を使用し、チャンネル層をInGa
A3層で構成する構造が試みられている。1nGaAs
はGaASよりも高い移動度を有している。しかし、こ
のInGaAS材料系はInP基板と格子整合するとい
う条件のもとではバンド・ギャップエネルギが小さく、
十分高抵抗の層を得ることは困難である。
Recently, conventional GaAS has been used to improve the performance of HEMT.
Instead, an InP substrate is used, and the channel layer is made of InGa.
A structure consisting of A3 layers has been attempted. 1nGaAs
has higher mobility than GaAS. However, this InGaAS material system has a small band gap energy under the condition of lattice matching with the InP substrate.
It is difficult to obtain layers of sufficiently high resistance.

高抵抗が得られないとトランジスタのピンチオフ特性が
劣化する。すなわちトランジスタをオフにする時とオン
にする時との電圧差が大きくなる。
If high resistance cannot be obtained, the pinch-off characteristics of the transistor will deteriorate. In other words, the voltage difference between when the transistor is turned off and when it is turned on increases.

さらに、このようなInP基板を使用する化合物半導体
の集積回路を製造する際には、上記したサイド・ゲート
効果の抑制か問題となる。つまり、InAlAs等を用
いても高抵抗層の形成がInP基板の上では困難であり
、半導体集積回路装置の製造に大きな障害となる。
Furthermore, when manufacturing a compound semiconductor integrated circuit using such an InP substrate, there is a problem of suppressing the above-mentioned side gate effect. In other words, even if InAlAs or the like is used, it is difficult to form a high resistance layer on an InP substrate, which poses a major obstacle to the manufacture of semiconductor integrated circuit devices.

こ発明か解決しようとする課題] 以上説明したように、従来の技術によれば、InP基板
を用いるとその上に十分高抵抗の領域を形成することが
困難であった。
Problems to be Solved by the Present Invention] As explained above, according to the conventional techniques, when an InP substrate is used, it is difficult to form a sufficiently high resistance region thereon.

本発明の目的は、InP基板の上に成長した化合物半導
体の結晶に高抵抗特性を持たせた化合物半導体ヘテロ接
合構造を提供することである。
An object of the present invention is to provide a compound semiconductor heterojunction structure in which a compound semiconductor crystal grown on an InP substrate has high resistance characteristics.

ε予備的な検討] サイドゲート効果の抑制には、上述したように、基板と
二次元電子カスの走行するチャンネル層との間に抵抗の
高い層を挿入することか有効と考えられる。このような
高抵抗層はGaAS基板を用いた材料系においてはAl
GaAsに遷移金属や酸素等の深い準位の材料を注入す
ることにより得ることかでき、経験的には1011Ω■
程度の比抵抗とすると、サイドゲート効果を抑制する効
果が大きい、実現しうる比抵抗値は、深い準位を形成す
る材料の導入量と半導体材料のバンドギヤ・ンプエネル
ギによって決まる。
[epsilon] Preliminary Consideration] As described above, inserting a layer with high resistance between the substrate and the channel layer through which the two-dimensional electronic debris travels is considered to be effective in suppressing the side gate effect. Such a high resistance layer is made of Al in a material system using a GaAS substrate.
It can be obtained by implanting deep-level materials such as transition metals and oxygen into GaAs, and empirically it has a resistance of 1011 Ω.
The specific resistance value that can be achieved, which is highly effective in suppressing the side gate effect, is determined by the amount of material that forms a deep level introduced and the band gear pump energy of the semiconductor material.

