JPH02259090A - Production of ozone by electrolysis - Google Patents

Production of ozone by electrolysis

Info

Publication number
JPH02259090A
JPH02259090A JP1082448A JP8244889A JPH02259090A JP H02259090 A JPH02259090 A JP H02259090A JP 1082448 A JP1082448 A JP 1082448A JP 8244889 A JP8244889 A JP 8244889A JP H02259090 A JPH02259090 A JP H02259090A
Authority
JP
Japan
Prior art keywords
electrode
ozone
cation exchange
membrane
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1082448A
Other languages
Japanese (ja)
Other versions
JP2840753B2 (en
Inventor
Junji Mizutani
淳二 水谷
Yoshio Saito
斉藤 義雄
Hideaki Arai
秀晃 新居
Eiichi Torikai
鳥養 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP1082448A priority Critical patent/JP2840753B2/en
Publication of JPH02259090A publication Critical patent/JPH02259090A/en
Application granted granted Critical
Publication of JP2840753B2 publication Critical patent/JP2840753B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To prevent the application of the pressure of gas between a Pt coated electrode and membrane of a cation exchange resin and to increase the purity of ozone by pressing one side of the electrode against the membrane and electrolyzing water by zero-gap electrolysis. CONSTITUTION:When ozone is produced by electrolyzing water, a membrane 4 of a perfluorosulfonic acid type cation exchange resin and a specified electrode on the cathode side are used. The electrode is formed by coating one side of a porous sheet 6a of Ni (alloy steel) with Pt 5. The Pt 5 coating layer side of the electrode is pressed against the cathode side of the membrane 4 and zero-gap electrolysis is carried out. Since the pressure of gas is not applied between the electrode and the membrane 4, hydrogen does not enter into produced ozone and high purity ozone is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、オゾンの電解製造法に関する。より詳しくは
食品、医療、環境衛生などの民生分野における殺菌、保
存など、または産業分野における合成、加工などに有用
なオゾンまたはオゾン水を連続的に供給できるオゾンの
電解製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for the electrolytic production of ozone. More specifically, the present invention relates to an electrolytic ozone production method that can continuously supply ozone or ozone water useful for sterilization, preservation, etc. in the consumer fields such as food, medicine, and environmental hygiene, and for synthesis, processing, etc. in the industrial field.

パーフロロスルホン酸型のカチオン交換膜を固体電解質
として用い、水電解を行なってオゾンを製造する技術は
、公知である。
A technique for producing ozone by electrolyzing water using a perfluorosulfonic acid type cation exchange membrane as a solid electrolyte is known.

この電解を行なうためのセルとしては、例えば第1図に
示すような、カチオン交換膜(4)の片面に、陰極であ
る白金層(5)が接合され、かつもう一方の面に、陽極
である二酸化鉛層(3)を被覆したポーラスチタン板(
2)を圧接してなるセルが挙げられる。該セルは、停電
などの電流遮断時に二酸化鉛層(3)から二酸化鉛が溶
出するのを防ぐために、電流の遮断と同時に保護電流を
流すバックアップ電源を備えている(図示せず)。
A cell for carrying out this electrolysis is, for example, as shown in Figure 1, in which a platinum layer (5) serving as a cathode is bonded to one side of a cation exchange membrane (4), and an anode is attached to the other side. A porous titanium plate coated with a certain lead dioxide layer (3) (
Examples include cells formed by press-welding 2). The cell is equipped with a backup power source (not shown) that supplies a protective current at the same time as the current is interrupted, in order to prevent lead dioxide from being leached from the lead dioxide layer (3) when the current is interrupted, such as during a power outage.

該セルの陽極に純水を送りながら電解することにより、
200 g/m3以上の濃度のオゾンを生成させること
ができる。
By electrolyzing while sending pure water to the anode of the cell,
Ozone with a concentration of 200 g/m3 or more can be produced.

しかしながら、上記の方法には、例えば次のような問題
点がある。すなわち、白金のカチオン交換膜への片面接
合は、カチオン交換膜が損傷し易いため、多くの工程を
必要とし、コストが高くなる。しかも、白金が接合され
たカチオン交換膜は、有効厚み(水素の透過を妨げるの
に有効な厚み)が減少しており、更に陰極側の水素圧が
高くて、水素の膜内での拡散量が多くなるため、水素が
陽極側に透過する。ところが、陽極の二酸化鉛は水素の
再結合反応を起こす触媒能を有していないので、陽極側
に透過した水素が生成するオゾンに混入し、オゾンの純
度は低下する。
However, the above method has the following problems, for example. That is, since the one-sided bonding of platinum to a cation exchange membrane easily damages the cation exchange membrane, it requires many steps and increases costs. Moreover, the effective thickness (thickness effective to prevent hydrogen permeation) of the cation exchange membrane bonded with platinum is reduced, and the hydrogen pressure on the cathode side is high, so the amount of hydrogen diffusion within the membrane is reduced. As a result, hydrogen permeates to the anode side. However, since the lead dioxide of the anode does not have the catalytic ability to cause a hydrogen recombination reaction, the hydrogen that permeates to the anode side mixes with the ozone produced, reducing the purity of the ozone.

