JPH0472210B2 - - Google Patents

Info

Publication number
JPH0472210B2
JPH0472210B2 JP57078859A JP7885982A JPH0472210B2 JP H0472210 B2 JPH0472210 B2 JP H0472210B2 JP 57078859 A JP57078859 A JP 57078859A JP 7885982 A JP7885982 A JP 7885982A JP H0472210 B2 JPH0472210 B2 JP H0472210B2
Authority
JP
Japan
Prior art keywords
spacer material
spacer
solvent
substrate
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57078859A
Other languages
Japanese (ja)
Other versions
JPS58194015A (en
Inventor
Kazuo Ikegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7885982A priority Critical patent/JPS58194015A/en
Publication of JPS58194015A publication Critical patent/JPS58194015A/en
Publication of JPH0472210B2 publication Critical patent/JPH0472210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、少なくとも2枚以上の基板に一定の
間げきを設けることにより構成される機能素子の
製造方法に係わるものであり、前記間げきの形成
方法に関するものである。 この発明では特に表示素子について詳しく説明
するが、2枚以上の基板の間げきを一定にする目
的にはどんなものでも応用できることはいうまで
もない 表示素子には、液晶表示体、エレクトロ
クロミツク(ECD)、電気泳動素子(EPID)等
があるけれど、どれもみな2枚以上の基板の間に
一定の間げきを設ける構造となつている。第1図
は代表的な液晶表示体であるツイスト・ネマチツ
ク型の液晶パネルの断面図であり、上透明基板
1、下透明基板2、上透明電極3、下透明電極
4、液晶層5、上偏光板6、下偏光板7、反射板
8、シール材9、シール部スペーサ10、スペー
サ材11から構成されている。上下の透明基板
1,2は、無機ガラスやプラスチツクからなる。
シール材9の中のシール部スペーサ材10は5〜
12μm程度のグラスフアイバー、アルミナ等のス
ペーサ材を入れて基板間に一定の間げきを持たせ
ているが、液晶パネルの大型化や薄型化に伴なつ
て、上下基板1,2の間げきを一定にすることが
難しくなつている。この結果、光の干渉によるパ
ネルの色づきや応答性のむらによる生産歩留りの
低下が問題となつている。 スペーサ材11は以上の欠点をなくすために、
用いられるものであり、材料としてグラスフアイ
バー、酸化アルミナ等の金属酸化物やポリスチレ
ン、ポリエステル、ポリエチレン、ポリイミド、
テフロン、エポキシ、アクリル等の高分子有機化
合物であり、形状は円柱上、球状をしている。ス
ペーサ材11の従来の形状方法は、フルイ上にス
ペーサ材を乗せ、振動又は圧さく空気により基板
状にスペーサ材をまく乾式方法で行つていた。こ
の方法の第1の欠点は、スペーサ材の多くは絶縁
体であり帯電しやすいため、フルイ中や、ふりま
かれた基板上面でスペーサ同志が結合したり、重
なり合いを起こすため、基板組立後の基板間のギ
ヤツプの不均一性や外観不良を起し、製品の歩留
りが悪くなつていた。 第2の欠点としては、スペーサ材のふりまき量
のコントロールが難しく、多量にしかもムラにふ
りまかれることであり、スペーサ材の消費量が大
きいことである。 第3の欠点としては、スペーサ材の供給が難し
く、かつ頻繁に行うことが必要のため、加工時間
が非常にかかつた。 以上のことから、従来の方法は、品質が極めて
悪く、しかも非常にコストが高いものになつた。 本発明は、かかる欠点を解消するためになされ
たものであり、本発明の目的は、スペーサ材の結
合を防ぎ、分離した状態にムラなく均一に、かつ
安価に、ふりまく事にある。このため本発明者
は、スペーサ材を有機溶媒に混合させ、噴霧スプ
レーにてふりまきを行う事により、従来の欠点を
解決した。用いられる有機溶媒としては、揮発性
の良い溶媒、弗化3塩化メタン、2弗化4塩化エ
タン、3弗化3塩化エタン等の弗化塩化炭化水素
類、トリクロロエチレン等の塩化エチレン類、ト
リクロロエタン等の塩化エタン類、アセトン等の
ケント類、ベンセン、トルエン、キシレン、メチ
レン、ナフサ、メタノール、エタノール、等のア
ルコール類があげられる。この中でも、安全性や
配向処理剤や液晶、その他基板部品の品質に影響
を与えない弗化塩化炭化水素類が優れている。更
にスペーサ剤の帯電による結合や重なり防止を解
消するために、溶媒中に誘電性溶剤でかつ親水性
の基を有するアルコール類を、3〜10%、更に望
ましくは5%(vo1%)混合させた溶媒でスプレ
ーふりまきを行う。このように3〜10%の範囲と
することにより、アルコール類の揮発性が良いの
で、基板表面にアルコールが付着して残ることが
ない。さらには、スペーサ材の結合を防いで基板
前面にわたつて均一なふりまきができるのであ
る。 以下、本発明の詳細を実施例を挙げ説明する。 実地例 1 直径10μ、長さ50μ〜200μのグラスフアイバー
スペーサ材を、3弗化3塩化エタン+エチルアル
コール5vo1%溶媒に混合し、超音波にて15分間
かくはんし、スプレーガンにて圧さく空気(その
他ちツ素ガス、アルゴンガス等のガス圧力を用い
てもよい)0.5Kg/cm2の条件で基板上面より40cm
の距離で数秒間スプレーふりまきをした。スプレ
ー法によるふりまきの様子を第2図に示す。12
は基板、13はスプレーガン、11はグラスフア
