JPH0472016A - Production of fe-co foil having high saturation magnetic flux density - Google Patents

Production of fe-co foil having high saturation magnetic flux density

Info

Publication number
JPH0472016A
JPH0472016A JP2045623A JP4562390A JPH0472016A JP H0472016 A JPH0472016 A JP H0472016A JP 2045623 A JP2045623 A JP 2045623A JP 4562390 A JP4562390 A JP 4562390A JP H0472016 A JPH0472016 A JP H0472016A
Authority
JP
Japan
Prior art keywords
foil
magnetic field
cooling
magnetic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2045623A
Other languages
Japanese (ja)
Inventor
Hiroshi Shishido
宍戸 浩
Masayoshi Ishida
昌義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2045623A priority Critical patent/JPH0472016A/en
Publication of JPH0472016A publication Critical patent/JPH0472016A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce the foil excellent in magnetic properties and workability by preparing a foil from a molten Fe-Co alloy having specific Co content by means of liquisol quenching, performing recrystallization annealing while applying a magnetic field to the above foil under specific conditions, and then carrying out cooling. CONSTITUTION:A foil is prepared by means of liquisol quenching from a molten Fe-Co alloy containing 25-65wt.% Co as an essential component. Subsequently, recrystallization annealing is exerted at a temp. in the range between the temp. higher than the superlattice forming temp. of this alloy system and the temp. lower than the Curie point while applying a magnetic field of >=100A/m to the above foil, and then, cooling is carried out at >=100 deg.C/mm cooling rate. By this method, the coiled foil having >= about 30000 maximum magnetic peameability and capable of about 180 deg. bending can be produced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、Fe−Co系高飽和磁束密度yiwの製造方
法に係わり、特に薄板で一方向性を必要とする電子機器
用部品の磁性材料等に有用な薄帯の製造方法に関するも
のである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for producing Fe-Co-based high saturation magnetic flux density yiw, particularly for magnetic materials for parts of electronic devices that are thin plates and require unidirectionality. The present invention relates to a method for manufacturing a thin ribbon useful for applications such as the following.

〈従来の技術〉 Fe−Co系合金は高飽和磁束密度を有する軟磁性材t
−1として顕著であるが、この合金は730’C以下で
FeとCoの比率が1;1のCsC1型の規則格子合金
を生成する。規則格子ができると、この合金は極めて跪
くなり冷間加工が困難になるので、これを改善するため
に、第3成分として様々な元素の添加が試みられたが、
■、Cr等以外はすべて否定的であった。また、この2
つの元素にしても実際生産においては必ずしも効果のあ
るものではなかった。
<Prior art> Fe-Co alloy is a soft magnetic material with high saturation magnetic flux density.
-1, this alloy forms a CsC1-type ordered lattice alloy with a Fe:Co ratio of 1:1 at temperatures below 730'C. Once a regular lattice is formed, this alloy becomes extremely unstable and becomes difficult to cold work. To improve this, attempts have been made to add various elements as a third component.
All tests other than ■, Cr, etc. were negative. Also, these 2
Even if one element was used, it was not necessarily effective in actual production.

すなわち、この合金系は熱間圧延が可能であるが、熱間
圧延後に急冷を行うと跪くなってコイルの巻戻し時に仮
割れが住しることになる。またマイクロクランク等も多
く入り冷間圧延は不可能に近い、従ってコイル状での製
板が困難で、最近までは単板で製造されてきた。
That is, although this alloy system can be hot-rolled, if it is rapidly cooled after hot-rolling, it will collapse and temporary cracks will occur when the coil is unwound. In addition, there are many micro-cranks, etc., making cold rolling nearly impossible, making it difficult to produce sheets in coil form, and until recently they have been manufactured as single sheets.

また極めて最近、この合金のコイル状での製板が報告(
日立金属技報、  3 (1986) 20.1された
Also, very recently, sheet manufacturing of this alloy in the form of a coil has been reported (
Hitachi Metals Technical Report, 3 (1986) 20.1.

それによれば■添加と言えどもコイルはルーズに巻取り
、熱延後や熱処理の度毎に塩水中にコイルごとしやぼ漬
けして9冷する必要がある。従ってこの場合のコイル製
造は極めて煩雑なものである。
According to this, even though it is additive, the coil must be wound loosely, and after each hot rolling or heat treatment, the coil must be immersed in salt water for 9 hours to cool down. Therefore, manufacturing the coil in this case is extremely complicated.