InP基板に格子整合するIno、52Alo、4aA
Sの場合、本発明者の実験によると深い準位を形成する
遷移金属や酸素等をドープしても、サイドゲート効果を
完全に抑制できるだけの十分大きな比抵抗値を得ること
かできなかった。この原因は完全には解明されていない
か、おそらく、結晶を構成するInが深い準位の形成を
阻害する役割を演するとともに、InAIAS結晶のバ
ンドギャップエネルギか小さいためであると考えられる
。したがって、本発明者の得たデータによれば、InP
基板に格子整合する化合物半導体材料に限定する限り、
サイドゲート効果の抑制は極めて困雑である。
Ino, 52Alo, 4aA lattice matched to InP substrate
In the case of S, according to experiments conducted by the present inventors, even when doped with transition metals, oxygen, etc. that form deep levels, it was not possible to obtain a resistivity value large enough to completely suppress the side gate effect. The reason for this has not been completely elucidated, and is probably due to the fact that In, which constitutes the crystal, plays a role in inhibiting the formation of deep levels, and the band gap energy of the InAIAS crystal is small. Therefore, according to the data obtained by the present inventor, InP
As long as it is limited to compound semiconductor materials that are lattice matched to the substrate,
Suppression of side gate effects is extremely difficult.

二課題を解決するための手段] 本発明では、上記発明者の知見に基づき、In組成比か
なるべく小さく、かつバンドギヤ・ンプエネルギがなる
べく大きい結晶をInP基板と能動層との間のバッファ
層に用いることによってサイドゲート効果の抑制を可能
とする。たたし、そのような結晶は上述したように、基
板と格子整合するという条件では得られない。
Means for Solving the Two Problems] In the present invention, based on the knowledge of the above inventor, a crystal having as small an In composition ratio as possible and as large a band gear pump energy as possible is used for the buffer layer between the InP substrate and the active layer. This makes it possible to suppress side gate effects. However, as described above, such a crystal cannot be obtained under the condition of lattice matching with the substrate.

格子整合しない場合でも、格子不整合度によって決まる
ある膜厚すなわち臨界膜厚を越えなければ、格子不整合
かあっても転位は生じないことが知られている。そこで
、この臨界膜厚の範囲内でIn組成比かできるだけ少な
く、かつバンドギヤ・ンプエネルギかなるべく大きい結
晶をバ・ンファ層に選ぶことにより高抵抗値の結晶層を
得ることかできる。
It is known that even in the case of lattice mismatch, dislocations do not occur even if there is lattice mismatch, as long as the film thickness does not exceed a certain film thickness determined by the degree of lattice mismatch, that is, a critical film thickness. Therefore, a crystal layer with a high resistance value can be obtained by selecting a crystal for the buffer layer that has an In composition ratio as low as possible and a band gear pump energy as large as possible within this critical film thickness range.

第1図は、本発明の原理説明図である。 InP結晶基
板10の上にInPと格子不整合な化合物半導体のバッ
ファ層11を形成し、さらにそのバッファ層11の上に
InPと格子整合する化合物半導体め層12を形成した
構造である。
FIG. 1 is a diagram explaining the principle of the present invention. This structure has a structure in which a buffer layer 11 of a compound semiconductor that is lattice-mismatched with InP is formed on an InP crystal substrate 10, and a compound semiconductor layer 12 that is lattice-matched with InP is further formed on the buffer layer 11.

たとえば格子不整合な化合物半導体はJnPに対して約
1%以上の格子不整合を有し、格子整合する化合物半導
体はJnPに対して約0.1%以下の格子不整合しか有
さない。ここで、バッファ層11は格子不整合を原因と
する転位か発生しないように膜厚と組成を選択され、か
つバンドギャップエネルギは基板であるInPより大き
く、遷移金属あるいは酸素をドーピングしてある。
For example, a lattice-mismatched compound semiconductor has a lattice mismatch of about 1% or more with respect to JnP, and a lattice-matched compound semiconductor has a lattice mismatch of about 0.1% or less with respect to JnP. Here, the thickness and composition of the buffer layer 11 are selected so as not to generate dislocations due to lattice mismatch, the band gap energy is larger than that of the substrate InP, and the buffer layer 11 is doped with a transition metal or oxygen.

7作用; InP基板上にInPと格子整合しない材料でバッファ
層を形成するので選択の範囲か拡かり、高抵抗を実現し
易い材料を使用できる。このため所望の高抵抗を実現す
ることが可能となる。
7. Effect; Since the buffer layer is formed on the InP substrate using a material that does not lattice match with InP, the range of selection is expanded, and materials that can easily achieve high resistance can be used. Therefore, it becomes possible to achieve a desired high resistance.

