JPH0472376A - Production of chemical heating element - Google Patents
Production of chemical heating elementInfo
- Publication number
- JPH0472376A JPH0472376A JP2182847A JP18284790A JPH0472376A JP H0472376 A JPH0472376 A JP H0472376A JP 2182847 A JP2182847 A JP 2182847A JP 18284790 A JP18284790 A JP 18284790A JP H0472376 A JPH0472376 A JP H0472376A
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- zinc
- fine powder
- plate
- chemical heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 22
- 239000000126 substance Substances 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000011701 zinc Substances 0.000 claims abstract description 36
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 35
- 239000000843 powder Substances 0.000 claims abstract description 22
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 230000006835 compression Effects 0.000 claims abstract description 5
- 238000007906 compression Methods 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 239000003792 electrolyte Substances 0.000 claims description 16
- 239000012670 alkaline solution Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 abstract description 7
- 239000003513 alkali Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 description 9
- 238000005868 electrolysis reaction Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- 238000007747 plating Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 235000011118 potassium hydroxide Nutrition 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910020344 Na2Zn Inorganic materials 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- -1 zincate ion Chemical class 0.000 description 1
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
この発明は酸素または空気と反応して発熱する化学発熱
体の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a method for producing a chemical heating element that generates heat by reacting with oxygen or air.
(ロ)従来の技術
本発明は特願昭63−38676号の化学発熱体の製造
方法の改良に関するものである。(b) Prior Art The present invention relates to an improvement in the method of manufacturing a chemical heating element disclosed in Japanese Patent Application No. 63-38676.
従来、大気中の酸素との接触によって発熱する発熱体と
して箔状にしjc被酸化金属をジクザク状に折り返し、
その間にノート状としtζ酸化助剤を挾み込んだ積層体
の発熱体があった。(特公平124832.24833
号参照)この種の発熱体は被酸化金属箔状のものと酸化
助剤とを同時に用いる必要があり、基本的に製造法が複
雑であり製造上の手間など量産の点で適当しない。まt
こ、網状または格子状の基板の孔に酸化亜鉛粉末をバイ
ンダーを用いてスラリー状とし′1番本≠=#−意充填
し凝結、乾燥固化させる。その後、アルカリ電解液中で
これを陰極板とし、金属に電解還元して発熱体を作る方
法が考えられる。この場合も工程が複雑で手間を要する
のみならず、得られた亜鉛の金属の結晶粒子が大きく、
燃焼効率のよい発熱反応が期待できない。また、基板に
凝固、固定しtこ亜鉛が工程中に剥がれ落ち易い欠点が
ある、特に発熱体として用いるには、しばしば多量の亜
鉛を厚く付着させる必要があり不適当である。Conventionally, as a heating element that generates heat by contact with oxygen in the atmosphere, the metal to be oxidized is folded back in a zigzag shape in the form of a foil.
In between, there was a heating element in the form of a laminate in which a tζ oxidation aid was sandwiched. (Special Public Interest 124832.24833
(Refer to No.) This type of heating element requires the simultaneous use of a metal foil to be oxidized and an oxidation aid, and the manufacturing method is basically complicated, making it unsuitable for mass production due to the manufacturing time and effort. Yes
Zinc oxide powder is made into a slurry using a binder and filled into the holes of the net-like or lattice-like substrate, and is coagulated and dried to solidify. A possible method is to then use this as a cathode plate in an alkaline electrolyte and electrolytically reduce it to metal to produce a heating element. In this case as well, not only is the process complicated and time-consuming, but the resulting zinc metal crystal particles are large.
An exothermic reaction with good combustion efficiency cannot be expected. Another disadvantage is that the zinc solidified and fixed on the substrate tends to peel off during the process. Particularly, when used as a heating element, it is often necessary to deposit a large amount of zinc thickly, making it unsuitable.