そしてこのようにして作製したコイルは、最終焼鈍後に
徐冷処理を施すことによって、最大透磁率は30000
−40000を得ることができるが、熱処理後の徐冷は
、規則格子を生成し易く、そのために跪(なって加工で
きないものである。
The coil produced in this way has a maximum permeability of 30,000 by performing slow cooling treatment after final annealing.
-40,000, but slow cooling after heat treatment tends to produce regular lattice, which makes it impossible to process.

〈発明が解決しようとする課題〉 本発明の目的は、Fe−Co系合金において薄帯を製造
する上での従来の工程上の煩雑さを回避し、磁気的特性
と加工性の優れた薄帯の製造方法を提案することである
<Problems to be Solved by the Invention> The purpose of the present invention is to avoid the complexity of the conventional process for producing thin strips using Fe-Co alloys, and to produce thin strips with excellent magnetic properties and workability. The purpose is to propose a method for manufacturing obi.

〈課題を解決するための手段〉 すなわち、本発明は、主成分としてCoを25〜65w
t%含有するFe −Co系合金の溶湯から液体角、冷
性によって得た薄帯に100A/m以上の磁場を印加し
つつ、該合金系の規則格子生成温度より高く、キューリ
ー点より低い湿炭範囲内で再結晶焼鈍を施し、その後1
00’C/−以上の冷却速度で冷却することを特徴とす
るFe −Co系高飽和磁束密度薄帯の製造方法である
<Means for Solving the Problems> In other words, the present invention uses Co as a main component at 25 to 65w.
While applying a magnetic field of 100 A/m or more to a thin ribbon obtained from a molten Fe-Co alloy containing t% by liquid angle cooling, the temperature is higher than the ordered lattice formation temperature of the alloy and lower than the Curie point. Recrystallization annealing is performed within the charcoal range, and then 1
This is a method for producing a Fe--Co-based high saturation magnetic flux density ribbon characterized by cooling at a cooling rate of 00'C/- or more.

く作 用〉 以下にこの発明について詳細に説明する。For Kusaku This invention will be explained in detail below.

まず、合金素材の成分組成を限定した理由を説明する。First, the reason for limiting the composition of the alloy material will be explained.

Fe −Co系合金は、35〜40%Co付近の組成で
最も飽和磁束密度が大きくなり、また50%Co付近の
組成で最大透磁率が最大、保磁力が最小となるなど、軟
磁気特性が良好となる。従ってCo含有量は目的に応じ
てこの周囲の組成を選ぶことができるが、25%未満あ
るいは65%を超える組成では、高飽和磁束密度かつ良
好な軟磁性という要求を両立できなくなるために、Co
の組成は25〜65%の範囲に限定した。
Fe-Co alloys have soft magnetic properties, such as the highest saturation magnetic flux density at a composition around 35-40% Co, and the highest maximum permeability and lowest coercive force at a composition around 50% Co. Becomes good. Therefore, the Co content can be selected around this composition depending on the purpose, but if the Co content is less than 25% or more than 65%, it will not be possible to satisfy both the requirements of high saturation magnetic flux density and good soft magnetism.
The composition was limited to a range of 25 to 65%.

また、■、Cr、 Nb、 Mo、 Ta、 Wおよび
Niは、Fe−Co系合金の靭性を改善し、加工性を向
上させる上で同効であるが、単独あるいは複合添加のい
ずれの場合においても添加量が0.05%未満ではその
添加効果に乏しく、一方、5,0%を超えると軟磁性の
著しい低下を招くのみならず、靭性をかえって劣化させ
る場合もあるので、0.05〜5.0%の範囲で添加す
ることができる。
In addition, Cr, Nb, Mo, Ta, W, and Ni have the same effect on improving the toughness and workability of Fe-Co alloys, but when added alone or in combination, If the amount added is less than 0.05%, the effect of the addition will be poor, while if it exceeds 5.0%, it will not only cause a significant decrease in soft magnetism, but may even deteriorate the toughness. It can be added within a range of 5.0%.

次いで本発明によれば成分を調整したFe −Co系合
金を溶融状態とした後、液体急冷法、例えばこの溶融金
属を連続して移動する冷却体上にノズルを介して射出し
て急速凝固することによって、0.5閣以下の急冷薄帯
とする。この急冷薄帯は凝固直後に1000°C前後の
高温であるが、2次冷却として板の搬送過程で水をかけ
ることが望ましい。
Next, according to the present invention, the Fe-Co alloy whose composition has been adjusted is brought into a molten state, and then the molten metal is rapidly solidified by a liquid quenching method, for example, by injecting the molten metal onto a continuously moving cooling body through a nozzle. By doing so, it is possible to obtain a quenched ribbon with a thickness of 0.5 or less. Although this quenched ribbon is at a high temperature of around 1000° C. immediately after solidification, it is desirable to spray water on it during the conveyance process for secondary cooling.