イバーである。その結果表1に示すように良好で
あつた。 実施例 2 直径8μのポリスチレンボールスペーサ材を3
弗化3塩化エタン+エチルアルコール5vo1%溶
媒に混合し、以下、実施例ー1と同様の加工条件
でスプレーふりまきをした結果、表1に示すよう
に良好であつた。 比較例 1 直径10μ、長さ50μから200μのグラスフアイバ
ースペーサ材を、3弗化3塩化エタン(ダイキン
製ダイフロンS−3)100%溶媒に混合させ、実
施例1と同様の加工条件にし、スプレーふりまき
をした。その結果、実施例1と比較して、結合率
が高かつた。 比較例 2 実施例1と同様のスペーサ材を3弗化3塩化エ
タン+エチルアルコール5vo1%の溶媒に混合し、
以下、実施例1の加工条件でスプレーふりまきを
した結果、表1に示すような結果を得た。実施例
1と同様のスペーサ材をトリクロロエタン+エチ
ルアルコール5%vo1%の溶媒に混合し、以下、
実施例1の加工条件でスプレーふりまきをした結
果、表1に示すような結果を得た。 比較例 3 実施例1と同様のスペーサ材をトリクロロエタ
ン+エチルアルコール5vo1%の溶媒に混合し、
以下実施例1の加工条件でスプレーふりまきをし
た結果、表1に示す結果を得た。 比較例 4 直径8μのポリスチレンボールスペーサを3弗
化3塩化エタン100%溶媒に混合し、以下、実施
例1と同様の加工条件でスプレーふりまきを行つ
た結果、表1に示す結果を得た。 比較例 5 実施例2と同様スペーサ材を3弗化3塩化エタ
ン+エチルアルコール5%vo1%溶媒に混合し、
超音波にて15分間かくはんして、ポンプ式のハン
ド霧吹器で基板上面より40cmの距離で数回スプレ
ーした結果、表1に示すような結果を得た。 以上の各実施例と各比較例ならびに従来例であ
る乾式の場合の試験結果を表1にまとめた。
The present invention relates to a method of manufacturing a functional element constructed by providing a certain gap between at least two or more substrates, and relates to a method of forming the gap. In this invention, we will specifically explain the display element in detail, but it goes without saying that any device can be applied to the purpose of keeping the gap between two or more substrates constant.Display elements include liquid crystal displays, electrochromic ( ECD), electrophoretic device (EPID), etc., but all of them have a structure in which a certain gap is provided between two or more substrates. FIG. 1 is a cross-sectional view of a twisted nematic type liquid crystal panel, which is a typical liquid crystal display, showing an upper transparent substrate 1, a lower transparent substrate 2, an upper transparent electrode 3, a lower transparent electrode 4, a liquid crystal layer 5, It is composed of a polarizing plate 6, a lower polarizing plate 7, a reflecting plate 8, a sealing material 9, a seal spacer 10, and a spacer material 11. The upper and lower transparent substrates 1 and 2 are made of inorganic glass or plastic.
The seal part spacer material 10 in the seal material 9 is 5~
A spacer material such as glass fiber or alumina of about 12 μm is inserted to maintain a certain gap between the substrates, but as LCD panels become larger and thinner, the gap between the upper and lower substrates 1 and 2 has been reduced. It is becoming difficult to keep it constant. As a result, problems arise such as coloring of the panel due to light interference and decreased production yield due to uneven response. In order to eliminate the above drawbacks, the spacer material 11 is
The materials used include glass fiber, metal oxides such as alumina oxide, polystyrene, polyester, polyethylene, polyimide,