(ハ)発明が解決しようとする課題
本発明は上記の従来の製造法による問題点を解決しよう
とするものである。すなわち1本発明は操作が簡単であ
り、しかも得られた亜鉛の微粉末の活性度が高くて侵ね
た燃焼効率をもち、且つ。(c) Problems to be Solved by the Invention The present invention aims to solve the problems caused by the above-mentioned conventional manufacturing methods. Namely, the present invention is easy to operate, and moreover, the obtained fine zinc powder has high activity and superior combustion efficiency.
化学発熱体としてしばしば要望される多量の亜鉛を厚く
凝固析出してプレート状とすることらできるようにしt
こものである。It is possible to thickly solidify and precipitate a large amount of zinc, which is often required as a chemical heating element, into a plate shape.
It's a small thing.
(ニ)問題点を解決するための手段
本発明の要旨は金属亜鉛を主体とした多孔性の微粉体が
耐熱性金属基板上に均一に凝着、析出してプレート状と
なっており、上記多孔性の微粉体がアルカリ液を含んで
いることにより酸素または空気と反応して発熱するよう
にした化学発熱体の製造方法において、酸化亜鉛粉末を
主体として混合、浮遊させtζアルカリ電解液を10〜
25℃の温度に保ちながら不溶性陽極板と耐熱性金属基
板を陰極板として3〜l OA / d m 2の電流
と度で電解しtこ後、上記のアルカリ電解液を含んtど
金属亜鉛の微粉体を析出した上記陰極板を取り出し。(d) Means for solving the problems The gist of the present invention is that porous fine powder mainly composed of metallic zinc is uniformly adhered and deposited on a heat-resistant metal substrate to form a plate shape. In a method for manufacturing a chemical heating element in which porous fine powder contains an alkaline solution and generates heat by reacting with oxygen or air, zinc oxide powder is mainly mixed and suspended, and 10% of an alkaline electrolyte is mixed and suspended. ~
After electrolyzing the insoluble anode plate and the heat-resistant metal substrate as the cathode plate at a current and degree of 3 to 1 OA/dm2 while maintaining the temperature at 25°C, the alkaline electrolyte containing the above-mentioned metal zinc Take out the cathode plate on which the fine powder has been deposited.
圧縮により脱液、成形してなる化学発熱体の製造方法で
ある。This is a method for producing a chemical heating element by deliquifying and molding by compression.
(ホ)作用
上記のような製造方法により本発明は金属亜鉛を主体と
しtコ多孔性の微粉体が金属基板上に均に凝着、析出し
てプレート状となり、上記の多孔性微粉体がアルカリ液
を含んだ状態の発熱体を得る0本発明で採用した電解条
件はこのような発熱体を得るために極めて有効に作用す
る。(E) Effect By using the above-described manufacturing method, the porous fine powder mainly composed of metallic zinc adheres and precipitates uniformly on the metal substrate to form a plate shape. The electrolytic conditions adopted in the present invention for obtaining a heating element containing an alkaline solution are extremely effective in obtaining such a heating element.
まず、アルカリ溶液に酸化亜鉛を主体として混合し浮遊
させた場合、亜鉛は液に一部溶解して亜鉛酸イオンZn
O2’−を生ずるが、その溶解度は比較的小さい、(例
えば5mol/]のカセイヵリ溶液に対しZnOは0.
3mol/I泪解)電解にあたって陰極板には、このZ
no22−が金属亜鉛に電解還元されるが、その週元速
度が上記イオンの供給速度より犬となる場合、換言すれ
ばZnO2’−の溶解度が小さく、金属の還元速度が犬
なる場合、イオンの欠如効果により還元された亜鉛の結
晶粒子が細かく極めて活性になる。このような活性を得
るための他の条件として、電解液温度を比較的低温に保
つこと、また、陰極板の電流密度を犬にすることが望ま
れる。しかし、このような希望条件をそれぞれ自由に選
べるわけではない、何故ならば、不適当な条件下で生じ
た亜鉛の活性微粉末は電解中、空気によって再び酸化さ
れて酸化亜鉛となるか、あるいは陰極板に金属亜鉛の微
粉末が凝着、析出せずに電解液中に分散。First, when zinc oxide is mixed and suspended in an alkaline solution, some of the zinc is dissolved in the solution and zincate ion Zn
ZnO produces O2'-, but its solubility is relatively low (for example, 5 mol/) in a caustic solution of ZnO.