基板と格子不整合であっても、組成、厚さを制御するこ
とによって転位の発生を防止できるので結晶性の良い能
動層を得ることかてきる。
Even if there is a lattice mismatch with the substrate, the generation of dislocations can be prevented by controlling the composition and thickness, so it is possible to obtain an active layer with good crystallinity.

5実施例1 ます、InP上に格子不整合の層を形成することによる
効果を実験的に確認したことを説明する。
5 Example 1 First, it will be explained that the effect of forming a lattice mismatched layer on InP was experimentally confirmed.

)n組成比がなるべく小さく、かつノ<ンドギャ・ンプ
がなるべく大きい化合物半導体結晶としてたとえば、I
n0.52−x”0.48+xASがある。x=0でI
nPに格子整合するか、Xの増加と共にInPに対して
格子不整合となる。この層の両側を第2図右上に示した
ようにIn、 52GaO,4sAsて挾み、X値を変
えながら電流・電圧特性を測定した。実験結果より得た
比抵抗を第2図のグラフに示す、X値の増加に伴い、比
抵抗が大巾に増加することがか観測された。このように
してInP基板とInGaAs能動層との間に高抵抗層
を形成することか可能となった。
) As a compound semiconductor crystal whose n composition ratio is as small as possible and whose node gap is as large as possible,
There is n0.52-x"0.48+xAS. At x=0 I
It is either lattice matched to nP or becomes lattice mismatched to InP as X increases. Both sides of this layer were sandwiched between In, 52GaO, and 4sAs as shown in the upper right corner of FIG. 2, and the current/voltage characteristics were measured while changing the X value. The specific resistance obtained from the experimental results is shown in the graph of FIG. 2. It was observed that the specific resistance increased significantly as the X value increased. In this way, it became possible to form a high resistance layer between the InP substrate and the InGaAs active layer.

これはInか減りA1か増えるほど、第1に深い準位が
形成され易いこと、第2にバンドギヤ・ンプエネルギか
大きくなるために伝導帯の上のキャリアか減少すること
か原因であろう。X値をあまり大きく設定すると、In
0.52−x”0.48+xAS層の臨界膜厚が小さく
なるので−それに応じてII厚を小さくしなければなら
なくなる、すると抵抗値か減少してしまう、そのような
場合には、層構造を多層に積層した、いわゆる歪み超格
子構造にして全体として高抵抗層の膜厚を増加するよう
にすればよい。
This is probably because, as In decreases and A1 increases, firstly, deep levels are more likely to be formed, and secondly, as the band gear pump energy increases, carriers above the conduction band decrease. If the X value is set too large, In
0.52-x"0.48+xAs the critical thickness of the AS layer becomes smaller - the II thickness must be reduced accordingly, which will reduce the resistance value. In such a case, the layer structure The high-resistance layer may have a so-called strained superlattice structure in which it is laminated in multiple layers to increase the thickness of the high-resistance layer as a whole.

高抵抗層としてAlGaAs層を選択した場合、InP
との格子不整合度が3%と大きいために臨界膜厚はわず
か3.5nmLかならず、この厚さでは十分な高抵抗が
得られない、このような場合、In。
If an AlGaAs layer is selected as the high resistance layer, InP
In such a case, the critical film thickness is only 3.5 nm because the lattice mismatch with In is as large as 3%, and a sufficiently high resistance cannot be obtained with this thickness.

52Ga、48AS/AIGaASを周期とした超格子
構造をバッファ層として用いることにより所望の抵抗率
を得ることができる。
A desired resistivity can be obtained by using a superlattice structure with a period of 52 Ga and 48 AS/AIGaAS as a buffer layer.

以下、第3図を参照してHEMTの実施例を説明する。Hereinafter, an embodiment of the HEMT will be described with reference to FIG.

