JPH0222623A - Liquid crystal display element and its production - Google Patents

Liquid crystal display element and its production

Info

Publication number
JPH0222623A
JPH0222623A JP17242188A JP17242188A JPH0222623A JP H0222623 A JPH0222623 A JP H0222623A JP 17242188 A JP17242188 A JP 17242188A JP 17242188 A JP17242188 A JP 17242188A JP H0222623 A JPH0222623 A JP H0222623A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display element
alignment film
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17242188A
Other languages
Japanese (ja)
Inventor
Hideo Kawaguchi
英夫 川口
Takashi Takayanagi
丘 高柳
Naoya Imamura
直也 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP17242188A priority Critical patent/JPH0222623A/en
Publication of JPH0222623A publication Critical patent/JPH0222623A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a liquid crystal display element which is produced with an easy process and causes an uneven electric field in one picture element by adding and dispersing fine particles, whose dielectric constant is different from that of an orienting film, in an orienting film forming coating liquid. CONSTITUTION:At least one of orienting films is coated with the orienting film forming coating liquid where insulating fine particles whose dielectric constant is different from that of the orienting film are added. A pair of transparent electrode substrates 5 and 6 consisting of transparent substrates 1a and 1b, transparent electrodes 2a and 2b, and orienting films 3a and 3b produced in this manner are allowed to face each other with liquid crystal between them so that orienting films 3a and 3b are on the inside. In this case, it is preferable that spacers are dispersed and interposed between both transparent electrode substrates 5 and 6 for the purpose of securing the layer thickness of a liquid crystal layer 7. Thus, orienting films can uniformly orient liquid crystal molecules though silica is included in orienting films, and the liquid crystal display element is obtained which causes an uneven electric field in one picture element because insulating fine particles whose dielectric constant is different from that of the orienting film are included in the orienting film.

Description

【発明の詳細な説明】 [発明の分野1 本発明は液晶表示素子およびその製造法に関する。さら
に詳しくは、透明電極間に電圧を印加した時に液晶層の
受ける電界が、一つの画素内で不均一となるようにされ
た液晶表示素子およびその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention 1] The present invention relates to a liquid crystal display element and a method for manufacturing the same. More specifically, the present invention relates to a liquid crystal display element in which the electric field received by a liquid crystal layer is non-uniform within one pixel when a voltage is applied between transparent electrodes, and a method for manufacturing the same.

[発明の技術的背景および従来技術] 従来より、液晶テレビジョンパネルなどに利用されてい
るマトリックス形の液晶表示素子には、パッシブマトリ
ックスデイスプレィと呼ばれる駆動方式とアクティブマ
トリクスデイスプレィと呼ばれる駆動方式との二方式が
ある。前者は構造が比較的簡単で低い製造コストで製造
できるという利点があるものの、高画質を得るために走
査線の数Nを増大させると、画面を走査する間に一つの
選択点に有効な電界が印加されている時間(すなわちデ
ユーティ−比)17Nが減少するために、クロストーク
が発生し、しかも高いコントラストが得られないという
欠点を有している。さらにデユーティ−比が低くなると
各画素の階調の制御が難しくなるなど、液晶テレビジョ
ンパネルとしては多数の欠点を持っている。
[Technical Background of the Invention and Prior Art] Conventionally, matrix-type liquid crystal display elements used in liquid crystal television panels and the like include a driving method called a passive matrix display and a driving method called an active matrix display. There are two methods. The former has the advantage that it has a relatively simple structure and can be manufactured at low manufacturing cost, but when the number N of scanning lines is increased to obtain high image quality, the effective electric field at one selected point while scanning the screen is reduced. Since the time during which 17N is applied (that is, the duty ratio) is reduced, crosstalk occurs and high contrast cannot be obtained. Furthermore, as the duty ratio becomes lower, it becomes difficult to control the gradation of each pixel, and as such, liquid crystal television panels have a number of drawbacks.

これに対して、アクティブマトリクス駆動方式では、各
々の画素ごとにトランジスタなどのアクティブ素子やス
イッチ素子を設けて、クロストークの防止と階調性の付
与を図っている。具体的には、以下のような方法によっ
て液晶の表示が行なわれる。すなわち、例えばMOS 
(金属酸化物半導体)トランジスタ、M I M (m
etal−insulator−Iletal )素子
、薄膜トランジスタ(TPT)などを各画素ごとにマト
リックス配置して、選択した画素のトランジスタにゲー
トオンパルスを印加してソースとドレイン間を導通させ
1画像信号をソースからキャパシタに導くとともにキャ
パシタに蓄積し、このキャパシタに蓄積された画像信号
に対応して液晶が駆動し、同時に映像信号の電圧によフ
て階調表示が行なわれる、という駆動方式である。この
方式では、使用するアクティブ素子の構造が複雑である
ため、製造工程が多く、製造コストが高くなるという欠
点を有している。また、薄膜半導体は広い面積にわたっ
て被膜形成することが難しいため、大画面のデイスプレ
ィ装置の製造は困難である。
On the other hand, in the active matrix driving method, an active element such as a transistor or a switch element is provided for each pixel to prevent crosstalk and provide gradation. Specifically, liquid crystal display is performed by the following method. That is, for example, MOS
(metal oxide semiconductor) transistor, M I M (m
A gate-on pulse is applied to the transistor of the selected pixel to conduct between the source and drain, and transfer one image signal from the source to the capacitor. This is a driving method in which the liquid crystal is driven in accordance with the image signal stored in the capacitor, and at the same time grayscale display is performed using the voltage of the video signal. This method has the disadvantage that the structure of the active element used is complex, resulting in a large number of manufacturing steps and high manufacturing costs. Furthermore, since it is difficult to form a film over a wide area of thin film semiconductors, it is difficult to manufacture large-screen display devices.