It is a high-molecular organic compound such as Teflon, epoxy, or acrylic, and is cylindrical or spherical in shape. The conventional method for shaping the spacer material 11 has been a dry method in which the spacer material is placed on a sieve and spread over a substrate shape using vibration or compressed air. The first drawback of this method is that most of the spacer materials are insulators and are easily charged, so the spacers may bond or overlap during sieving or on the top surface of the sprinkled substrate. This resulted in uneven gaps between substrates and poor appearance, resulting in poor product yields. The second drawback is that it is difficult to control the amount of spacer material sprinkled, and the amount of spacer material is sprinkled unevenly, resulting in a large consumption amount of spacer material. The third drawback is that it is difficult to supply the spacer material and it needs to be done frequently, so the processing time is very long. As a result of the above, the conventional methods have extremely poor quality and are also extremely expensive. The present invention has been made to eliminate such drawbacks, and an object of the present invention is to prevent the spacer materials from joining together, and to spread the spacer materials evenly and uniformly in a separated state at a low cost. Therefore, the inventor of the present invention solved the conventional drawbacks by mixing a spacer material with an organic solvent and spraying the mixture with an atomizer. Examples of organic solvents that can be used include solvents with good volatility, fluorochlorinated hydrocarbons such as trifluoromethane, difluorotetrachloroethane, trifluorotrichloroethane, ethylene chloride such as trichloroethylene, trichloroethane, etc. Examples include chloroethanes, acetone and other alcohols, benzene, toluene, xylene, methylene, naphtha, methanol, and ethanol. Among these, fluorochlorinated hydrocarbons are superior because they are safe and do not affect the quality of alignment processing agents, liquid crystals, and other substrate parts. Furthermore, in order to eliminate binding and overlapping prevention due to charging of the spacer agent, 3 to 10%, more preferably 5% (vo 1%) of an alcohol that is a dielectric solvent and has a hydrophilic group is mixed in the solvent. Spray with the solvent. By setting the content in the range of 3 to 10%, the volatility of the alcohol is good, so that the alcohol does not adhere to and remain on the substrate surface. Furthermore, it prevents the spacer material from bonding and allows it to be evenly distributed over the front surface of the substrate. Hereinafter, the details of the present invention will be explained with reference to Examples. Practical example 1 Glass fiber spacer material with a diameter of 10μ and a length of 50μ to 200μ is mixed with trifluorotrichloride ethane + ethyl alcohol 5VO1% solvent, stirred with ultrasonic waves for 15 minutes, and then compressed with air using a spray gun. (Other gas pressures such as nitrogen gas and argon gas may be used) 40 cm from the top of the substrate at 0.5 Kg/cm 2