また上記従来法では、第1図から明らかなように、陰極
側の給電体として、カチオン交換膜(4)の耐酸性と水
素脆性を考慮して、通常、粉粒状炭素、炭素繊維チョッ
プなどの焼結体、カーボンペーパー、フェルト、クロス
、炭素粉末とPTFE樹脂による成形物、膨張化黒鉛を
含む焼結体などのポーラスカーボン板(6)が使用され
る。
In addition, in the above conventional method, as is clear from Fig. 1, in consideration of the acid resistance and hydrogen embrittlement of the cation exchange membrane (4), powdery carbon, chopped carbon fiber, etc. are usually used as the power supply body on the cathode side. A porous carbon plate (6) such as a sintered body, carbon paper, felt, cloth, a molded product of carbon powder and PTFE resin, or a sintered body containing expanded graphite is used.

ポーラスカーボン板は、その空孔率や開口径のが適度な
大きさでなかったり、或いはその表面平滑性やクツショ
ン性が充分でないと、種々の問題を引き起こす。例えば
、空孔率や開孔径が大きすぎると、ガス、液の透過は良
好であるが、板の機械的強度が低下し、電気抵抗が増え
る。一方小さすぎると、ガス、液の透過が悪くなって、
板と白金層との間に接触抵抗が生じ、電流分布が偏って
、カチオン交換膜が破損し易くなる。また、表面平滑性
やクツション性が悪いと、過大な接触圧を必要とするの
で、膜が損傷し易くなったり、ガス抜けが悪くなったり
する。ところが、ポーラスカーボン板の空孔率、開口径
、表面平滑性およびクツション性を適度に調節すること
は、非常に困難である。
Porous carbon plates cause various problems if their porosity or opening diameter is not appropriate, or if their surface smoothness or cushioning properties are not sufficient. For example, if the porosity or opening diameter is too large, gas and liquid permeation will be good, but the mechanical strength of the plate will decrease and the electrical resistance will increase. On the other hand, if it is too small, gas and liquid permeation will be poor.
Contact resistance occurs between the plate and the platinum layer, causing a biased current distribution and making the cation exchange membrane more likely to be damaged. In addition, if the surface smoothness or cushioning properties are poor, excessive contact pressure is required, which may easily damage the membrane or impair gas release. However, it is extremely difficult to appropriately adjust the porosity, opening diameter, surface smoothness, and cushioning properties of a porous carbon plate.

問題点を解決するための手段 本発明者は、上記従来技術の問題点に鑑みて鋭意研究を
重ねた。その結果、パーフロロスルホン酸型のカチオン
交換膜を用い、水電解によりオゾンを製造するに際し、
ニッケルまたはニッケル合金からなるポーラス板の片面
に白金を被覆した電極をイオン交換膜の陰極側におき、
陽極側に二酸化鉛被覆ポーラスチタン電極を配し、両側
から圧接してゼロギャップ電解を行なう場合には、1)
陰極側電極とカチオン交換膜との間に水素圧がかからな
いので、生成するオゾンに水素がほとんど混入せず、従
来法より高い純度のオゾンを得ることができ、 2)電極間、ステンレス鋼−白金間などに接触抵抗が生
じることがなく、 3)ポーラス板の材料として、空孔率、開口径、表面平
滑性およびクツション性を容易に調節できるニッケルま
たはニッケル合金を用いるので、電気抵抗を高めること
なく、ガスおよび液の抜けのよい電極を作製でき、かつ
オゾンの生成効率をこれまでの最高とすることができ、
4)触媒電極(白金)を、損傷し難いニッケルまたはニ
ッケル合金に接合するため、接合に要する作業工数が少
なくなり、 5)ポーラスカーボン材料に代えて金属材料を用いるた
め、セルの組立および解体時に破損のおそれがなくなり
、作業時間の短縮を図ることができ、 6)白金−カチオン交換膜接合体を作成する必要がな(
、また高価なポーラスカーボン材料を使用する必要がな
いので、大幅なコスト低減を図ることができ、 7)長時間電解を行なっても、水素雰囲気下におかれる
上記陰極側電極は腐食せず、従ってカチオン交換膜が損
傷し難い ことを見出し、本発明を完成した。
Means for Solving the Problems The present inventor has conducted extensive research in view of the problems of the above-mentioned prior art. As a result, when producing ozone by water electrolysis using a perfluorosulfonic acid type cation exchange membrane,
An electrode coated with platinum on one side of a porous plate made of nickel or nickel alloy is placed on the cathode side of the ion exchange membrane.
When performing zero-gap electrolysis by placing a lead dioxide-coated porous titanium electrode on the anode side and pressure-welding it from both sides, 1)
Since no hydrogen pressure is applied between the cathode side electrode and the cation exchange membrane, almost no hydrogen is mixed into the generated ozone, making it possible to obtain ozone with higher purity than conventional methods. 2) Between the electrodes, stainless steel and platinum 3) As the material of the porous plate, nickel or nickel alloy is used, which allows easy adjustment of porosity, opening diameter, surface smoothness, and cushioning properties, so electrical resistance can be increased. It is possible to create an electrode with good gas and liquid drainage, and to achieve the highest ozone generation efficiency ever.
4) Since the catalyst electrode (platinum) is bonded to nickel or nickel alloy, which is hard to damage, the number of man-hours required for bonding is reduced. 5) Since metal material is used instead of porous carbon material, it is easier to assemble and disassemble the cell. 6) There is no need to create a platinum-cation exchange membrane assembly (
In addition, there is no need to use expensive porous carbon materials, resulting in a significant cost reduction. 7) Even if electrolysis is performed for a long time, the cathode side electrode placed in a hydrogen atmosphere will not corrode. Therefore, the inventors discovered that the cation exchange membrane is less likely to be damaged, and completed the present invention.