第3図はInP基板上の化合物半導体ヘテロ接合構造を
用いてHEMTを形成した構成を示す、第3図で、In
P基板31の上に高抵抗のバッファ層32か形成され、
その上にInGaASチャネル層33が形成されている
。バッファ層32は1015■−3以上、たとえばl 
Q 16.−3、の遷移金属ないしは酸素をドープされ
、十分高い抵抗を有し、サイドゲート効果の発生を防止
している。InGaAsのチャネル層33の上に、この
チャネル層にキャリア(電子)を供給するためのn型1
nAIAsキャリア供給層34か形成され、HEMTの
基本的構造を形成している。この上に、さらにn型1n
GaAsエンハンスメント、・′デプレッション間差電
圧生成層35、n型1nAIAs工ツチング停止層36
、n型InGaASキャップ層37か積層されている。
Figure 3 shows a configuration in which a HEMT is formed using a compound semiconductor heterojunction structure on an InP substrate.
A high resistance buffer layer 32 is formed on the P substrate 31,
An InGaAS channel layer 33 is formed thereon. The buffer layer 32 has a thickness of 1015■-3 or more, for example l
Q16. -3, is doped with a transition metal or oxygen, has a sufficiently high resistance, and prevents the side gate effect from occurring. On the InGaAs channel layer 33, there is an n-type 1 layer for supplying carriers (electrons) to this channel layer.
An nAIAs carrier supply layer 34 is also formed, forming the basic structure of the HEMT. On top of this, further n-type 1n
GaAs enhancement, ・'depletion voltage difference generation layer 35, n-type 1nAIAs processing stop layer 36
, an n-type InGaAS cap layer 37 are stacked.

工・yチング停止層36はテプレツションモードHE 
M Tのゲートを形成する時のエツチングを自動的に停
止させるための層であり、キャップ層37は^1を含む
層を覆い、オーミック接触を形成し易くするための層で
ある0図中、39はソース電極、40はドレイン電極、
41はテプレッションモードHEMTのゲート電極、4
2はエンハンスモードHEMTのゲート電極である。各
HE M Tの周囲には酸素かイオン注入されて分離領
域38か形成されている。差電圧生成層35を除去する
とチャネル層33の二次元電子カスによるチャネルは消
え、エンハンスメントモードHEMTとなる。チャネル
層33中の破線は二次元電子カスを示す。
The mechanical and y-ching stop layer 36 is in depression mode HE.
The cap layer 37 is a layer to automatically stop etching when forming the gate of MT, and the cap layer 37 is a layer to cover the layer containing ^1 and facilitate the formation of ohmic contact. 39 is a source electrode, 40 is a drain electrode,
41 is the gate electrode of the depression mode HEMT;
2 is a gate electrode of the enhancement mode HEMT. An isolation region 38 is formed around each HEMT by implanting oxygen or ions. When the differential voltage generation layer 35 is removed, the channel created by the two-dimensional electronic debris in the channel layer 33 disappears, resulting in an enhancement mode HEMT. Broken lines in the channel layer 33 indicate two-dimensional electron debris.

ここで、この実施例の構造例を以下に示す。Here, a structural example of this embodiment is shown below.