I sprayed it for several seconds at a distance of . Figure 2 shows how the spray method is applied. 12
1 is a substrate, 13 is a spray gun, and 11 is a glass fiber. The results were good as shown in Table 1. Example 2 Three polystyrene ball spacer materials with a diameter of 8μ
It was mixed with a solvent of trifluorotrichloride ethane + ethyl alcohol 5 vol 1% and then sprayed under the same processing conditions as in Example 1. As shown in Table 1, the results were good. Comparative Example 1 A glass fiber spacer material with a diameter of 10 μm and a length of 50 μm to 200 μm was mixed with 100% solvent of trifluorotrichloroethane (Daiflon S-3 manufactured by Daikin), processed under the same processing conditions as in Example 1, and sprayed. I threw a sprinkle. As a result, compared to Example 1, the bonding rate was higher. Comparative Example 2 The same spacer material as in Example 1 was mixed in a solvent of trifluorotrichloride ethane + ethyl alcohol 5vo1%,
Hereinafter, as a result of spraying under the processing conditions of Example 1, the results shown in Table 1 were obtained. The same spacer material as in Example 1 was mixed in a solvent of trichloroethane + ethyl alcohol 5% vol 1%, and the following was done.
As a result of spraying under the processing conditions of Example 1, the results shown in Table 1 were obtained. Comparative Example 3 The same spacer material as in Example 1 was mixed in a solvent of trichloroethane + ethyl alcohol 5vo1%,
As a result of spraying under the processing conditions of Example 1, the results shown in Table 1 were obtained. Comparative Example 4 A polystyrene ball spacer with a diameter of 8 μm was mixed with a 100% trifluorotrichloroethane solvent and then sprayed under the same processing conditions as in Example 1. As a result, the results shown in Table 1 were obtained. Comparative Example 5 Similar to Example 2, a spacer material was mixed with trifluorotrichloride ethane + ethyl alcohol 5% vo 1% solvent,
After stirring with ultrasonic waves for 15 minutes, the mixture was sprayed several times with a pump-type hand sprayer at a distance of 40 cm from the top of the substrate, and the results shown in Table 1 were obtained. Table 1 summarizes the test results for each of the above examples, comparative examples, and conventional dry method.