こうすることにより容易にコイル巻き取り後の温度を室
温〜100℃程度の範囲にすることができる。
By doing so, the temperature after winding the coil can be easily set in the range of room temperature to about 100°C.

この段階での板は掻めて靭性に富み180°曲げ、冷間
圧延、軽い深絞りなども可能である。
The plate at this stage has excellent toughness and can be bent 180 degrees, cold rolled, and lightly deep drawn.

この凝固状態での板は、第1図(a)に示すように結晶
粒径も微細である。なお板の組成はCo 49.2wt
%、V 1.87 wt%残部実質的にFeで薄帯の板
厚は48.である0次にこの板に対して875°C・2
時間の焼鈍を施すと第1図(b)に示すように粒成長が
生じ結晶粒径は粗大化する。この時の冷却は焼鈍後の扱
いで割れを生じさせないために強制冷却された。この段
階での最大透磁率は10000〜20000程度である
。 i、冷薄帯は特定方向の結晶粒が優先成長した集合
組織を示すものではないので、最大透磁率は結晶粒径そ
のものに大きく依存する。
The plate in this solidified state also has a fine crystal grain size, as shown in FIG. 1(a). The composition of the plate is Co 49.2wt.
%, V 1.87 wt% The balance is essentially Fe and the thickness of the ribbon is 48. 875°C・2 for this plate to the 0th order
When annealing is performed for a certain period of time, grain growth occurs and the crystal grain size becomes coarse, as shown in FIG. 1(b). At this time, forced cooling was used to prevent cracking during handling after annealing. The maximum magnetic permeability at this stage is about 10,000 to 20,000. i. Since the cold ribbon does not exhibit a texture in which crystal grains preferentially grow in a particular direction, the maximum magnetic permeability largely depends on the crystal grain size itself.

次に上述の薄帯に875°C・2時間の焼鈍を施した後
の冷却速度を変化させた場合の最大透磁率と冷却速度の
関係を第2図に示す、特定の冷却速度で最大透磁率は最
大〜30000の値を示す、この時には、1801曲げ
が不可能であることから、この特性向上は規則格子の生
成と関係していると推定される。
Next, Figure 2 shows the relationship between the maximum permeability and the cooling rate when the cooling rate is varied after annealing the above-mentioned ribbon at 875°C for 2 hours. The magnetic constant shows a maximum value of ~30,000, and since 1801 bending is impossible at this time, it is presumed that this property improvement is related to the formation of a regular lattice.

次に急速凝固した上述と同一組成の薄帯に対して磁場中
で焼鈍した場合の磁気特性に及ぼす焼鈍温度および印加
磁場の影響について第3図に示す。
Next, FIG. 3 shows the effects of annealing temperature and applied magnetic field on magnetic properties when a rapidly solidified ribbon having the same composition as above is annealed in a magnetic field.

焼鈍は^r雰囲気中で10時間行った。また、磁場中焼
鈍後の冷却速度は300’C/mとした。規則相生底温
度とキューリー温度の間の温度範囲で磁場中焼鈍の効果
が顕著に現れていることがわかる。
Annealing was performed in a ^r atmosphere for 10 hours. Further, the cooling rate after annealing in a magnetic field was 300'C/m. It can be seen that the effect of magnetic field annealing is noticeable in the temperature range between the bottom temperature of the ordered phase and the Curie temperature.

磁気特性の向上が得られる理由は、この焼鈍中にFe、
 Co原子の磁場方向への方向性規則配列がなされるた
めと考えられる。この方向性規則配列とは、Fe−Fe
、 Fe−Co、 Co−Goの最近接ベアーのいずれ
かが、磁場方向とその直角方向で差異を示すことをいう
。そして、印加磁場の影響によって最も磁化し易いベア
ーが磁場方向へ揃うことになる。
The reason why the magnetic properties are improved is that Fe,
This is thought to be due to the fact that the Co atoms are oriented in a regular array in the direction of the magnetic field. This directional regular arrangement is Fe-Fe
, Fe-Co, and Co-Go exhibit a difference in the direction of the magnetic field and the direction perpendicular to it. Then, due to the influence of the applied magnetic field, the bears that are most easily magnetized are aligned in the direction of the magnetic field.

このことによって印加磁場方向への磁気特性が改善され
る。
This improves the magnetic properties in the direction of the applied magnetic field.

従って本発明においては、焼鈍温度はキューリー点〜規
則格子生成温度の範囲とする。キューリー点以上の温度
であると、印加磁場の効果が少なく最大透磁率を向上さ
ゼるには至らない。また規則格子生成温度以下の温度で
あると、磁場中焼鈍の方向性規則配列の効果が規則格子
の生成によって消去されてしまい磁気特性の向上が得ら
れないからである。
Therefore, in the present invention, the annealing temperature is in the range from the Curie point to the ordered lattice formation temperature. If the temperature is above the Curie point, the effect of the applied magnetic field is so small that the maximum permeability cannot be improved. Further, if the temperature is lower than the ordered lattice formation temperature, the effect of directional ordering due to annealing in a magnetic field is erased by the formation of an ordered lattice, and no improvement in magnetic properties can be obtained.

印加磁場の強さは100A/m以上が必要である。The strength of the applied magnetic field needs to be 100 A/m or more.

キューリー点近傍での強磁性体の飽和磁化は極めて低く
、また磁化し易いものであるが、第3図に見られるよう
に磁気特性の向上を得るには印加磁場は100A/m以
上であることが必要である。
The saturation magnetization of ferromagnetic materials near the Curie point is extremely low, and they are easily magnetized, but as shown in Figure 3, the applied magnetic field must be 100 A/m or more to obtain improved magnetic properties. is necessary.

また冷却速度は、100°C/■姶以上が必要である。Further, the cooling rate needs to be 100°C/28 or more.

この速度より低いと靭性が急激になくなり 180゜曲
げは不可能になる。また磁気特性も劣化する。
If the speed is lower than this, the toughness will suddenly decrease and 180° bending will become impossible. Moreover, the magnetic properties are also deteriorated.

従ってこの冷却速度以下であると規則格子が生成して磁
気的、機械的特性を劣化させることになる。
Therefore, if the cooling rate is lower than this, an ordered lattice will be generated and the magnetic and mechanical properties will deteriorate.

次に実施例に基づいて本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail based on examples.

〈実施例〉 実施例1 第1表に示す成分を有する厚み50mの薄帯を液体君冷
性によって作製した。凝固後の’FR帯の幅を20mに
切断した後、薄帯の長手方向に50〇八/mの磁場を印
加して第1表に示す温度で5時間の水素中焼鈍を施して
、100°C迄800°C/mの速度で冷却した。これ
らの板で外径40rMlφ、内径30醍φのトロイド状
に巻いたリングをつくり、1次、2次巻線を施して自動
B−H)レーサーによって、B−H曲線を測定し最大透
磁率を調べた。そのときの実験条件と磁気特性について
、第1表に併記する。また以上の焼鈍後に光学顕微鏡で
結晶組織を観察した結果、再結晶は殆ど完了していた。
<Examples> Example 1 A ribbon having a thickness of 50 m having the components shown in Table 1 was produced by liquid cold cooling. After the solidified 'FR strip was cut to a width of 20 m, a magnetic field of 5008/m was applied in the longitudinal direction of the ribbon and annealed in hydrogen for 5 hours at the temperature shown in Table 1. It was cooled down to 800°C/m at a rate of 800°C/m. A toroid-shaped ring with an outer diameter of 40 rMlφ and an inner diameter of 30 mm was made from these plates, and the primary and secondary windings were applied, and the B-H curve was measured using an automatic B-H) racer to determine the maximum magnetic permeability. I looked into it. The experimental conditions and magnetic properties at that time are also listed in Table 1. Further, after the above annealing, the crystal structure was observed with an optical microscope, and as a result, recrystallization was almost completed.

実施例2 Fe−49,3Go−1,72Vの成分を有する厚み4
5−の急冷薄帯を作製し、凝固後の状態に対して500
 A/mの磁場中で850°Cl2O時間の焼鈍を行っ
た後に、冷却速度を変えた場合の磁気特性と180°曲
げ結果について第2表に併示する。なお、磁気特性の測
定は実施例1と同様に行った。
Example 2 Thickness 4 with a component of Fe-49,3Go-1,72V
A 5-quenched ribbon was prepared, and the temperature after solidification was 500
Table 2 also shows the magnetic properties and 180° bending results when the cooling rate was varied after annealing for 850°Cl2O hours in a magnetic field of A/m. Note that magnetic properties were measured in the same manner as in Example 1.

いることによって最大i!im率30000以上を有し
、なおかつ180°曲げの可能なコイル状の1帯を作製
することができる。しかも最終的な磁場焼鈍工程までは
、コイル状で取り扱うことができ、大量に工業的規模で
製造できる。
Maximum i! A coil-shaped band having an im ratio of 30,000 or more and capable of being bent by 180° can be produced. Moreover, it can be handled in a coiled form up to the final magnetic field annealing process, and can be manufactured in large quantities on an industrial scale.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)はそれぞれ薄帯断面の顕微鏡組織
写真であり、第2図は最大i3磁率に及ぼす冷却速度の
影響を示すグラフ、第3図は磁気特性に及ぼす焼鈍温度
および印加磁場の影響を示すグラフである。 〈発明の効果〉
Figures 1 (a) and (b) are microscopic microstructure photographs of cross-sections of the ribbon, Figure 2 is a graph showing the effect of cooling rate on maximum i3 magnetic property, and Figure 3 is a graph showing the effect of annealing temperature and magnetic properties on magnetic properties. 3 is a graph showing the influence of an applied magnetic field. <Effect of the invention>

Claims (1)

【特許請求の範囲】[Claims] 主成分としてCoを25〜65wt%含有するFe−C
o系合金の溶湯から液体急冷法によって得た薄帯に10
0A/m以上の磁場を印加しつつ、該合金系の規則格子
生成温度より高く、キューリー点より低い温度範囲内で
再結晶焼鈍を施し、その後100℃/mm以上の冷却速
度で冷却することを特徴とするFe−Co系高飽和磁束
密度薄帯の製造方法。
Fe-C containing 25 to 65 wt% Co as the main component
10 in the ribbon obtained from the molten O-based alloy by the liquid quenching method.
While applying a magnetic field of 0 A / m or more, recrystallization annealing is performed within a temperature range higher than the ordered lattice formation temperature of the alloy system and lower than the Curie point, and then cooling at a cooling rate of 100 ° C / mm or more. A method for producing a characterized Fe-Co-based high saturation magnetic flux density ribbon.
JP2045623A 1990-02-28 1990-02-28 Production of fe-co foil having high saturation magnetic flux density Pending JPH0472016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2045623A JPH0472016A (en) 1990-02-28 1990-02-28 Production of fe-co foil having high saturation magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2045623A JPH0472016A (en) 1990-02-28 1990-02-28 Production of fe-co foil having high saturation magnetic flux density

Publications (1)

Publication Number Publication Date
JPH0472016A true JPH0472016A (en) 1992-03-06

Family

ID=12724503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2045623A Pending JPH0472016A (en) 1990-02-28 1990-02-28 Production of fe-co foil having high saturation magnetic flux density

Country Status (1)

Country Link
JP (1) JPH0472016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084484A (en) * 2012-10-22 2014-05-12 Hirosaki Univ FeCo-BASED MAGNETOSTRICTIVE ALLOY AND PRODUCTION METHOD OF THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084484A (en) * 2012-10-22 2014-05-12 Hirosaki Univ FeCo-BASED MAGNETOSTRICTIVE ALLOY AND PRODUCTION METHOD OF THE SAME

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
JP2007107095A (en) Magnetic alloy, amorphous alloy thin band, and magnetic component
JP2008231462A (en) Magnetic alloy, amorphous alloy strip and magnetic component
JP2012082476A (en) Fe-BASED ALLOY COMPOSITION, Fe-BASED NANOCRYSTAL ALLOY, METHOD OF PRODUCING THE SAME, AND MAGNETIC COMPONENT
JP2008231534A (en) Soft magnetic thin band, magnetic core, and magnetic component
JPS6133900B2 (en)
JPS58139408A (en) Wound iron core
JP2006040906A (en) Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density
JP2710949B2 (en) Manufacturing method of ultra-microcrystalline soft magnetic alloy
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JPH01290744A (en) Fe-base soft-magnetic alloy
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JPH0472016A (en) Production of fe-co foil having high saturation magnetic flux density
JP2576621B2 (en) Silicon steel sheet with excellent magnetic properties
JP2590533B2 (en) Manufacturing method of silicon steel sheet
JPH0742559B2 (en) Amorphous alloy ribbon for magnetic core with excellent space factor and method for producing the same
JPH03271346A (en) Soft magnetic alloy
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JP2513645B2 (en) Amorphous magnetic core excellent in effective pulse magnetic permeability and manufacturing method thereof
JPS5919304A (en) Wound core
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH0257683B2 (en)
JPH055164A (en) Iron base soft magnetic alloy
JP3058654B2 (en) Ultra-microcrystalline alloy and method for producing the same