すなわち、本発明は、パーフロロスルホン酸型のカチオ
ン交換樹脂膜を用いる水電解法でオゾンを製造するに際
し、ニッケルまたはニッケル合金鋼からなるポーラス板
の片面に白金を被覆してなる電極を陰極側に用い、前記
電極の白金被覆層側をカチオン交換膜の陰極側に圧接し
てゼロギャップ電解を行なうことを特徴とするオゾンの
電解製造法を提供するものである。
That is, when producing ozone by a water electrolysis method using a perfluorosulfonic acid type cation exchange resin membrane, the present invention provides an electrode made of a porous plate made of nickel or nickel alloy steel coated with platinum on one side on the cathode side. The present invention provides a method for electrolytically producing ozone, characterized in that the platinum coating layer side of the electrode is pressed against the cathode side of a cation exchange membrane to perform zero gap electrolysis.

本発明において、パーフロロスルホン酸型のカチオン交
換樹脂膜としては、水電解反応において固体電解質とし
て作用し、かつオゾンに耐性を有するものであれば特に
制限されず、公知のものが使用できる。具体的には、例
えば、デュポン社のナフィオン膜117などを挙げるこ
とができる。
In the present invention, the perfluorosulfonic acid type cation exchange resin membrane is not particularly limited as long as it acts as a solid electrolyte in a water electrolysis reaction and is resistant to ozone, and any known membrane can be used. Specifically, for example, DuPont's Nafion membrane 117 can be used.

本発明では、陰極用電極として、ニッケルまたはニッケ
ル合金鋼からなるポーラス板の片面に白金を被覆したも
のを使用する。
In the present invention, a porous plate made of nickel or nickel alloy steel coated with platinum on one side is used as the cathode electrode.

ニッケルおよびニッケル合金鋼は、カーボン材に比べて
強度、電気伝導度、成形加工性および表面平滑性に優れ
ている。また、これを用いてポーラス板を製造する場合
には、製造条件を適宜変更することによって、空孔率お
よび開孔径を容易に調節できる。しかも、白金と強固に
結合するという性質をも有している。
Nickel and nickel alloy steel have superior strength, electrical conductivity, formability, and surface smoothness compared to carbon materials. Further, when manufacturing a porous plate using this, the porosity and the opening diameter can be easily adjusted by appropriately changing the manufacturing conditions. Furthermore, it also has the property of strongly bonding with platinum.

ニッケル合金鋼としては特に制限されず公知のものが使
用でき、その中でも、ステンレス鋼が特に好ましい。ス
テンレス鋼としては特に制限されないが、例えば、5U
S304.5US316.5US316Lなどの各種の
ものを挙げることができる。
The nickel alloy steel is not particularly limited and any known material can be used, and among these, stainless steel is particularly preferred. Stainless steel is not particularly limited, but for example, 5U
Various types such as S304.5US316.5US316L can be mentioned.

ポーラス板は、上記ニッケルおよびニッケル合金鋼を、
溶融噴霧、回転電極法などによって球状金属粉末とした
もの、びびり振動切削法によって短繊維としたもの、ダ
イス法によって長繊維としたものなどを、常法に従って
成形および焼結することにより製造できる。
The porous plate is made of the above nickel and nickel alloy steel,
It can be produced by molding and sintering a spherical metal powder by melt spraying, a rotating electrode method, etc., a short fiber by a chatter vibration cutting method, a long fiber by a die method, etc. according to a conventional method.

またポーラス板として、例えば、ニッケルまたはニッケ
ル合金の、エキスバンド板、パンチング板、ホトエツチ
ング板などの積層板をも使用できる。
Further, as the porous plate, for example, a laminated plate such as an expanded plate, a punched plate, a photoetched plate, etc. made of nickel or a nickel alloy can be used.