上記のような欠点を克服するものとして、特開昭62−
231940号公報には、電圧が印加されたときに形成
される電界強度が一つの画素内で異なるような液晶表示
素子が提案されている。強誘電性液晶を、この液晶表示
素子に用いれば、同じ電圧が印加しても一つの画素内で
電界強度が強い部分と弱い部分とが生じるので、電界強
度の強い部分でまず液晶の反転が起こり、次いで電界の
弱い部分へと反転が波及して行く。たとえば、電界の強
い部分だけで反転が起こり、弱い部分では反転が起こら
ないような印加パルスを加えれば、つの画素内で階調を
制御することができる。また、該液晶表示素子に双安定
性のある液晶を用いれば、この階調がメモリされること
になる。また、電界の強い部分での反転が核となって反
転が波及して行くので、従来のものに比べて応答(レス
ポンス)の良いデイスプレィを得ることができる。
To overcome the above-mentioned drawbacks, JP-A-62-
Japanese Patent No. 231940 proposes a liquid crystal display element in which the electric field intensity formed when a voltage is applied varies within one pixel. If ferroelectric liquid crystal is used in this liquid crystal display element, even if the same voltage is applied, there will be parts with strong electric field strength and parts with weak electric field strength within one pixel, so the liquid crystal will first be inverted in the parts with strong electric field strength. occurs, and then the reversal spreads to areas where the electric field is weak. For example, by applying an applied pulse that causes inversion only in areas where the electric field is strong and does not occur in areas where the electric field is weak, it is possible to control the gradation within one pixel. Further, if a bistable liquid crystal is used for the liquid crystal display element, this gradation can be memorized. Furthermore, since the reversal in the area where the electric field is strong becomes the nucleus and the reversal spreads, it is possible to obtain a display with better response than the conventional display.

このように、一つの画素内に不均一な電界を生じさせる
液晶表示素子は優れた特徴を有しているが、実際にどの
ようにして、一つの画素内に不均一な電界を生じさせる
かが問題となる。上記した特開昭62−231940号
公報には、電極表面に分散的な凹凸を設ける技術が開示
されている。
In this way, liquid crystal display elements that generate a non-uniform electric field within a single pixel have excellent features, but how do you actually generate a non-uniform electric field within a single pixel? becomes a problem. The above-mentioned Japanese Unexamined Patent Publication No. 62-231940 discloses a technique for providing distributed irregularities on the electrode surface.

すなわち、サンドグラス法によって電極表面を削ること
で粗面化したり、または均一導電膜上に部分的に導電物
質を付着させたりする技術である。
That is, this is a technique in which the electrode surface is roughened by scraping it using a sand glass method, or a conductive substance is partially attached on a uniform conductive film.

しかし、これらの電極表面に凹凸を設けることで、一つ
の画素内に不均一な電界を生じさせる液晶表示素子は、
製造工程での電極表面に凹凸を設ける工程がそれ自体、
手間のかかる工程であるので、従来のアクティブマトリ
ックスデイスプレィの欠点であった工程の複雑さを充分
解決したとはいえない。
However, liquid crystal display elements that create uneven electric fields within one pixel by providing unevenness on the surface of these electrodes,
The process of creating irregularities on the electrode surface during the manufacturing process itself
Since this is a time-consuming process, it cannot be said that the complexity of the process, which was a drawback of conventional active matrix displays, has been sufficiently solved.

また、特開昭62−262022号公報には、電極上に
誘電体膜を膜厚を変えて設けたり、あるいは誘電体膜を
不均一に積層することで、不均一な電界を生じさせる液
晶表示素子が開示されている。しかし、この液晶表示素
子も、その製造工程で、誘電体膜を膜厚を変えて設けた
り、あるいは誘電体膜を不均一に積層するという複雑な
工程を必要とする。
In addition, Japanese Patent Laid-Open No. 62-262022 discloses a liquid crystal display in which a non-uniform electric field is produced by providing a dielectric film with varying thickness on the electrode or by stacking the dielectric film non-uniformly. A device is disclosed. However, the manufacturing process of this liquid crystal display element also requires complicated steps such as providing dielectric films with varying thicknesses or non-uniformly stacking dielectric films.

[発明の要旨] 本発明の目的は、簡単な工程て製造することのできる、
一つの画素内に不均一な電界を生じさせる液晶表示素子
およびその製造法を提供することにある。
[Summary of the Invention] The object of the present invention is to produce
An object of the present invention is to provide a liquid crystal display element that generates a non-uniform electric field within one pixel, and a method for manufacturing the same.