(1) バッファ層32 材 料: In(352Gao、4sASと酸素ドープ
(1016CI+−3)  のIn0 、 3AIo 
、  7八S厚 さ: Jno、52Gao、4sAS
層は100n100n 、3八1o 、7へS層は 1
00n100n チャネル層33 材 料: Ino、52Ga□、48AS厚  さ :
100n1 00n キャリア供給層34 材 料: In0.52AI0.46AS厚  さ :
30nm 不純物:Si 不純物濃度: 1 、5 X 1018c+’(3) 
差−戸主成層35 材 料: In□、52Ga□、4aAS厚  さ ニ
アnm 不純物:Si 不純物濃度=1.5x101B(至)−3(5) 工・
・lチング停止層36 材  料:  Ino、52Alo、4aAS厚  さ
 二 3nm 不純物:Si 不純物濃度:1.5XIQIB■−3 (6) キャップ層37 材  料:  Ino、52Gao、4aAS厚  さ
 :50nm 不純物:Si 不純物濃度: 1 、5 X 10’am−3この構造
においては、39.40のソースおよびドレイン電極は
AU/AUGeで形成し、ゲート電極41.42は八1
で形成する。またエンハンスメントFETとテプレツシ
ョンモードFETの作り分けは、差電圧生成層35の有
無で行なう。CH3Br+02混合カスをエッチャント
とするドライエツチングにおいて、InGaAsとIn
Al^Sとは紫外線照射時に、大きな選択エッチレート
比を有することを利用して選択エツチングを行なうこと
により。
(1) Buffer layer 32 Material: In(352Gao, 4sAS and oxygen doped (1016CI+-3) In0, 3AIo
, 78S thickness: Jno, 52Gao, 4sAS
Layer is 100n100n, 381o, S layer to 7 is 1
00n100n Channel layer 33 Material: Ino, 52Ga□, 48AS Thickness:
100n1 00n Carrier supply layer 34 Material: In0.52AI0.46AS Thickness:
30nm Impurity: Si Impurity concentration: 1, 5 x 1018c+' (3)
Difference - Household stratification 35 Material: In□, 52Ga□, 4aAS Thickness near nm Impurity: Si Impurity concentration = 1.5x101B (to) -3 (5)
・Ching stop layer 36 Material: Ino, 52Alo, 4aAS thickness: 23 nm Impurity: Si Impurity concentration: 1.5XIQIB■-3 (6) Cap layer 37 Material: Ino, 52Gao, 4aAS thickness: 50 nm Impurity: Si impurity concentration: 1,5 x 10'am-3 In this structure, the source and drain electrodes of 39.40 are formed of AU/AUGe, and the gate electrodes of 41.42 are made of 81.
to form. Furthermore, the enhancement FET and the depression mode FET are distinguished by the presence or absence of the differential voltage generation layer 35. In dry etching using CH3Br+02 mixed scum as an etchant, InGaAs and In
Al^S is selectively etched by taking advantage of its large selective etch rate ratio when irradiated with ultraviolet rays.

差電圧生成層を精度良くエツチングできる。The differential voltage generation layer can be etched with high precision.

本発明の別の実施例のHEMTにおいては、第3図のバ
ッファ層を超格子で形成する。広いバンドギャップを有
する材料としてAlGaAsを用いると、格子不整合か
大きいなめ1層の厚さは薄くせざるを得ない。そこで暦
数を増やして全体としての抵抗を高くする。たとえばバ
ッファ層32を以下のように作る。
In a HEMT according to another embodiment of the present invention, the buffer layer of FIG. 3 is formed of a superlattice. When AlGaAs is used as a material with a wide bandgap, the thickness of one layer due to large lattice mismatch must be made thin. Therefore, the number of calendars is increased to increase the overall resistance. For example, the buffer layer 32 is made as follows.

材  料:^I    Ga    As/In、52
Ga、48^SO,30,7 厚 さ:各層3nmの50周期歪み超格子不純物二〇(
酸素原子) 不純物濃度: I X I Q16ao−3酸素はIn
GaAS層にはドープしなくてもよいか、製造工程の便
宜上ドープしている。なお、その他の点は初めの実施例
と同様である。
Material: ^IGaAs/In, 52
Ga, 48^SO, 30,7 Thickness: 50 period strained superlattice impurity of 3 nm each layer 20 (
Oxygen atom) Impurity concentration: I X I Q16ao-3 oxygen is In
The GaAS layer may not be doped, or may be doped for convenience in the manufacturing process. Note that other points are the same as in the first embodiment.

上記いずれの実施例でもバッファ層32の酸素ドープの
代わりにFe、Cr、Ti、Ta、V等の遷移金属たと
えばFeをドープしてもよい。
In any of the above embodiments, instead of doping the buffer layer 32 with oxygen, it may be doped with a transition metal such as Fe, Cr, Ti, Ta, or V, such as Fe.

さらに、本発明による化合物半導体ヘテロ接合構造は、
HEMT以外の電界効果型トランジスタ、たとえばME
SFET、MI 5FET、HET等に1:Jaa用で
きる。
Furthermore, the compound semiconductor heterojunction structure according to the present invention is
Field effect transistors other than HEMT, such as ME
Can be used for 1:Jaa for SFET, MI 5FET, HET, etc.

以上実施例に沿って本発明を説明したが、本発明はこれ
らに制限されるものではない。たとえば、種々の変更、
改良、組み合わせ等か可能なことは当業者に自明であろ
う。
Although the present invention has been described above along with examples, the present invention is not limited to these. For example, various changes,
It will be obvious to those skilled in the art that improvements, combinations, etc. are possible.