ポーラス板の空孔率は、通常40〜80%程度、好まし
くは50〜70%程度とするのがよい。また、開孔径は
通常10〜1000μm程度、好ましくは50〜500
μm程度のものとするのがよい。空孔率が40%または
開孔率が10μmを著るしく下回ると、電解の際に、カ
チオン交換膜を通して輸送される水と発生する水素を、
電極の背面に脱出させるのが困難となり、電極−カチオ
ン交換膜の界面で圧が高まり、接触が悪くなる可能性が
あり、好ましくない。また、空孔率が80%または開孔
径が1000μmを著るしく越えると、カチオン交換膜
と電極との接触点が少なくなり、局部的に電流密度が大
きくなって、カチオン交換膜を破損するおそれがある。
The porosity of the porous plate is usually about 40 to 80%, preferably about 50 to 70%. In addition, the opening diameter is usually about 10 to 1000 μm, preferably 50 to 500 μm.
It is preferable that the thickness be on the order of μm. If the porosity is significantly less than 40% or the open area is significantly less than 10 μm, the water transported through the cation exchange membrane and the hydrogen generated during electrolysis will be
It becomes difficult to escape to the back side of the electrode, pressure increases at the electrode-cation exchange membrane interface, and there is a possibility that contact becomes poor, which is not preferable. Additionally, if the porosity significantly exceeds 80% or the pore diameter significantly exceeds 1000 μm, the number of contact points between the cation exchange membrane and the electrode will decrease, causing a localized current density that may damage the cation exchange membrane. There is.

また、ゼロギャップ電解を行なう場合、電極とカチオン
交換膜とは良好に接触していることが好ましい。このた
め、ポーラス板としては、クツション性を持つものが好
ましい。具体的には、圧縮弾性率が5000kg/ c
 m2以下程度のものが好ましい。ポーラス板にクツシ
ョン性を付与するには、製造条件例えば焼結時の圧力を
調整すればよい。
Further, when performing zero gap electrolysis, it is preferable that the electrode and the cation exchange membrane are in good contact. For this reason, the porous plate preferably has cushioning properties. Specifically, the compression modulus is 5000 kg/c
It is preferable that the size is about m2 or less. In order to impart cushioning properties to the porous plate, manufacturing conditions such as the pressure during sintering may be adjusted.

ポーラス板の片面に白金を被覆する被覆方法としては特
に限定されず、公知の方法が採用できる。
The coating method for coating one side of the porous plate with platinum is not particularly limited, and any known method can be employed.

具体的には、例えば、電気めっき、無電解めっき、熱分
解めっき、スパッタリング、イオンブレーティングなど
を挙げることができる。白金層の厚さは特に制限されな
いが、通常1〜5μm程度とすればよい。
Specifically, examples include electroplating, electroless plating, pyrolysis plating, sputtering, and ion blating. Although the thickness of the platinum layer is not particularly limited, it may normally be about 1 to 5 μm.

また、厚み0.5〜2.0mm程度のポーラス薄板に白
金を被覆しておき、別の補強用ポーラス板と合わせて一
体成形してもよい。
Alternatively, a porous thin plate having a thickness of about 0.5 to 2.0 mm may be coated with platinum and integrally formed with another reinforcing porous plate.

さらに、電導性材料とバインダーとの混合物を、ポーラ
ス板に塗布し焼成するか、或は上記の混合物を用いて厚
さ50〜200μm程度の薄膜を作成し、これをポーラ
ス板に熱接合して埋設してもよい。電導性材料としては
、例えば、カーボン粉末、ニッケル合金粉末などに、蒸
着、スパッタリング、無電解めっきなどの公知の方法で
白金を被覆したものを例示できる。バインダーとしては
、例えば、PTFE系樹脂などを挙げることができる。
Furthermore, a mixture of a conductive material and a binder is applied to a porous plate and fired, or a thin film with a thickness of about 50 to 200 μm is created using the above mixture, and this is thermally bonded to the porous plate. May be buried. Examples of the conductive material include carbon powder, nickel alloy powder, and the like coated with platinum by a known method such as vapor deposition, sputtering, and electroless plating. Examples of the binder include PTFE resin.

一方、陽極側電極としては、二酸化鉛被覆ポーラスチタ
ン電極を使用する。該電極としては特に制限されず、公
知のものが使用できる。その中でも、例えば、二層構造
の二酸化鉛被覆ポーラスチタン電極(特開昭63−23
8293号)などを好ましく使用できる。
On the other hand, a porous titanium electrode coated with lead dioxide is used as the anode side electrode. The electrode is not particularly limited, and known electrodes can be used. Among them, for example, a two-layer structure lead dioxide-coated porous titanium electrode (Japanese Patent Application Laid-Open No. 63-23
No. 8293) can be preferably used.

第2図に、本発明方法を実施するための電解用セルの一
例を示す。すなわち、片面に白金層(5)を有するポー
ラスステンレス板(6a)が、カチオン交換膜(4)の
陰極側に配置され、該膜(4)の陽極側には、二酸化鉛
層(3)を有するポーラスチタン板(2)が配置されて
いる。(1)はチタン端板であり、(7a)はステンレ
ス端板である。
FIG. 2 shows an example of an electrolytic cell for carrying out the method of the present invention. That is, a porous stainless steel plate (6a) having a platinum layer (5) on one side is placed on the cathode side of the cation exchange membrane (4), and a lead dioxide layer (3) is placed on the anode side of the membrane (4). A porous titanium plate (2) having a porous titanium plate (2) is arranged. (1) is a titanium end plate, and (7a) is a stainless steel end plate.