上記の目的は、本発明の、透明電極上に配向膜を設けた
二枚の透明電極基板を配向膜を内側にして配置し、その
間に液晶を封入してなる液晶表示素子において、該配向
膜の少なくとも一方に、前記配向膜間の間隙よりも小さ
い粒径を有しかつ前記配向膜の誘電率と異なる誘電率を
有する絶縁性微粒子が含有されていることを特徴とする
液晶表示素子、 および、透明電極上に配向膜を設けた二枚の透明電極基
板を配向膜を内側にして配置し、その間に液晶を封入し
てなる液晶表示素子の製造法において、前記配向膜の少
なくとも一方を、前記配向膜の誘電率と異なる誘電率を
有する絶縁性微粒子を添加した配向膜形成塗布液を塗布
することにより形成することを特徴とする液晶表示素子
の製造法により達成することができる。
The above object is to provide a liquid crystal display element of the present invention in which two transparent electrode substrates each having an alignment film provided on a transparent electrode are arranged with the alignment film inside, and a liquid crystal is sealed between them. A liquid crystal display element characterized in that at least one of the above contains insulating fine particles having a particle size smaller than the gap between the alignment films and a dielectric constant different from that of the alignment films, and In a method for manufacturing a liquid crystal display element, in which two transparent electrode substrates each having an alignment film provided on a transparent electrode are arranged with the alignment film inside, and a liquid crystal is sealed between them, at least one of the alignment films is This can be achieved by a method for manufacturing a liquid crystal display element, which is characterized in that the alignment film is formed by applying an alignment film forming coating liquid to which insulating fine particles having a dielectric constant different from that of the alignment film are added.

本発明の液晶表示素子は、配向膜に該配向膜の誘電率と
は異なる誘電率を有する微粒子が含有されているので、
該微粒子によって配向膜上に微細な凹凸が形成される。
In the liquid crystal display element of the present invention, since the alignment film contains fine particles having a dielectric constant different from that of the alignment film,
The fine particles form fine irregularities on the alignment film.

配向膜とこの微粒子とでは誘電率が異なるから、同じ電
圧が印加されても、該微粒子のある部分とない部分とで
は生じる電界の強度が異なったものとなる。しかも、本
発明の液晶表示素子は、前述の電極表面に凹凸を設ける
工程や誘電体膜を設ける工程のかわりに、これらよりは
るかに簡単な工程、すなわち配向膜の誘電率と異なる誘
電率を有する微粒子が添加量れた配向膜形成塗布液を塗
布する工程、を行なう本発明の製造法により製造するこ
とができる。一般に、液晶表示素子の製造工程において
は配向膜を形成する工程があるので、本発明の液晶表示
素子の製造法は、塗布によって配向膜を形成する従来の
液晶表示素子の製造法とほとんど変るところがない。た
だ、配向膜形成塗布液に配向膜の誘電率と異なる誘電率
を有する微粒子を添加分散する工程が加わるだけである
Since the alignment film and the fine particles have different dielectric constants, even if the same voltage is applied, the strength of the electric field generated will be different between the areas where the fine particles are present and the areas where the fine particles are not present. Moreover, the liquid crystal display element of the present invention has a much simpler process than the above-mentioned process of providing unevenness on the electrode surface and the process of providing a dielectric film, that is, it has a dielectric constant different from that of the alignment film. It can be manufactured by the manufacturing method of the present invention, which includes the step of applying an alignment film forming coating liquid to which fine particles are added. Generally, the manufacturing process of a liquid crystal display element includes a step of forming an alignment film, so the manufacturing method of a liquid crystal display element of the present invention is almost different from the conventional manufacturing method of a liquid crystal display element in which an alignment film is formed by coating. do not have. However, a step of adding and dispersing fine particles having a dielectric constant different from that of the alignment film to the alignment film forming coating solution is added.

以下に本発明の好ましい態様を列記する。Preferred embodiments of the present invention are listed below.

(1)前記配向膜表面における前記微粒子の密度が10
〜1000個/ m m ”であることを特徴とする液
晶表示素子。
(1) The density of the fine particles on the surface of the alignment film is 10
1000 pieces/mm''.

(2)前記配向膜表面における前記微粒子の密度が10
0〜500個/ m m 2であることを特徴とする液
晶表示素子。
(2) The density of the fine particles on the surface of the alignment film is 10
A liquid crystal display element characterized in that the number of elements is 0 to 500 pieces/mm2.

(3)前記配向膜の膜厚nと前記微粒子の平均粒子径m
との比m/nが1.5〜10であることを特徴とする液
晶表示素子。
(3) Thickness n of the alignment film and average particle diameter m of the fine particles
A liquid crystal display element having a ratio m/n of 1.5 to 10.

(4)前記微粒子の誘電率が前記配向膜の誘電率の1.
3倍から15倍であることを特徴とする液晶表示素子。
(4) The dielectric constant of the fine particles is 1.0% of the dielectric constant of the alignment film.
A liquid crystal display element characterized by having a magnification of 3 to 15 times.

(5)前記微粒子の誘電率が前記配向膜の誘電率の1.
5倍から10倍であることを特徴とする液晶表示素子。
(5) The dielectric constant of the fine particles is 1.0% of the dielectric constant of the alignment film.
A liquid crystal display element characterized by having a magnification of 5 to 10 times.