【表】 ここで、結合率gは次の式で定義する。 g=M/(M+S) ここで、Mは4個以上のスペーサ材の集団の
数、Sは4個未満の集団の総数である。 表1からわかるごとく、従来の乾式方式では結
合率が高く、スペーサ材の結合、つまり集団が非
常に多いことがわかる。特に、ポリスチレンボー
ルでは結合率gが高い傾向にある。 以上、実施例の結果、従来のフイルムによる乾
式ふりまき方法と比較して、結合および重なり率
は1/2から1/100に減少させることができた。 下記実施例では、主有機溶媒としても3弗化3
塩化エタンを使用したが、表1の結果からは、比
較例3のトリクロロエタンと比較して3弗化3塩
化エタンの方が結合率が低く、良好な結果が得ら
れている。また、3弗化3塩化エタンが100%の
ものより、エチルアルコールを少量加えたものの
方が良好な結果が得られている。この理由には、
アルコールの水酸基が関係するものと思われ、親
水性の基を有するものが良いと思われる。ちなみ
に他のアルコール類やケトン結合を有する有機溶
媒(例、アセトン)でも、同様な結果が得られて
いる。また実施例では、代表的なスペーサ材を例
に上げ本発明の効果を説明したが、他のスペーサ
材についても、同様の効果を得た。 上記実施例では液晶表示体を例にとり複数基板
間に一定の間げきを設ける構造機能素子について
も、同様に本発明が適用できることは明かであ
る。 上述の如く本発明によれば、弗化塩化炭化水素
類からなる有機溶媒にアルコール類が3〜10vo1
%添加された混合溶媒とスペーサ材とを混合した
ので、スペーサ材の結合を防止することができ
た。さらに、スペーサ材の結合からなる集団の全
体の数に対する4個以上のスペーサ材の結合から
なる集団の数の比率が4%以下になるように配置
したので、スペーサ材の結合による集団が存在し
ていても、表示ムラやギヤツプ間隔の不均一性を
生ずることがないという優れた効果を有してい
る。
[Table] Here, the binding rate g is defined by the following formula. g=M/(M+S) Here, M is the number of groups of 4 or more spacer materials, and S is the total number of groups of less than 4 pieces. As can be seen from Table 1, the bonding rate is high in the conventional dry method, and it can be seen that the bonding, or clustering, of the spacer materials is very large. In particular, polystyrene balls tend to have a high bonding rate g. As a result of the above examples, the bonding and overlapping ratios could be reduced from 1/2 to 1/100 compared to the conventional dry spreading method using a film. In the following examples, 3 fluoride 3 was also used as the main organic solvent.
Although ethane chloride was used, the results in Table 1 show that trifluorotrichloroethane had a lower binding rate and better results than trichloroethane in Comparative Example 3. In addition, better results were obtained with a mixture containing a small amount of ethyl alcohol than with a mixture containing 100% trifluorotrichloroethane. The reason for this is
This seems to be related to the hydroxyl group of the alcohol, and it is thought that something with a hydrophilic group is better. Incidentally, similar results have been obtained with other alcohols and organic solvents with ketone bonds (eg, acetone). Further, in the examples, the effects of the present invention were explained using typical spacer materials as an example, but similar effects were obtained with other spacer materials. In the above embodiments, a liquid crystal display is taken as an example, and it is clear that the present invention can be similarly applied to a structural/functional element in which a certain gap is provided between a plurality of substrates. As described above, according to the present invention, 3 to 10 vol of alcohol is added to the organic solvent consisting of fluorochlorinated hydrocarbons.
Since the mixed solvent and the spacer material were mixed, it was possible to prevent the spacer material from bonding. Furthermore, since the arrangement was such that the ratio of the number of clusters consisting of four or more spacer materials to the total number of clusters consisting of bonds of spacer materials was 4% or less, there were no clusters due to the bonding of spacer materials. It has the excellent effect of not causing display unevenness or non-uniform gap spacing even when