白金層(5)及び二酸化鉛層(3)は、それぞれカチオ
ン交換膜(4)に圧接されている。各電極とカチオン交
換膜の接触圧は、通常50〜200kg/ c m2程
度とするのがよい。
The platinum layer (5) and the lead dioxide layer (3) are each pressed against the cation exchange membrane (4). The contact pressure between each electrode and the cation exchange membrane is preferably approximately 50 to 200 kg/cm2.

電解は、上記のようなセルを用い、水、好ましくは純水
、イオン交換水などを供給して行なわれる。電解条件は
特に制限されないが、通常温度を20〜40℃程度、電
流密度を50〜100A/dm2程度とすればよい。セ
ル電圧は、温度および電流密度によって決定される。例
えば、35℃、100A/dm2の場合には、3.2〜
3.3V程度となる。また、運転停止時のバックアップ
電源からの保護電流は0.1〜0.5A/dm”程度で
よい。
Electrolysis is performed using a cell as described above and supplying water, preferably pure water, ion-exchanged water, or the like. Although the electrolysis conditions are not particularly limited, it is sufficient to normally set the temperature to about 20 to 40°C and the current density to about 50 to 100 A/dm2. Cell voltage is determined by temperature and current density. For example, in the case of 35℃ and 100A/dm2, 3.2~
The voltage will be about 3.3V. Further, the protective current from the backup power source when the operation is stopped may be about 0.1 to 0.5 A/dm''.

本発明では、上記のようなセルを1個または複数個用い
て構成された単極式または複極式セルを、通常の電解装
置に組み込んで、電解を行なう。第3図に、本発明方法
を採用した電解装置の一例を示す。
In the present invention, a monopolar or bipolar cell configured using one or more cells as described above is incorporated into a normal electrolysis device to perform electrolysis. FIG. 3 shows an example of an electrolysis device employing the method of the present invention.

発明の効果 本発明によれば、以下のような優れた効果が達成される
Effects of the Invention According to the present invention, the following excellent effects can be achieved.

1)電極−カチオン交換膜間にガス圧がかからないので
、生成するオゾンに水素がほとんど混入せず、従来法よ
り高い純度のオゾンを得ることができる。事実、陽極か
ら発生するガス中の水素量は従来法(数100〜数10
1000ppの1/10〜1/20程度に減少する。
1) Since no gas pressure is applied between the electrode and the cation exchange membrane, almost no hydrogen is mixed into the generated ozone, making it possible to obtain ozone with higher purity than with conventional methods. In fact, the amount of hydrogen in the gas generated from the anode is lower than the conventional method (several 100 to several 10
It decreases to about 1/10 to 1/20 of 1000pp.

2)電極間、ステンレス鋼−白金間などに接触抵抗が生
じることがない。
2) No contact resistance occurs between electrodes or between stainless steel and platinum.

3)ポーラス板の材料として、空孔率および開口径を容
易に調節できるニッケルまたはニッケル合金を用いるの
で、電気抵抗を高めることなく、ガスおよび液の抜けの
よい電極を作成できる。
3) Since nickel or nickel alloy is used as the material for the porous plate, the porosity and opening diameter can be easily adjusted, so an electrode with good gas and liquid drainage can be created without increasing electrical resistance.

また、ガスおよび液の抜けのよいので、オゾンの生成効
率をこれまでの最高とすることができ、しかも、電解時
の電流密度を従来法に比べて0.1〜0.2v程度低く
でき、複数セルの場合にも各セル間の電圧のバラツキは
平均0.05Vである。
In addition, since gas and liquid can be easily removed, the ozone generation efficiency can be the highest ever, and the current density during electrolysis can be lowered by about 0.1 to 0.2 V compared to conventional methods. Even in the case of multiple cells, the variation in voltage between each cell is 0.05V on average.

4)触媒電極(白金)を、損傷し難いニッケルまたはニ
ッケル合金に接合するため、接合に要する作業工数が少
なくなる。
4) Since the catalyst electrode (platinum) is bonded to nickel or nickel alloy, which is hard to damage, the number of man-hours required for bonding is reduced.

5)ポーラスカーボン材料に代えて金属材料を用いるた
め、セルの組立および解体時に破損のおそれがなくなり
、作業時間の短縮を図ることができる。
5) Since a metal material is used instead of a porous carbon material, there is no risk of damage during assembly and disassembly of the cell, and the working time can be shortened.

6)白金−カチオン交換膜接合体を作成する必要がなく
、また高価なポーラスカーボン材料を使用する必要がな
いので、大幅なコスト低減を図れる。
6) There is no need to create a platinum-cation exchange membrane assembly, and there is no need to use expensive porous carbon materials, so costs can be significantly reduced.