(6)前記微粒子がシリカ粒子であることを特徴とする
液晶表示素子。
(6) A liquid crystal display element, wherein the fine particles are silica particles.

(7)前記配向膜が、ポリビニルアルコール、ゼラチン
、ポリイミド樹脂、ポリアミド樹脂およびポリエステル
樹脂からなる群より選ばれる少なくとも一つの有機高分
子物質であることを特徴とする液晶表示素子。
(7) A liquid crystal display element, wherein the alignment film is at least one organic polymeric substance selected from the group consisting of polyvinyl alcohol, gelatin, polyimide resin, polyamide resin, and polyester resin.

(8)前記液晶が、強誘電性を有する液晶であることを
特徴とする液晶表示素子。
(8) A liquid crystal display element, wherein the liquid crystal is a liquid crystal having ferroelectricity.

(9)前記微粒子の添加量が、固形分で配向膜材料の有
機高分子物質の1〜20%であることを特徴とする液晶
表示素子の製造法。
(9) A method for manufacturing a liquid crystal display element, characterized in that the amount of the fine particles added is 1 to 20% of the organic polymer substance of the alignment film material in terms of solid content.

(10)前記微粒子の誘電率が前記配向膜の誘電率の1
.3倍から15倍であることを特徴とする液晶表示素子
の製造法。
(10) The dielectric constant of the fine particles is 1 of the dielectric constant of the alignment film.
.. A method for manufacturing a liquid crystal display element, characterized in that it is 3 to 15 times larger.

(11)前記微粒子の誘電率が前記配向膜の誘電率の1
.5倍から10倍であることを特徴とする液晶表示素子
の製造法。
(11) The dielectric constant of the fine particles is 1 of the dielectric constant of the alignment film.
.. A method for manufacturing a liquid crystal display element, characterized in that it is 5 to 10 times larger.

(12)前記微粒子がコロイダルシリカ粒子であること
を特徴とする液晶表示素子の製造法。
(12) A method for manufacturing a liquid crystal display element, wherein the fine particles are colloidal silica particles.

(13)前記微粒子が表面改質されていることを特徴と
する液晶表示素子の製造法。
(13) A method for manufacturing a liquid crystal display element, characterized in that the fine particles are surface-modified.

[発明の構成] 添付図面を参照しながら本発明の液晶表示素子の構成に
ついて説明する。
[Configuration of the Invention] The configuration of the liquid crystal display element of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明の液晶表示素子の一例を示す断面図で
ある。ガラス基板1a、lb上に透明電極2a、2b、
配向膜3a、3bを、それぞれ、この順に重ねて設けら
れた2枚の透明電極基板5.6が液晶層7を介して、互
いに配向膜が内側になるように向いあっている。下側の
透明電極基板6の配向膜3bには配向膜3bの誘電率と
は異なる誘電率を有する微粒子4が含まれているので、
微粒子4によって配向膜3bと液晶層7との界面には凹
凸が形成されている。配向膜3bと微粒子4とでは誘電
率が異なるから、透明電極2aと2bとの間に電圧が印
加されると、微粒子4のある部分とない部分とでは異な
フた強度の電界が生じることになる。
FIG. 1 is a sectional view showing an example of the liquid crystal display element of the present invention. Transparent electrodes 2a, 2b on glass substrates 1a, lb,
Two transparent electrode substrates 5.6 each having alignment films 3a and 3b stacked on top of each other in this order face each other with the liquid crystal layer 7 in between, with the alignment films facing inside. Since the alignment film 3b of the lower transparent electrode substrate 6 contains fine particles 4 having a dielectric constant different from that of the alignment film 3b,
The fine particles 4 form irregularities at the interface between the alignment film 3b and the liquid crystal layer 7. Since the alignment film 3b and the fine particles 4 have different dielectric constants, when a voltage is applied between the transparent electrodes 2a and 2b, electric fields with different strengths are generated in areas where the fine particles 4 are present and where they are not. Become.

本発明の液晶表示素子は第1図に示したものだけでなく
、上下両方の配向膜に前記微粒子が含有されていてもよ
い。さらに本発明の液晶表示素子は、電気絶縁層を設け
たり、スペーサーを使用したり、また目的に応じて、偏
光板、カラーフィルターを設けたりといった通常の液晶
表示素子について行なわれる態様が、すべて可能である
。特に、両配向膜間の間隙(すなわち液晶層の層厚)を
確保するためにスペーサーが使用されることは好ましい
。スペーサーとしては、ガラスファイバー、ガラス・ビ
ーズ、プラスチック・ビーズ、アルミナ微粒子などが用
いられる。液晶層の層厚は、用いられる液晶によって異
なるが、TN液晶では5〜10μm、STN液晶では6
〜Bpm。
The liquid crystal display element of the present invention is not limited to the one shown in FIG. 1, and the fine particles may be contained in both the upper and lower alignment films. Furthermore, the liquid crystal display element of the present invention can be adapted to all the aspects that are used for ordinary liquid crystal display elements, such as providing an electrical insulating layer, using a spacer, and depending on the purpose, providing a polarizing plate and a color filter. It is. In particular, it is preferable to use a spacer to ensure a gap between both alignment films (ie, the thickness of the liquid crystal layer). As the spacer, glass fiber, glass beads, plastic beads, alumina fine particles, etc. are used. The thickness of the liquid crystal layer varies depending on the liquid crystal used, but it is 5 to 10 μm for TN liquid crystal and 6 μm for STN liquid crystal.
~Bpm.