J発明の効果] 以上説明したように、本発明によれば、InP基板とI
nPと格子整合する化合物半導体層との間に高抵抗値の
バッファ層を設けることかできる。
Effects of the Invention] As explained above, according to the present invention, an InP substrate and an I
A buffer layer with a high resistance value can be provided between the nP and the compound semiconductor layer that is lattice matched.

このなめ、サイドゲート効果を抑制した高速動作の化合
物半導体装置か可能となる。
This makes it possible to create a compound semiconductor device that operates at high speed and suppresses the side gate effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、 第2図は格子不整合の効果を説明するグラフ、第3図は
本発明の実施例によるHEMTの要部断面図である。 図において、 10.31 11.32 41  、42 InP基板 バッファ層 InPと格子整合する 化合物半導体層 InGaAsチャネル層 n型1nAIAsキャリア供給層 n型]nGaAsエンハンスメント/ テグレッション間差電圧生成層 n型1nAIAS工ツチング停止層 n型1nGaAsキャップ層 素子分離領域 ソース電極 ドレイン電極 ゲート電極 X値
FIG. 1 is a diagram explaining the principle of the present invention, FIG. 2 is a graph explaining the effect of lattice mismatch, and FIG. 3 is a sectional view of a main part of a HEMT according to an embodiment of the present invention. In the figure, 10.31 11.32 41 , 42 InP substrate buffer layer InP and lattice-matched compound semiconductor layer InGaAs channel layer n-type 1nAIAs carrier supply layer n-type]nGaAs enhancement/intergression voltage generation layer n-type 1n AIAS process Tsuching stop layer n-type 1nGaAs cap layer element isolation region source electrode drain electrode gate electrode

Claims (3)

【特許請求の範囲】[Claims] (1)、InP結晶基板(10)と、前記InP基板(
10)と格子整合する第1の化合物半導体の層(12)
とを含む化合物半導体ヘテロ接合構造において、前記I
nP基板と前記第1の化合物半導体層との間に第2の化
合物半導体層を含むバッファ層(11)が形成され、前
記第2の化合物半導体層は、前記InP基板と格子不整
合である材料からなり、前記InP基板との間および前
記第1の化合物半導体層との間の格子不整合を原因とす
る転位が発生しないように膜厚と組成が選択され、かつ
実効的バンドギャップエネルギは前記InP基板より大
きく、遷移金属あるいは酸素をドーピングしてある化合
物半導体ヘテロ接合構造。
(1), an InP crystal substrate (10), and the InP substrate (
a first compound semiconductor layer (12) lattice-matched to (10);
In a compound semiconductor heterojunction structure comprising:
A buffer layer (11) including a second compound semiconductor layer is formed between the nP substrate and the first compound semiconductor layer, and the second compound semiconductor layer is made of a material that is lattice mismatched with the InP substrate. The film thickness and composition are selected so as not to generate dislocations due to lattice mismatch with the InP substrate and with the first compound semiconductor layer, and the effective band gap energy is A compound semiconductor heterojunction structure that is larger than an InP substrate and doped with transition metals or oxygen.
(2)、InP結晶基板(10)と、前記InP基板と
格子整合する第1の化合物半導体の層(12)とを含む
化合物半導 体ヘテロ接合構造において、前記InP基板(10)と
前記第1の化合物半導体層(12)との間に前記第1の
化合物半導体の要素層とInPと格子不整合である第2
の半導体の要素層からなるヘテロ構造を単位周期として
多数単位積層した超格子構造を含むバッファ層(12)
を含み、前記超格子の各要素層の膜厚と組成が前記In
P基板(10)との間および前記第1の化合物半導体層
(12)との間の格子不整合を原因とする転位が発生し
ないように選定され、超格子構造内の前記第1の化合物
半導体要素層と前記第2の化合物半導体要素層の少なく
とも一方に遷移金属あるいは酸素がドーピングされてい
る化合物半導体ヘテロ接合構造。
(2) In a compound semiconductor heterojunction structure including an InP crystal substrate (10) and a first compound semiconductor layer (12) lattice-matched to the InP substrate, the InP substrate (10) and the first A second compound semiconductor layer (12) that is lattice mismatched with the first compound semiconductor element layer and InP.
A buffer layer (12) including a superlattice structure in which a large number of heterostructures consisting of semiconductor element layers are laminated as a unit period.
The thickness and composition of each element layer of the superlattice are determined by the In
The first compound semiconductor in a superlattice structure is selected so that no dislocation occurs due to lattice mismatch with the P substrate (10) and with the first compound semiconductor layer (12). A compound semiconductor heterojunction structure in which at least one of the element layer and the second compound semiconductor element layer is doped with a transition metal or oxygen.
(3)、前記第1の化合物半導体がInGaAsであり
、前記第2の化合物半導体がInAlAsである請求項
1あるいは2記載の化合物半導体ヘテロ接合構造。
(3) The compound semiconductor heterojunction structure according to claim 1 or 2, wherein the first compound semiconductor is InGaAs and the second compound semiconductor is InAlAs.
JP10092190A 1990-04-17 1990-04-17 Compound semiconductor heterojunction structure Expired - Fee Related JP2773782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10092190A JP2773782B2 (en) 1990-04-17 1990-04-17 Compound semiconductor heterojunction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10092190A JP2773782B2 (en) 1990-04-17 1990-04-17 Compound semiconductor heterojunction structure