7)長時間電解を行なっても、水素雰囲気下におかれる
上記陰極側電極は腐食せず、従ってカチオン交換膜が損
傷し難い。ちなみに、本発明の方法によれば、1年間連
続運転しても、電極およびカチオン交換膜劣化ならびに
セル性能の低下は認められなかった。
7) Even if electrolysis is performed for a long time, the cathode side electrode placed in a hydrogen atmosphere will not corrode, and therefore the cation exchange membrane will not be easily damaged. Incidentally, according to the method of the present invention, no deterioration of the electrodes or cation exchange membrane or deterioration of cell performance was observed even after continuous operation for one year.

実施例 以下に、陰極側電極の製造例、実施例及び比較例を挙げ
、本発明をより一層明瞭なものとする。
EXAMPLES Below, manufacturing examples, examples, and comparative examples of cathode side electrodes will be given to further clarify the present invention.

製造例1 びびり振動切削法にるSUS  316Lの短繊維〔タ
フミックファイバー、東京製綱■製〕を焼結しく120
0℃×1時間)し、直径80 mm。
Production Example 1 Sintered SUS 316L short fibers [Toughmic Fiber, manufactured by Tokyo Rope Co., Ltd.] made using the chatter vibration cutting method
0°C x 1 hour) and 80 mm in diameter.

厚さ3 m m 、空孔率80%、平均開口径200μ
mのポーラス板を得た。
Thickness: 3mm, porosity: 80%, average opening diameter: 200μ
A porous plate of m was obtained.

このポーラス板の片面を絶縁テープでマスクした後、も
う一方の面にアルカリ脱脂、塩酸洗浄およびニッケルス
トライクめっきを施し、次いで酸性白金めっき浴〔プラ
タネックス、国中貴金属■製〕を用い、75℃、3A/
dm2の条件で、表面に約3μmの白金をめっきした。
After masking one side of this porous plate with insulating tape, the other side was subjected to alkaline degreasing, hydrochloric acid cleaning, and nickel strike plating, and then using an acidic platinum plating bath [Platanex, manufactured by Kuninaka Kikinzoku ■] at 75°C. ,3A/
The surface was plated with approximately 3 μm of platinum under conditions of dm2.

製造例2 ダイス法によるSUS  316繊維〔サスミックファ
イバー、東京製綱■製〕の均一厚さのウェブを、無酸化
焼きなましく還元性雰囲気下、800℃×2時間)、プ
レス(プレス圧=800kg/cnY)および焼結(1
000°C×1時間)を施し、直径80mm、厚さ2.
5mm、空孔率80%、平均開口径100μmのポーラ
ス板を得た。
Production Example 2 A web of uniform thickness of SUS 316 fiber [Susmic Fiber, manufactured by Tokyo Rope Co., Ltd.] by the die method was annealed in a non-oxidizing and reducing atmosphere at 800°C for 2 hours) and pressed (press pressure = 800 kg). /cnY) and sintered (1
000°C x 1 hour) to a diameter of 80 mm and a thickness of 2.
A porous plate having a diameter of 5 mm, a porosity of 80%, and an average opening diameter of 100 μm was obtained.

これを、アルカリ脱脂および塩酸洗浄した。This was degreased with alkali and washed with hydrochloric acid.

テトラアンミン白金塩化物(ptとして)0.3g アンモニア水(28%)      2或ヒドロキシル
アミン(5%)     20脱ヒドラジン   (2
0%)      511Q水           
      全量300mQ次いで、上記溶液の一部で
、ポーラス板の片面に電気めっきを施して触媒層を形成
させ、水洗後、残りの上記溶液に浸漬し、70°Cで3
時間の無電解めっきを行なって、片面に約3μm厚の白
金をめっきした。
Tetraammineplatinum chloride (as pt) 0.3g Aqueous ammonia (28%) 2 Hydroxylamine (5%) 20 Dehydrazine (2
0%) 511Q water
A total amount of 300 mQ was then applied to electroplating one side of the porous plate with a portion of the above solution to form a catalyst layer, and after washing with water, the plate was immersed in the remaining solution and heated at 70°C for 3
Electroless plating was performed for several hours to plate platinum approximately 3 μm thick on one side.

製造例3 溶湯紡糸法によるニッケル繊維のウェブを焼結しく10
00℃×1時間)し、直径80mm、厚さ2.5mm、
空孔率60%、平均開口径200μmのポーラス板を得
た。
Production Example 3 Sintering of nickel fiber web by melt spinning method 10
00°C x 1 hour), diameter 80mm, thickness 2.5mm,
A porous plate with a porosity of 60% and an average opening diameter of 200 μm was obtained.

これを、アルカリ脱脂および塩酸洗浄した後、実施例1
の酸性白金めっき浴を用い、片面に約3μmの白金をめ
っきした。
After degreasing with alkali and washing with hydrochloric acid, Example 1
Approximately 3 μm of platinum was plated on one side using an acidic platinum plating bath.