強誘電性液晶では2μm程度が一般的である。For ferroelectric liquid crystals, the thickness is generally about 2 μm.

本発明の液晶表示素子に用いられるガラス基板、透明電
極、液晶は、すべて従来から液晶表示素子に用いられて
いる公知のものが利用できる。
As the glass substrate, transparent electrode, and liquid crystal used in the liquid crystal display element of the present invention, known materials conventionally used in liquid crystal display elements can be used.

例えば、ガラス基板としては、平滑性の良好なフロート
ガラスを、透明電極としては、酸化インジウム(xn2
o*)、酸化スズ(SnO2)およびITO(インジウ
ム・スズ・オキサイド)等を挙げることができる。
For example, the glass substrate may be float glass with good smoothness, and the transparent electrode may be indium oxide (xn2
o*), tin oxide (SnO2), and ITO (indium tin oxide).

また、本発明に用いられる液晶は、従来より液晶表示素
子に用いられているものが利用できるが、特に好ましい
のは、強誘電性液晶である。
Further, as the liquid crystal used in the present invention, those conventionally used in liquid crystal display elements can be used, but ferroelectric liquid crystal is particularly preferable.

強誘電性を有する液晶は、具体的にはカイラルスメクテ
ィクC相(SmC” )、H相(SmH@)、I相(S
ml” )、J相(SmJ” )、K相(SmK’ )
、G相(SmG” )またはF相(SmF” )を有す
液晶である。具体的な液晶組成物としては、チッソ■製
のC5−1011、C5−1013、C5−1015、
メルク社製のZL l−3488、ZLI−3489、
帝国化学産業■製のHS−98P、HS−78P (い
ずれも商品名)などを挙げることができるが、これに限
定されるものではない。これらの液晶の中には液晶に溶
解する二色性染料、減粘剤等を添加しても何ら支障はな
い。
Specifically, liquid crystals having ferroelectric properties include chiral smectic C phase (SmC”), H phase (SmH@), and I phase (SmC”).
ml"), J phase (SmJ"), K phase (SmK')
, G phase (SmG'') or F phase (SmF''). Specific liquid crystal compositions include C5-1011, C5-1013, C5-1015 manufactured by Chisso ■,
ZL l-3488, ZLI-3489 manufactured by Merck & Co., Ltd.
Examples include, but are not limited to, HS-98P and HS-78P (all trade names) manufactured by Teikoku Kagaku Sangyo ■. There is no problem in adding dichroic dyes, viscosity reducers, etc. which are soluble in the liquid crystal to these liquid crystals.

また、配向膜材料は用いる液晶によって適宜選択される
が、ポリビニルアルコール、ゼラチン、ポリイミド樹脂
、ポリアミド樹脂およびポリエステル樹脂からなる群よ
り選ばれる少なくとも一つの有機高分子物質であること
が好ましい。また、配向膜の膜厚も用いる液晶によって
異なるが、200人〜2000人が好ましい。
Further, the alignment film material is appropriately selected depending on the liquid crystal used, but is preferably at least one organic polymeric substance selected from the group consisting of polyvinyl alcohol, gelatin, polyimide resin, polyamide resin, and polyester resin. The thickness of the alignment film also varies depending on the liquid crystal used, but is preferably 200 to 2000.

本発明の液晶表示素子の少なくとも一つの配向膜には、
配向膜間の間隙よりも小さい粒径を有しかつ配向膜の誘
電率とは異なる誘電率を有する微粒子が含有されている
。この微粒子の誘電率は、液晶表示素子の電極間の間隙
の厚さ、用いられる液晶の種類などによって異なるが、
用いられる配向膜の誘電率の1.3倍から15倍が適当
であり、1.5倍から10倍が好ましい。具体的には、
酸化チタン (比誘電率:6以上)、酸化便船(比誘電
率:8〜11)、酸化ジルコニウム (比誘電率=11
〜13)、酸化アルミニウム (比誘電率:9〜12)
および酸化ケイ素(シリカ) (比誘電率:4.5〜5
.5)などから、両配向膜間の間隙の厚さ、用いられる
液晶の種類、また後述する製造工程における配向膜形成
材料塗布液に対する分散性などによって適宜選択される
At least one alignment film of the liquid crystal display element of the present invention includes:
Contains fine particles having a particle size smaller than the gap between the alignment films and a dielectric constant different from that of the alignment films. The dielectric constant of these fine particles varies depending on the thickness of the gap between the electrodes of the liquid crystal display element, the type of liquid crystal used, etc.
The dielectric constant is suitably 1.3 to 15 times the dielectric constant of the alignment film used, preferably 1.5 to 10 times. in particular,
Titanium oxide (relative permittivity: 6 or more), oxidized carrier (relative permittivity: 8 to 11), zirconium oxide (relative permittivity = 11)
~13), aluminum oxide (relative permittivity: 9~12)
and silicon oxide (silica) (relative dielectric constant: 4.5-5
.. 5), etc., it is appropriately selected depending on the thickness of the gap between both alignment films, the type of liquid crystal used, and the dispersibility in the alignment film forming material coating liquid in the manufacturing process described later.