3 mol/I solution) During electrolysis, this Z
No22- is electrolytically reduced to metal zinc, but if the original rate is lower than the above ion supply rate, in other words, if the solubility of ZnO2'- is small and the metal reduction rate is lower than the ion supply rate, then the ion Due to the deficiency effect, the reduced zinc crystal particles become fine and extremely active. Other conditions for obtaining such activity include maintaining the electrolyte temperature at a relatively low temperature and controlling the current density of the cathode plate. However, it is not possible to freely choose each of these desired conditions, because the active fine powder of zinc produced under unsuitable conditions will be oxidized again by air during electrolysis to become zinc oxide, or Fine metallic zinc powder adheres to the cathode plate and is dispersed in the electrolyte without precipitation.
浮遊し、初期の目的が得られないようになる0以上から
金属亜鉛の微粉末の活性を維持しつつ、しかも陰極板に
均一に凝着、析出させるt(めには上記のような本発明
の電解条件の範囲が適当することが判明した。The activity of the metallic zinc fine powder is maintained from 0 or more, which causes it to float and the initial purpose cannot be obtained. It has been found that a range of electrolytic conditions is suitable.
電解終了後、陰極板を電解液より引き上げると陰極板に
はスポンジ−状の電解還元された金属亜鉛が多量の電解
液を含んで上記の金属基板に層状に析出するようになる
。この金属亜鉛は上記のように極めて活性なtζめに亜
鉛の微粒子相互の凝着力も非常に強く、圧縮によって脱
液されると同時に多孔性の強固な微粉体を生ずる。まt
ここの微粉体は上記の金属基板にも均一に薄く6厚くも
自由に強固に凝着、析出するようになる。この生成しt
ζ微粉体には圧縮、脱液後も尚′、!/′量のアルカリ
電解液が残留する。上記の圧縮する圧力の強さは上記多
孔性体の発熱を妨げない程度の多孔性を保つように圧縮
すわばよく、特に限定されない。After the electrolysis is finished, when the cathode plate is lifted out of the electrolyte, a sponge-like electrolytically reduced metallic zinc containing a large amount of the electrolyte is deposited in a layer on the metal substrate. Since this metal zinc is extremely active as mentioned above, the adhesion force between the fine particles of zinc is also very strong, and as soon as the liquid is removed by compression, a porous and strong fine powder is produced. Yes
The fine powder here adheres and precipitates uniformly and firmly on the above-mentioned metal substrate, whether thin or thick. This generated
ζ Fine powder can still be used even after compression and deliquification! /' amount of alkaline electrolyte remains. The strength of the compressing pressure is not particularly limited, as long as it maintains a level of porosity that does not hinder the heat generation of the porous body.
従来、亜鉛をカセイソーダ溶液に溶解させtjンンケー
ト液(Na2Zn○2液)を用いて亜鉛メツキが行われ
たが、この場合の陰極電流密度は約2 A / d m
2を最大限度とし、これ以上の電流と度ではメツキの
粗雑化、亜鉛の脱落などが起こりメツキネ能となる。ま
tこメツキの温度は30〜40℃の高温が用いられる。Conventionally, zinc plating has been carried out using a TJ oxide solution (Na2Zn○2 solution) in which zinc is dissolved in a caustic soda solution, but the cathode current density in this case is approximately 2 A/d m.
2 is set as the maximum limit, and if the current and degree are higher than this, the plating will become rough and the zinc will fall off, resulting in poor plating performance. A high temperature of 30 to 40° C. is used for matkometsuki.