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のTN型液晶パネルの断面図。第
2図は本発明の一実施例を示す図。 1……上透明基板、2……下透明基板、3……
上透明電極、4……下透明電極、5……液晶層、
6……上偏光板、7……下偏光板、8……反射
板、9……シール材、10……シール部のスペー
サ材、11……スペーサ材、12……基板、13
……スプレーガン。
Figure 1 is a cross-sectional view of a conventional TN type liquid crystal panel. FIG. 2 is a diagram showing an embodiment of the present invention. 1... Upper transparent substrate, 2... Lower transparent substrate, 3...
Upper transparent electrode, 4... Lower transparent electrode, 5... Liquid crystal layer,
6... Upper polarizing plate, 7... Lower polarizing plate, 8... Reflecting plate, 9... Seal material, 10... Spacer material for seal portion, 11... Spacer material, 12... Substrate, 13
...spray gun.

Claims (1)

【特許請求の範囲】[Claims] 1 弗化塩化炭化水素類からなる有機溶媒にアル
コール類が3〜10vo1%添加された混合溶媒とス
ペーサ材とを混合し、該スペーサ材の結合からな
る集団の全体の数に対する4個以上のスペーサ材
の結合からなる集団の数の比率を4%以下で被処
理基板上に配置するように、前記溶媒および前記
スペーサ材を圧搾空気またはガスの圧力により噴
霧状に飛散させたことを特徴とするスペーサ材の
形成方法。
1 Mix a mixed solvent consisting of an organic solvent made of fluorochlorinated hydrocarbons to which 3 to 10 vol% of alcohol has been added and a spacer material, and create 4 or more spacers for the total number of the group consisting of the combination of the spacer materials. The solvent and the spacer material are dispersed in a spray form by the pressure of compressed air or gas so that the ratio of the number of groups consisting of bonded materials is 4% or less on the substrate to be processed. Method of forming spacer material.
JP7885982A 1982-05-10 1982-05-10 Method for scattering spacer material Granted JPS58194015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7885982A JPS58194015A (en) 1982-05-10 1982-05-10 Method for scattering spacer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7885982A JPS58194015A (en) 1982-05-10 1982-05-10 Method for scattering spacer material

Publications (2)

Publication Number Publication Date
JPS58194015A JPS58194015A (en) 1983-11-11
JPH0472210B2 true JPH0472210B2 (en) 1992-11-17

Family

ID=13673550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7885982A Granted JPS58194015A (en) 1982-05-10 1982-05-10 Method for scattering spacer material

Country Status (1)

Country Link
JP (1) JPS58194015A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133421A (en) * 1983-12-22 1985-07-16 Matsushita Electric Ind Co Ltd Spacer dispersing device
DE3400429A1 (en) * 1984-01-09 1985-07-18 Vdo Adolf Schindling Ag, 6000 Frankfurt DISPLAY DEVICE, ESPECIALLY LIQUID CRYSTAL DISPLAY, AND METHOD FOR THE PRODUCTION THEREOF
GB8827277D0 (en) * 1987-12-16 1988-12-29 Ici Plc Process for producing liquid crystal devices
DE3825843A1 (en) * 1988-07-29 1990-02-01 Nokia Unterhaltungselektronik METHOD FOR APPLYING DISTANCE ELEMENTS OF A LIQUID CRYSTAL CELL

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465560A (en) * 1977-11-04 1979-05-26 Hitachi Ltd Forming method of spacings between electrode plates

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928445U (en) * 1972-06-15 1974-03-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465560A (en) * 1977-11-04 1979-05-26 Hitachi Ltd Forming method of spacings between electrode plates

Also Published As

Publication number Publication date
JPS58194015A (en) 1983-11-11

Similar Documents

Publication Publication Date Title
JP3189591B2 (en) Manufacturing method of liquid crystal element
JPH02920A (en) Manufacture of liquid crystal device
JPH0472210B2 (en)
CN104589744B (en) A kind of antivibration protecting film and preparation method thereof
JPH01113729A (en) Liquid crystal electro-optic device
JP2006259742A (en) Liquid crystal display device and method of manufacturing same
JPS6173131A (en) Manufacture of liquid crystal display element
JPH117027A (en) Adhesive spacer, liquid crystal element using the same and its production
JPH03158827A (en) Production of liquid crystal display element
JPS6233574B2 (en)
JPS5557821A (en) Production of liquid crystal display element
JPH02282727A (en) Production of liquid crystal element
JPS6486112A (en) Manufacture of liquid crystal display panel
JP7354040B2 (en) Manufacturing method of liquid crystal display panel
JPS60153025A (en) Liquid crystal display element
JPS58100122A (en) Manufacture of liquid crystal cell
KR880001645B1 (en) Manufacturing method of liquid crystal display
JPS6190135A (en) Liquid crystal display body
JPH0381733A (en) Manufacture of liquid crystal device
JPH04267218A (en) Manufacture of liquid crystal layer of display element using polymer-dispersed liquid crystal
KR950014062B1 (en) Panel of crt
JPH0518735Y2 (en)
JPH0222623A (en) Liquid crystal display element and its production
JPH03209429A (en) Liquid crystal display device
JPH02154228A (en) Production of liquid crystal display device