配向膜表面における上記微粒子の密度は10〜1000
個/m m2であることが好ましく、さらに好ましくは
!00〜SOO個/ mm2である。
The density of the fine particles on the surface of the alignment film is 10 to 1000.
pcs/m m2, more preferably! 00~SOO pieces/mm2.

この微粒子の粒径は、不均一な強度の電界を液晶にかけ
るという意味から、当然、両配向膜間の間隙(すなわち
、液晶層の層厚)よりも小さくなくてはならない。この
微粒子の粒径は、配向膜の膜厚の1.5倍から10倍が
好ましい。
Naturally, the particle size of the fine particles must be smaller than the gap between the two alignment films (ie, the thickness of the liquid crystal layer) in order to apply an electric field of non-uniform strength to the liquid crystal. The particle size of the fine particles is preferably 1.5 to 10 times the thickness of the alignment film.

次に、本発明の液晶表示素子の製造法について述べる。Next, a method for manufacturing the liquid crystal display element of the present invention will be described.

本発明の液晶表示素子の製造法は、素子に用いられる配
向膜の誘電率と異なる誘電率を有する絶縁性微粒子を配
向膜形成材料塗布液中に分散添加すること以外は、塗布
によって配向膜を形成する従来の製造法と全く変らない
製造法である。すなわち、透明基板上に透明電極を常法
に従って設け、さらにその上に、配向膜の誘電率と異な
る誘電率を有する絶縁性微粒子を分子11.添加した配
向膜形°酸塗布液を塗布し、さらに加熱処理することで
配向膜を設ける。この際、この微粒子の添加量は、固形
分で、配向膜材料である上記有機高分子物質の1〜20
%であることが好ましい。また、上記したような強誘電
性液晶の場合、この微粒子はシリカ粒子であることが好
ましいが、直接シリカ粉末を配向膜形成塗布液に添加す
るよりも、コロイダルシリカを添加した方が分散性が良
くなるため好ましい。
The method for manufacturing a liquid crystal display element of the present invention is to form an alignment film by coating, except that insulating fine particles having a dielectric constant different from that of the alignment film used in the element are dispersed and added to the alignment film forming material coating liquid. The manufacturing method is completely the same as the conventional manufacturing method. That is, a transparent electrode is provided on a transparent substrate according to a conventional method, and insulating fine particles having a dielectric constant different from the dielectric constant of the alignment film are added thereon with molecules 11. An alignment film is provided by applying the added alignment film-forming acid coating solution and further heat-treating. At this time, the amount of the fine particles added is 1 to 20% of the organic polymer material as the alignment film material in terms of solid content.
% is preferable. In addition, in the case of the above-mentioned ferroelectric liquid crystal, the fine particles are preferably silica particles, but adding colloidal silica improves dispersibility rather than directly adding silica powder to the alignment film forming coating solution. It is preferable because it improves.

コロイダルシリカとしては、エアロゾル、スノテックス
(日産化学■製)、オルガノゾル(触媒化成■製)、ル
ドックス(デュポン社製)を挙げることができる。
Examples of colloidal silica include Aerosol, Snotex (manufactured by Nissan Chemical Industries, Ltd.), Organosol (manufactured by Catalyst Kasei Corporation), and Ludox (manufactured by DuPont).

また、上記微粒子が配向膜中に均一に分散し、かつ配向
膜を形成する材質と微粒子との界面で亀裂が発生するこ
とを防ぐため、コロイダルシリカを使用する場合は、ア
ミン、エポキシなどで表面改質されたコロイダルシリカ
を使用することが好ましい。また、他の微粒子を使用す
る場合も、シランカップリング剤などの表面改質剤で処
理された微粒子を利用することが好ましい。
In addition, in order to ensure that the above-mentioned fine particles are uniformly dispersed in the alignment film and to prevent cracks from occurring at the interface between the fine particles and the material that forms the alignment film, when using colloidal silica, the surface is coated with amine, epoxy, etc. Preference is given to using modified colloidal silica. Also, when using other fine particles, it is preferable to use fine particles treated with a surface modifier such as a silane coupling agent.

配向膜は透明電極上に直接設けてもよいし、透明電極の
上に電気絶縁層など他の機能を有する膜を設け、この層
上に設けてもよい。また、使用目的に応じて、偏光板、
カラーフィルターなど、従来の液晶表示素子に設けられ
る機能を設けることができるのは前記したとおりである
The alignment film may be provided directly on the transparent electrode, or a film having other functions such as an electrically insulating layer may be provided on the transparent electrode and provided on this layer. In addition, depending on the purpose of use, polarizing plates,
As described above, functions provided in conventional liquid crystal display elements, such as color filters, can be provided.

このようにして設けられた配向膜はナイロン、ポリエス
テル、ポリアクリロニトリロのような合成繊維、綿、羊
毛のような天然繊維でラビング処理されることが好まし
い。
The alignment film thus provided is preferably rubbed with synthetic fibers such as nylon, polyester, and polyacrylonitrile, and natural fibers such as cotton and wool.

上記のようにして製造した、透明基板、透明電極および
配向膜からなる一対の透明電極基板を、配向膜が内側に
なるようにして液晶をはさんで相対させる。この際、液
晶層の層厚を確保するために、両透明電極基板間にはス
ペーサーが分散介在されることが好ましいことは上記し
た。
A pair of transparent electrode substrates manufactured as described above, each consisting of a transparent substrate, a transparent electrode, and an alignment film, are placed facing each other with the liquid crystal sandwiched therebetween, with the alignment film facing inside. As mentioned above, in this case, in order to ensure the thickness of the liquid crystal layer, spacers are preferably dispersed and interposed between both transparent electrode substrates.

次に本発明の実施例を記載する。ただし、本発明はこれ
に限定されるものではない。
Next, examples of the present invention will be described. However, the present invention is not limited to this.

[実施例1] 二枚の厚さ0.7mmのガラス板のそれぞれに、インジ
ウム−スズ酸化物(ITO)の膜を形成した。このIT
O膜付きのガラス板のどちらにも、次の組成の塗布液を
スピナーで塗布した。
[Example 1] An indium-tin oxide (ITO) film was formed on each of two 0.7 mm thick glass plates. This IT
A coating solution having the following composition was applied to both of the glass plates with the O film using a spinner.

塗布液: ポリカーボネート・・・・・1.5%(重量部)(三菱
瓦斯化学■製ニーピロンS−2000)(ポリカーボネ
ートの比誘電率=3) デメチルホルムアミド・・・・50%(重量部)2−メ
チルピロリドン・・48.5%(重量部)アミン変性 コロイド状シリカ・・・・・0.2%(重量部)(固形
成分30%;触媒化成■製) (シリカの比誘電率:約5) スピナーの条件は、回転数2000 r、p、m、、時
間30秒であった。塗布後、約1時間150°Cで加熱
処理した。この塗膜の厚さは、どちらも約500人(0
,05μm)であフた。両方ともに、膜面をナイロンの
植毛布でラビング処理し、フロン液で洗浄した。次に、
平均粒径2μmのプラスチック・ビーズを一方のガラス
板に散布した。それぞれのラビング処理面を内側にして
、二枚のガラス板を重ね合せてセルを作成した。
Coating liquid: Polycarbonate: 1.5% (parts by weight) (Niepilon S-2000 manufactured by Mitsubishi Gas Chemical ■) (relative permittivity of polycarbonate = 3) Demethylformamide: 50% (parts by weight) 2-Methylpyrrolidone...48.5% (parts by weight) Amine-modified colloidal silica...0.2% (parts by weight) (solid component 30%; manufactured by Catalyst Kasei ■) (Relative permittivity of silica: Approximately 5) The spinner conditions were: rotation speed 2000 r, p, m, and time 30 seconds. After coating, heat treatment was performed at 150°C for about 1 hour. The thickness of this coating film is approximately 500 people (0
, 05 μm). In both cases, the membrane surface was rubbed with a nylon flocked cloth and washed with a fluorocarbon solution. next,
Plastic beads with an average particle size of 2 μm were sprinkled onto one glass plate. A cell was created by stacking two glass plates with their respective rubbed surfaces facing inside.

このセルの厚さは1.8μmであった。このセルにフェ
ニルエステル系強誘電性液晶であるチッソ■製のC31
013を注入し、95℃に加熱した後、3℃/分の割り
合いで徐冷した。
The thickness of this cell was 1.8 μm. This cell uses C31 manufactured by Chisso, which is a phenyl ester ferroelectric liquid crystal.
013 was injected, heated to 95°C, and then slowly cooled at a rate of 3°C/min.

このようにして本発明の製造法により得た液晶表示素子
を、直交ニコル化で観察したところ、液晶は均一な配向
を示していた。
When the liquid crystal display element thus obtained by the manufacturing method of the present invention was observed under cross Nicolization, the liquid crystal showed uniform alignment.

この実施例1から明らかなように、シリカを配向膜に含
有させても配向膜は液晶を均一に配向させることができ
、従って、配向膜の誘電率とは異なる誘電率を有する絶
縁性微粒子を配向膜に含有させることで、一つの画素内
に不均一な電界を生じさせる液晶表示素子を得ることが
できる。また、実施例1より、本発明の液晶表示素子の
製造法は、従来の一つの画素内に不均一な電界を生じさ
せる液晶表示素子の製造法よりも、簡単な工程であるこ
とが確認された。
As is clear from this Example 1, even if the alignment film contains silica, the alignment film can align liquid crystals uniformly, and therefore, insulating fine particles having a dielectric constant different from that of the alignment film can be formed. By including it in the alignment film, it is possible to obtain a liquid crystal display element that generates a non-uniform electric field within one pixel. Furthermore, from Example 1, it was confirmed that the method for manufacturing a liquid crystal display element of the present invention is a simpler process than the conventional method for manufacturing a liquid crystal display element that generates a non-uniform electric field within one pixel. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の液晶表示素子の構成例を模式的に示
す断面図である。 1a、1b=ガラス基板 2a、2b=透明電極 3a、3b:配向膜 4:微粒子 5.6:透明電極基板 7:液晶 特許出願人 富士写真フィルム株式会社代 理 人 弁
理士  柳川 秦男
FIG. 1 is a cross-sectional view schematically showing a configuration example of a liquid crystal display element of the present invention. 1a, 1b = Glass substrates 2a, 2b = Transparent electrodes 3a, 3b: Alignment film 4: Fine particles 5.6: Transparent electrode substrate 7: Liquid crystal patent applicant Fuji Photo Film Co., Ltd. Agent Patent attorney Hatao Yanagawa

Claims (1)

【特許請求の範囲】 1、透明電極上に配向膜を設けた二枚の透明電極基板を
配向膜を内側にして配置し、その間に液晶を封入してな
る液晶表示素子において、該配向膜の少なくとも一方に
、前記配向膜間の間隙よりも小さい粒径を有しかつ前記
配向膜の誘電率と異なる誘電率を有する絶縁性微粒子が
含有されていることを特徴とする液晶表示素子。 2、透明電極上に配向膜を設けた二枚の透明電極基板を
配向膜を内側にして配置し、その間に液晶を封入してな
る液晶表示素子の製造法において、前記配向膜の少なく
とも一方を、前記配向膜の誘電率と異なる誘電率を有す
る絶縁性微粒子を添加した配向膜形成塗布液を塗布する
ことにより形成することを特徴とする液晶表示素子の製
造法。
[Claims] 1. In a liquid crystal display element in which two transparent electrode substrates each having an alignment film provided on a transparent electrode are arranged with the alignment film inside, and a liquid crystal is sealed between them, the alignment film is A liquid crystal display element characterized in that at least one of the layers contains insulating fine particles having a particle size smaller than the gap between the alignment films and a dielectric constant different from that of the alignment films. 2. In a method for manufacturing a liquid crystal display element, in which two transparent electrode substrates each having an alignment film provided on a transparent electrode are arranged with the alignment film inside, and a liquid crystal is sealed between them, at least one of the alignment films is . A method for manufacturing a liquid crystal display element, characterized in that the liquid crystal display element is formed by applying an alignment film forming coating liquid to which insulating fine particles having a dielectric constant different from that of the alignment film are added.
JP17242188A 1988-07-11 1988-07-11 Liquid crystal display element and its production Pending JPH0222623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17242188A JPH0222623A (en) 1988-07-11 1988-07-11 Liquid crystal display element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17242188A JPH0222623A (en) 1988-07-11 1988-07-11 Liquid crystal display element and its production

Publications (1)

Publication Number Publication Date
JPH0222623A true JPH0222623A (en) 1990-01-25

Family

ID=15941655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17242188A Pending JPH0222623A (en) 1988-07-11 1988-07-11 Liquid crystal display element and its production

Country Status (1)

Country Link
JP (1) JPH0222623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128501A (en) * 2003-09-08 2005-05-19 Bridgestone Corp Image display panel and image display apparatus
JP2008032242A (en) * 2006-07-26 2008-02-14 Calsonic Kansei Corp Radiator with built-in oil cooler
JP2008268309A (en) * 2007-04-16 2008-11-06 Tokyo Univ Of Science Liquid crystal display element and material for alignment layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128501A (en) * 2003-09-08 2005-05-19 Bridgestone Corp Image display panel and image display apparatus
JP2008032242A (en) * 2006-07-26 2008-02-14 Calsonic Kansei Corp Radiator with built-in oil cooler
JP2008268309A (en) * 2007-04-16 2008-11-06 Tokyo Univ Of Science Liquid crystal display element and material for alignment layer

Similar Documents

Publication Publication Date Title
JP2530432B2 (en) Liquid crystal element
US5559619A (en) Liquid crystal electro-optical device and manufacturing method for the same
JP4790121B2 (en) Monostable ferroelectric active matrix display
JPH0222623A (en) Liquid crystal display element and its production
CN1797148A (en) In-plane switching mode liquid crystal display device and fabrication method thereof
US6392624B1 (en) Method of driving liquid crystal device
JPH0457025A (en) Oriented film and liquid crystal element
JPS63237031A (en) Liquid crystal display element
JPH04284423A (en) Orientation controlling film and liquid crystal element
KR20000077112A (en) Monostable Ferroelectric Liquid Crystal Display Apparatus
JP2001226674A (en) Monostable ferroelectric liquid crystal display device
JP2550054B2 (en) Ferroelectric smectic liquid crystal electro-optical device
JPH0372323A (en) Manufacture of liquid crystal display element
JP3308071B2 (en) Liquid crystal element
JPH0348817A (en) Liquid crystal electro-optical element
JP2000336361A (en) Monostable, ferroelectric, liquid crystal display
JPH0836165A (en) Ferroelectric liquid crystal element and liquid crystal device using that
JPH10288787A (en) Liquid crystal element
JP3153281B2 (en) Vertical alignment treatment method for liquid crystal molecules
JP2819814B2 (en) Ferroelectric liquid crystal panel
JPH03168724A (en) Ferroelectric liquid crystal electro-optical device
JPH04241323A (en) Liquid crystal oriented film
JP2002098974A (en) Liquid crystal display device and method for manufacturing the same
JPH0675228A (en) Liquid crystal element
JPH08227076A (en) Liquid crystal display element and information transmission device having the liquid crystal display element