それは亜鉛の溶解度が増加し、電流効率も向上するから
である1本発明はメツキとは全く異なり、亜鉛の多孔性
の微粉体を耐熱性金属基板上に均一に凝着、析出させて
プレート状にさせるtこめにアルカリ溶液に酸化亜鉛を
主体として混合し浮遊させた電解液を用い、3〜10A
/dm2の陰極電流に度で電解液の温度を10〜25℃
としtこものである。したがって。This is because the solubility of zinc increases and the current efficiency also improves.1 The present invention is completely different from plating, and the porous fine powder of zinc is uniformly adhered and deposited on a heat-resistant metal substrate to form a plate. 3~10A using an electrolytic solution made by mixing and suspending zinc oxide in an alkaline solution.
/dm2 cathode current and electrolyte temperature 10-25℃
It's a little thing. therefore.
本発明とメツキとはその目的、電解条件1作用9効果す
べてを異にするしのである。The present invention and plating differ in their objectives, electrolytic conditions, effects, and effects.
(へ)実施例
カセイカリ]OOg/lの溶液に酸化亜鉛50g/)の
割合で加え、よくかきまぜて乳液として電解液を作成す
る。陽極は不溶性陽極として金属亜鉛板を用い、陰極に
は50μの厚さで10cmX20cmの大きさの銅箔約
9gを用いて、常法により電解を行った。この場合、陰
極の電流密度を5A/dm2とし、電解液の温度を15
℃に保つようにしtc、このようにして1時間の電解を
行った後に陰極板を電解液より引き上げたところ銅箔上
に均一に約] Ommの厚さのスポンジ−状の亜鉛が厚
く析出している状態になっtこ、これをローラープレス
機にかけ圧縮したところ約1,5mmの厚さに均一に圧
縮、脱液されt(金属亜鉛の多孔性の微粉体く少量の電
解液が付着)が上記の基板に凝着し析出する柔軟性のあ
るプレート状の化学発熱体を得た。その重量は約30g
(水分約10%を含む)であっfc 、このものを素早
く通気性の小さい樹脂袋内に収容して密封し、保存する
ようにしtこ。(v) Example caustic potash] Add zinc oxide (50g/l) to a solution of OOg/l and stir well to prepare an electrolytic solution as a milky lotion. Electrolysis was carried out using a conventional method using a metal zinc plate as an insoluble anode and about 9 g of copper foil with a thickness of 50 μm and a size of 10 cm×20 cm as a cathode. In this case, the current density of the cathode is 5 A/dm2, and the temperature of the electrolyte is 15
After performing electrolysis for 1 hour in this way, the cathode plate was lifted from the electrolyte and a thick sponge-like zinc layer with a thickness of about 10 mm was deposited uniformly on the copper foil. When this was compressed using a roller press, it was compressed uniformly to a thickness of about 1.5 mm and the liquid was removed (a small amount of electrolyte was attached to the porous fine powder of metallic zinc). A flexible plate-shaped chemical heating element was obtained in which the above substrate was adhered to and precipitated. Its weight is about 30g
(contains about 10% water), then quickly place it in a small, breathable resin bag, seal it, and store it.
上記の実施例ではアルカリとしてカセイカリを用いtと
が、カセイソーダなどすべてのアルカリを用いることが
できる。アルカリの濃度も特に限定されないが、経済性
等を考慮し低濃度にすることが望ましい、また、陰極に
銅箔を用いたが、材料には真鍮、亜鉛など耐熱性金属基
板であれば差支えなく、また、箔に限定されず、板であ
ればよい、不溶性陽極として本実施例で用いた金属亜鉛
板はアルカリ電解液に僅か溶解する。不溶性陽極として
他に鉄、ステンレスなども用いることができる。In the above embodiments, caustic potash is used as the alkali, but any alkali such as caustic soda can be used. The concentration of alkali is not particularly limited, but it is desirable to keep it low considering economic efficiency, etc. Also, although copper foil was used for the cathode, any heat-resistant metal substrate such as brass or zinc may be used as the material. Furthermore, the metal zinc plate used in this example as an insoluble anode is not limited to a foil, but may be a plate, and is slightly soluble in an alkaline electrolyte. Other materials such as iron and stainless steel can also be used as the insoluble anode.
本発明によって得られt(金属亜鉛を主体とした微粉体
の多孔性を保持するだめの添加剤、あるいは発熱体の長
期保存中に活性な亜鉛と水との反応によって発生ずる水
素を抑制するだめの添加剤たとえば銅、鉛、カルシコウ
ム、水銀など各種の添加剤を酸化亜鉛粉末とと6にアル
カリ電解液に混合し、電解時、陰極板の亜鉛中に添加す
るようにしてもよい。The present invention provides an additive for maintaining the porosity of a fine powder mainly composed of metallic zinc, or an additive for suppressing hydrogen generated by the reaction between active zinc and water during long-term storage of a heating element. Various additives, such as copper, lead, calcium, and mercury, may be mixed with zinc oxide powder and an alkaline electrolyte, and added to the zinc of the cathode plate during electrolysis.
上記の実施例では電解終了後、陰極板をローラブレス機
によって圧縮しtcが、他のプレス機を用いてず〕差支
えない、またこの圧縮操作を陰極板を電解液から引き」
−げると同時に連動して行うようにずねば操作を一工程
減らし得る利点がある。In the above embodiment, after the electrolysis is completed, the cathode plate is compressed by a roller press machine, but no other press machine is used.
This has the advantage of being able to reduce the number of steps by one step by simultaneously performing the operations simultaneously.
(ト)発明の効果
実施例で示しtcよりな本発明の製造方法で得tコ金属
亜鉛を主体としtc多孔性の微粉体は極めて活性であり
1発熱させた後、微粉体の分析を行っtcところ金属亜
鉛は殆ど残留せず、したがって燃焼効率は、はぼ100
%であった。さらに微粉体を構成する亜鉛が活性な為に
多量の亜鉛でも相互に結着力が強(しかも耐熱性金属基
板に6薄くも厚くも均一に凝着、析出してプレート状と
することができる。シtζがって微粉体が基板から剥が
れ落ちるような欠点は全くない、このような化学発熱体
が本発明の電解の簡単な単一操作で容易に作り得ること
は優れt(効果である。(G) Effects of the Invention The porous fine powder mainly composed of zinc metal obtained by the production method of the present invention as shown in the examples is extremely active, and after generating heat for 1 hour, the fine powder was analyzed. However, almost no metallic zinc remains, so the combustion efficiency is approximately 100%.
%Met. Furthermore, since the zinc constituting the fine powder is active, even a large amount of zinc has a strong mutual bonding force (furthermore, it can be uniformly adhered and deposited on a heat-resistant metal substrate, whether thin or thick, to form a plate shape. It is an excellent effect that such a chemical heating element, which does not have any drawbacks such as the fine powder peeling off from the substrate due to straining, can be easily produced by a simple single electrolytic operation of the present invention.
本発明の製造力iJ−によれば電解に用いる電解液がア
ルカリ液であるために多孔性の微粉体にアルカリ液を含
ませる為の操作を特に・し要としないから製造を容易に
させる。屯で太いに貢献している。According to the manufacturing capability iJ- of the present invention, since the electrolytic solution used for electrolysis is an alkaline solution, no special operation for impregnating the porous fine powder with the alkaline solution is required, which facilitates production. It contributes to the weight gain.
以上によって本発明の製造方法によれば極めて優れた化
学発熱体が47間を要せず容易に製造できる特徴が得ら
れる。As described above, according to the manufacturing method of the present invention, an extremely excellent chemical heating element can be easily manufactured without requiring 47 hours.
Claims (1)
上に均一に凝着、析出してプレート状となっており、該
多孔性の微粉体がアルカリ液を含んでいることにより酸
素または空気と反応して発熱するようにした化学発熱体
の製造方法において、酸化亜鉛粉末を主体として混合、
浮遊させたアルカリ電解液を10〜25℃の温度に保ち
ながら不溶性陽極板と耐熱性金属基板を陰極板として3
〜10A/dm^2の電流密度で電解した後、該アルカ
リ電解液を含んだ金属亜鉛の微粉体を析出した該陰極板
を取り出し、圧縮により脱液、成形してなる化学発熱体
の製造方法A porous fine powder mainly composed of metallic zinc adheres and precipitates uniformly on a heat-resistant metal substrate to form a plate shape, and the porous fine powder contains an alkaline solution, so that oxygen or In the manufacturing method of chemical heating elements that generate heat by reacting with air, zinc oxide powder is mainly mixed,
While maintaining the suspended alkaline electrolyte at a temperature of 10 to 25°C, an insoluble anode plate and a heat-resistant metal substrate are used as cathode plates.
After electrolyzing at a current density of ~10 A/dm^2, the cathode plate on which fine powder of metal zinc containing the alkaline electrolyte has been precipitated is taken out, deliquified by compression, and molded. A method for producing a chemical heating element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2182847A JPH0472376A (en) | 1990-07-12 | 1990-07-12 | Production of chemical heating element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2182847A JPH0472376A (en) | 1990-07-12 | 1990-07-12 | Production of chemical heating element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0472376A true JPH0472376A (en) | 1992-03-06 |
Family
ID=16125503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2182847A Pending JPH0472376A (en) | 1990-07-12 | 1990-07-12 | Production of chemical heating element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0472376A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7064150B2 (en) | 2001-11-06 | 2006-06-20 | Masayoshi Matsui | Method for hydrogenating carbon dioxide, treating apparatus, and basic material for hydrogenation |
-
1990
- 1990-07-12 JP JP2182847A patent/JPH0472376A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7064150B2 (en) | 2001-11-06 | 2006-06-20 | Masayoshi Matsui | Method for hydrogenating carbon dioxide, treating apparatus, and basic material for hydrogenation |
US7488404B2 (en) | 2001-11-06 | 2009-02-10 | Masayoshi Matsui | Process for hydrogenating carbon dioxide, treating apparatus, and basic material for hydrogenation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6049633B2 (en) | Gas diffusion electrode | |
JPWO2011102331A1 (en) | Oxygen gas diffusion cathode, electrolytic cell using the same, chlorine gas production method, and sodium hydroxide production method | |
JP2016505716A (en) | Gas diffusion electrode and preparation method thereof | |
Panek et al. | Production and electrochemical characterization of Ni-based composite coatings containing titanium, vanadium or molybdenum powders | |
JPS5947390A (en) | Electrolytic cell anode | |
JP2017514012A (en) | Process for producing catalytically active powder from metallic silver or from a mixture of metallic silver and silver oxide for the production of gas diffusion electrodes | |
US4518457A (en) | Raney alloy coated cathode for chlor-alkali cells | |
JPH0472376A (en) | Production of chemical heating element | |
JP3356628B2 (en) | Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same | |
JPS58144488A (en) | Multilayer structure for electrode-membrane assembly and electrolytic process thereby | |
JP2629963B2 (en) | High durability low hydrogen overvoltage cathode | |
CN114622238A (en) | Preparation and application of transition metal-based hydrogen evolution and oxygen evolution dual-functional electrode | |
JPH11345612A (en) | Manufacture of positive electrode material for lithium battery | |
JP2015017324A (en) | Method of producing transportation- and storage-stable oxygen consumption electrode | |
JP3625520B2 (en) | Gas diffusion electrode | |
RU2005130634A (en) | METHOD FOR ELECTROCHEMICAL DISTRIBUTION OF COPPER IN A CHLORIDE SOLUTION | |
JP3388313B2 (en) | Method for producing negative electrode material for alkaline secondary battery | |
JP2610937B2 (en) | High durability low hydrogen overvoltage cathode | |
JP2935181B1 (en) | Liquid leakage type gas diffusion electrode and method of manufacturing the same | |
JPH02259090A (en) | Production of ozone by electrolysis | |
US880027A (en) | Method of making electrodes. | |
JP2007238990A (en) | Composition for electrolytically forming silver oxide film | |
US356640A (en) | Process of manufacturing amalgams by electrolysis | |
JPH10188970A (en) | Manufacture of unsintered nickel electrode for alkaline storage battery | |
JPS5929376A (en) | Surface modified electrode |