製造例4 20重量%白金を分散させたカーボンブラックをPTF
Eディスバージョンを用いてよく混和し、実施例2のポ
ーラス板の片面に塗付、乾燥させた後、表面を緩く加圧
(1kg/cIiI) L、、ながら、280℃で焼結
し、ポーラスステンレス表面に白金担持カーボンを埋め
込んだ。
Production example 4 Carbon black with 20% by weight platinum dispersed in PTF
Mix well using E-disversion, apply to one side of the porous plate of Example 2, dry, and then sinter at 280°C while applying gentle pressure (1 kg/cIiI) to the surface to form a porous plate. Platinum-supported carbon was embedded in the stainless steel surface.

実施例1 製造例1〜4で得られた電極を陰極とし、オゾンの製造
実験を行った。オゾンの製造実験には第3図の電解装置
を使用した。電源はバックアップを備えたものを用いた
。セルの構成と電解条件は次の通りである。
Example 1 An ozone production experiment was conducted using the electrodes obtained in Production Examples 1 to 4 as cathodes. The electrolysis apparatus shown in Fig. 3 was used in the ozone production experiment. A power source with backup was used. The cell configuration and electrolysis conditions are as follows.

陰極;実施例1〜4各電極、有効面積50cm2陽極;
二酸化鉛被覆ポーラスチタン極(二酸化鉛層200μm
)、有効面積500m2 イオン交換膜;ナフィオン117(デュポン社製)陽極
端板;チタン 陰極端板、SUS  304 セル数;1組 電解液;イオン交換水 電流密度;100A/dm2 温  度;28〜30℃ 比較例1 従来法の陰極構成のセルを組み立て、直列に接続して運
転し、比較した。
Cathode; Examples 1 to 4 each electrode, effective area 50 cm2 anode;
Lead dioxide coated porous titanium electrode (lead dioxide layer 200μm
), effective area 500 m2 Ion exchange membrane; Nafion 117 (manufactured by DuPont) anode plate; titanium cathode plate, SUS 304 Number of cells: 1 set electrolyte; ion exchange water current density: 100 A/dm2 Temperature: 28-30 ℃ Comparative Example 1 Cells with a conventional cathode configuration were assembled, connected in series, operated, and compared.

陰極;白金片面接合体〔白金(3μm)/ナフィオン1
17膜) 陰極給電体:ポーラスカーボン〔神戸製鋼■製〕陰極端
板;リブ付黒鉛板〔東洋炭素■製〕その他の条件は実施
例1と同様である。
Cathode; platinum single-sided composite [platinum (3 μm)/Nafion 1
17 membrane) Cathode power feeder: Porous carbon (manufactured by Kobe Steel Corporation); Cathode end plate; graphite plate with ribs (manufactured by Toyo Tanso Corporation) Other conditions were the same as in Example 1.

実施例および比較例の結果を、第1表に示す。The results of Examples and Comparative Examples are shown in Table 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の水電解法に用いるセルの概略図である
。第2図は、本発明方法を実施するためのセルの一例の
概略図である。第3図は、本発明方法を採用した電解装
置の一例の概略図である。 (1)・・・チタン端板 (2)・・・ポーラスチタン板 (3)・・・二酸化鉛層 (4)・・・カチオン交換膜 (5)・・・白金層 (6)・・・ポーラスカーボン板 (6a)・・・ポーラスステンレス板 (7)・・・カーボン端板 (7a)・・・ステンレス端板 (8)・・・0リング (9)・・・水素出口 (10)・・・水供給口 (11)・・・オゾン+酸素出口 ・・・純水溜兼気液分離器 ・・・送液ポンプ ・・・電解槽 ・・・オゾン/酸素 ・・・オゾン濃度計 ・・・水素分析計 ・・・水封器 ・・・水素 (以 上) 第 図 第 図 図
FIG. 1 is a schematic diagram of a cell used in a conventional water electrolysis method. FIG. 2 is a schematic diagram of an example of a cell for carrying out the method of the invention. FIG. 3 is a schematic diagram of an example of an electrolysis device employing the method of the present invention. (1)...Titanium end plate (2)...Porous titanium plate (3)...Lead dioxide layer (4)...Cation exchange membrane (5)...Platinum layer (6)... Porous carbon plate (6a)...Porous stainless steel plate (7)...Carbon end plate (7a)...Stainless steel end plate (8)...0 ring (9)...Hydrogen outlet (10) ...Water supply port (11) ...Ozone + oxygen outlet ...Pure water reservoir and gas-liquid separator ...Liquid pump ...Electrolyzer ...Ozone/oxygen ...Ozone concentration meter ...・Hydrogen analyzer...Water seal...Hydrogen (or more) Fig. Fig. Fig.

Claims (1)

【特許請求の範囲】[Claims] (1)パーフロロスルホン酸型のカチオン交換樹脂膜を
用いる水電解法でオゾンを製造するに際し、ニッケルま
たはニッケル合金鋼からなるポーラス板の片面に白金を
被覆してなる電極を陰極側に用い、前記電極の白金被覆
層側をカチオン交換膜の陰極側に圧接してゼロギャップ
電解を行なうことを特徴とするオゾンの電解製造法。
(1) When producing ozone by a water electrolysis method using a perfluorosulfonic acid type cation exchange resin membrane, an electrode made of a porous plate made of nickel or nickel alloy steel coated with platinum on one side is used on the cathode side, and the A method for electrolytically producing ozone, characterized by carrying out zero-gap electrolysis by pressing the platinum coating layer side of an electrode against the cathode side of a cation exchange membrane.
JP1082448A 1989-03-31 1989-03-31 Ozone electrolytic production method Expired - Lifetime JP2840753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1082448A JP2840753B2 (en) 1989-03-31 1989-03-31 Ozone electrolytic production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1082448A JP2840753B2 (en) 1989-03-31 1989-03-31 Ozone electrolytic production method

Publications (2)

Publication Number Publication Date
JPH02259090A true JPH02259090A (en) 1990-10-19
JP2840753B2 JP2840753B2 (en) 1998-12-24

Family

ID=13774806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1082448A Expired - Lifetime JP2840753B2 (en) 1989-03-31 1989-03-31 Ozone electrolytic production method

Country Status (1)

Country Link
JP (1) JP2840753B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040535A1 (en) * 1997-03-07 1998-09-17 Wuhan University Electrolytic ozone-generating apparatus and the process for manufacturing the same
WO2004113591A1 (en) * 2003-06-25 2004-12-29 Cho, Jeong Suck An apparatus for producing ozone by electrolysis
CN104032326A (en) * 2014-03-03 2014-09-10 上海维埃姆环保科技有限公司 Titanium steel guide plate and generator adopting the guide plate
CN106757127A (en) * 2015-11-23 2017-05-31 上海好旭新能源科技发展有限公司 For electrolysis water without spacing diaphragm cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877586A (en) * 1981-10-30 1983-05-10 Sumitomo Electric Ind Ltd Electrode and its preparation
JPS63100190A (en) * 1986-10-16 1988-05-02 Sasakura Eng Co Ltd Electrolytic device for generating gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877586A (en) * 1981-10-30 1983-05-10 Sumitomo Electric Ind Ltd Electrode and its preparation
JPS63100190A (en) * 1986-10-16 1988-05-02 Sasakura Eng Co Ltd Electrolytic device for generating gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040535A1 (en) * 1997-03-07 1998-09-17 Wuhan University Electrolytic ozone-generating apparatus and the process for manufacturing the same
WO2004113591A1 (en) * 2003-06-25 2004-12-29 Cho, Jeong Suck An apparatus for producing ozone by electrolysis
CN104032326A (en) * 2014-03-03 2014-09-10 上海维埃姆环保科技有限公司 Titanium steel guide plate and generator adopting the guide plate
CN104032326B (en) * 2014-03-03 2017-02-01 上海维埃姆环保科技有限公司 Titanium steel guide plate and generator adopting the guide plate
CN106757127A (en) * 2015-11-23 2017-05-31 上海好旭新能源科技发展有限公司 For electrolysis water without spacing diaphragm cell

Also Published As

Publication number Publication date
JP2840753B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
CA1179630A (en) Halide electrolysis in cell with catalytic electrode bonded to hydraulically permeable membrane
KR910001140B1 (en) Electrode and method for preparing thereof
US4389297A (en) Permionic membrane electrolytic cell
JPH10512922A (en) Bidirectional ion exchange medium support for water electrolyzers.
JPS6143436B2 (en)
JP2003523599A (en) Method of maintaining compression of working area in electrochemical cell
TW200829724A (en) Oxygen gas diffusion cathode for sodium chloride electrolysis
EP0226911B1 (en) An improved solid polymer electrolyte electrode
EP2540872A1 (en) Oxygen gas diffusion cathode, electrolytic bath equipped with same, process for production of chlorine gas, and process for production of sodium hydroxide
JP5000121B2 (en) Oxygen reducing gas diffusion cathode and salt electrolysis method
US4299675A (en) Process for electrolyzing an alkali metal halide
JPH07278864A (en) Gas diffusion electrode
EP0255099A2 (en) Cathode bonded to ion exchange membrane for use in electrolyzers for electrochemical processes and relevant method for conducting electrolysis
JP3080971B2 (en) Electrode structure for ozone production and method for producing the same
JPH0124868B2 (en)
JPS61250189A (en) Production of nico204 catalyst-containing anode for electrolysis of sodium hydroxide solution
US4749452A (en) Multi-layer electrode membrane-assembly and electrolysis process using same
JPS6152383A (en) Electrochemical device using cation exchange membrane as electrolyte
JPS58144488A (en) Multilayer structure for electrode-membrane assembly and electrolytic process thereby
KR20190103434A (en) Organic Hydride Manufacturing Equipment
EP1724863A1 (en) Metal foam materials in alkaline fuel cells and alkaline electrolysers
JPH02259090A (en) Production of ozone by electrolysis
JPH08283979A (en) Gas diffusing electrode and electrolytic method using the electrode
EP1724861A1 (en) Novel materials for alkaline electrolysers and alkaline fuel cells
JP3078570B2 (en) Electrochemical electrode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11