Publications (2)

Publication Number Publication Date
JPH04725A true JPH04725A (en) 1992-01-06
JP2773782B2 JP2773782B2 (en) 1998-07-09

Family

ID=14286813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10092190A Expired - Fee Related JP2773782B2 (en) 1990-04-17 1990-04-17 Compound semiconductor heterojunction structure

Country Status (1)

Country Link
JP (1) JP2773782B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945171A (en) * 1987-08-10 1990-07-31 Molecular Probes, Inc. Xanthene dyes having a fused (C) benzo ring
WO2006098366A1 (en) 2005-03-17 2006-09-21 Dainippon Ink And Chemicals, Inc. Difluorobenzene derivative and nematic liquid crystal composition making use of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945171A (en) * 1987-08-10 1990-07-31 Molecular Probes, Inc. Xanthene dyes having a fused (C) benzo ring
WO2006098366A1 (en) 2005-03-17 2006-09-21 Dainippon Ink And Chemicals, Inc. Difluorobenzene derivative and nematic liquid crystal composition making use of the same

Also Published As

Publication number Publication date
JP2773782B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
US11031399B2 (en) Semiconductor device and manufacturing method of the same
EP0130676B1 (en) Semiconductor device having a hetero junction
JP2001244456A (en) Compound semiconductor device and method of manufacturing the same
US5351128A (en) Semiconductor device having reduced contact resistance between a channel or base layer and a contact layer
EP0249371A2 (en) Semiconductor device including two compound semiconductors, and method of manufacturing such a device
JPH0324782B2 (en)
US4698652A (en) FET with Fermi level pinning between channel and heavily doped semiconductor gate
JPH0810751B2 (en) Semiconductor device
JPH04725A (en) Compound semiconductor heterojunction structure
JPH09237889A (en) Semiconductor crystal laminate and semiconductor device using the laminate
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JP2500459B2 (en) Heterojunction field effect transistor
EP0131111B1 (en) Semiconductor device having a heterojunction
JP3304343B2 (en) Field effect transistor
JPH05283439A (en) Semiconductor device
JP3054216B2 (en) Semiconductor device
JP2728765B2 (en) Compound semiconductor field effect transistor
JPH04294547A (en) Inalas/ingaas heterojunction structure semiconductor device and field effect transistor using it
JPS59172272A (en) Manufacture of semiconductor device
JPS60136380A (en) Semiconductor device
JPH0513462A (en) Compound semiconductor structure
JPH04233241A (en) High breakdown strength field-effect transistor
JPH0547800A (en) Semiconductor device and fabrication thereof
JPH0797636B2 (en) Heterojunction field effect transistor
JPH0370145A (en) Hetero junction field effect transistor and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080424

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees