JPH0471859B2 - - Google Patents

Info

Publication number
JPH0471859B2
JPH0471859B2 JP61161714A JP16171486A JPH0471859B2 JP H0471859 B2 JPH0471859 B2 JP H0471859B2 JP 61161714 A JP61161714 A JP 61161714A JP 16171486 A JP16171486 A JP 16171486A JP H0471859 B2 JPH0471859 B2 JP H0471859B2
Authority
JP
Japan
Prior art keywords
resin
coating
optical fiber
applying
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61161714A
Other languages
Japanese (ja)
Other versions
JPS6317242A (en
Inventor
Tetsuya Oosugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61161714A priority Critical patent/JPS6317242A/en
Publication of JPS6317242A publication Critical patent/JPS6317242A/en
Publication of JPH0471859B2 publication Critical patent/JPH0471859B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光フアイバの製造方法に関し、とくに
光フアイバの樹脂被覆に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing an optical fiber, and particularly to resin coating of an optical fiber.

〔従来の技術〕[Conventional technology]

石英ガラスや光学ガラスなどからなる光フアイ
バをケーブル化する際や、光伝送路として使用す
る際に、取扱いを容易にするとともに長時間の使
用に耐えられるようにするため、光フアイバ外周
面に各種の物資からなる被覆を施して機械的強度
などの特性を向上させることが行われている。こ
のような被覆を形成する方法として、線引・紡糸
直後の光フアイバ外周面にシリコン樹脂、エポキ
シ樹脂、ポリウレタン樹脂などの高分子物質から
なる一次被覆を施す方法が行われている。
When making optical fibers made of quartz glass, optical glass, etc. into cables or using them as optical transmission lines, various types of coatings are applied to the outer circumferential surface of the optical fibers to make them easier to handle and to withstand long-term use. Coatings made of materials have been applied to improve properties such as mechanical strength. A method of forming such a coating is to apply a primary coating made of a polymeric material such as silicone resin, epoxy resin, or polyurethane resin to the outer peripheral surface of the optical fiber immediately after drawing and spinning.

〔発明が解決しようとする問題点〕 光フアイバを利用した光通信の発展に伴ない光
フアイバの使用範囲の拡大が要求されている。と
くに温度領域において、高温から低温まで幅広い
範囲で安定な特性を有する光フアイバの実現が要
望されている。たとえば、航空機、船舶などの動
力部では200〜300℃の高温にさらされるが、その
周辺部では、飛行中や寒帯域航行中には−30〜−
60℃の低温にもなる。
[Problems to be Solved by the Invention] With the development of optical communications using optical fibers, there is a need to expand the scope of use of optical fibers. In particular, in the temperature range, it is desired to realize optical fibers that have stable characteristics over a wide range from high temperatures to low temperatures. For example, the power parts of aircraft, ships, etc. are exposed to high temperatures of 200 to 300 degrees Celsius, but the surrounding areas are exposed to temperatures of -30 to -30 degrees Celsius during flight or when navigating in cold regions.
It can reach temperatures as low as 60℃.

一般に石英系光フアイバでは、フアイバ材料の
ガラス自体は1000℃以上の高温に耐え得るが、有
機材料からなる保護被覆は比較的低温の150℃近
傍の温度域で劣化し、光フアイバ心線にマイクロ
ベンデイングなどの悪影響を与える難点がある。
たとえば、比較的耐熱性を有するシリコンは、15
℃程度の温度に長時間さらされると劣化してしま
う。耐熱性を向上させる手段としては、ケーブル
内部において光フアイバを冷却する方法などが考
えられているが、ケーブルが太径となり可撓性が
なくなることから、保守・管理が困難になるとい
う問題がある。
In general, in silica-based optical fibers, the fiber material glass itself can withstand high temperatures of over 1000°C, but the protective coating made of organic material deteriorates in the relatively low temperature range of around 150°C, causing microscopic damage to the optical fiber core. There are drawbacks such as bending and other negative effects.
For example, silicon, which is relatively heat resistant, is
If exposed to temperatures around ℃ for a long time, it will deteriorate. Cooling the optical fiber inside the cable has been considered as a way to improve heat resistance, but this poses the problem of making maintenance and management difficult as the cable becomes thicker and less flexible. .

耐熱性のある樹脂を光フアイバに被覆する例と
して、芳香族ポリイミド系または芳香族ポリアミ
ド・イミド系樹脂を用いることが知られている。
しかしこれらの樹脂では、十分な架橋または分子
鎖負荷による皮膜強度の増加が期待できないた
め、連続使用時の耐熱性が250〜260℃で、なお実
用上不充分である。また長い高分子鎖状物資であ
ることから強力な溶剤に溶かしても溶解度が低
く、厚膜塗布が不可能であり、薄肉塗布を繰り返
して所定の被覆厚にするなど被覆厚制御がむずか
しく、線引工程が複雑化し、製造時間も長く効率
の悪いという問題がある。
As an example of coating an optical fiber with a heat-resistant resin, it is known to use an aromatic polyimide resin or an aromatic polyamide/imide resin.
However, these resins cannot be expected to increase film strength due to sufficient crosslinking or molecular chain loading, and therefore have a heat resistance of 250 to 260°C during continuous use, which is still insufficient for practical use. Furthermore, since it is a long polymeric chain substance, its solubility is low even when dissolved in a strong solvent, making it impossible to apply a thick film, and it is difficult to control the coating thickness by repeating thin coating to achieve a predetermined coating thickness. There are problems in that the drawing process is complicated, the manufacturing time is long, and efficiency is poor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来の問題点を解決するため、光フア
イバに樹脂被覆を施す工程は、アセチレン末端の
全芳香族ポリイミド樹脂またはポリイソイミド樹
脂のいずれか、あるいは組合せによる合成樹脂を
N−メチルピロリドン、ビス(2−メトキシエチ
ル)エーテル、ジオキサン、テトラヒドロフラ
ン、トルエン/アセトン1対1溶液から選ばれた
溶媒に溶解し、所定の被覆厚を与える濃度に希釈
した後同一内径のコーテイングダイスを用いて塗
布し、焼付けてなることを特徴とし、さらに塗布
した合成樹脂の硬化反応の完全をはかるため、合
成樹脂を塗布・焼付けた光フアイバに150℃以上
の温度で30分以上の時間、加熱処理を施すことを
特徴とする。
In order to solve the conventional problems, the process of coating an optical fiber with a resin is performed using a synthetic resin such as N-methylpyrrolidone, bis( It is dissolved in a solvent selected from 2-methoxyethyl) ether, dioxane, tetrahydrofuran, and a 1:1 solution of toluene/acetone, diluted to a concentration that provides a predetermined coating thickness, applied using a coating die with the same inner diameter, and baked. Furthermore, in order to complete the curing reaction of the applied synthetic resin, the optical fiber coated and baked with the synthetic resin is subjected to heat treatment at a temperature of 150°C or higher for 30 minutes or more. shall be.

〔作用〕[Effect]

本発明は、光フアイバに被覆する材料として、
あらかじめ耐熱性のあるイミド結合を分子内に形
成させた付加反応性のアセチレン末端の全芳香族
ポリイミド樹脂またはポリイソイミド樹脂を用い
たことにより良好な皮膜を形成させることがで
き、316℃(600°F)の高温下においても樹脂の劣
化が見られず、光フアイバとして安定な伝送特性
を得ることができる。さらに本発明により使用す
る上記の被覆樹脂は、溶質の濃度を自由に選択す
ることができるので、光フアイバを紡糸・樹脂被
覆を行う線引工程において、樹脂の濃度により被
覆厚を連続的に制御できるという特徴を有する。
とくに高濃度に配合すれば、単一層の被覆で充分
な肉厚が確保でき、製造工程の簡素化および製造
時間の短縮が可能となる。以下図面にもとづき実
施例について説明する。
The present invention provides materials for coating optical fibers, including:
A good film can be formed by using an addition-reactive acetylene-terminated fully aromatic polyimide resin or polyisoimide resin that has heat-resistant imide bonds formed in the molecule in advance, and can be used at temperatures up to 316°C (600°F). ) The resin shows no deterioration even at high temperatures, and stable transmission characteristics can be obtained as an optical fiber. Furthermore, the solute concentration of the above-mentioned coating resin used in the present invention can be freely selected, so the coating thickness can be continuously controlled by the resin concentration during the drawing process of spinning and resin coating the optical fiber. It has the characteristic of being able to
Particularly when blended at a high concentration, a sufficient wall thickness can be ensured with a single layer coating, making it possible to simplify the manufacturing process and shorten the manufacturing time. Examples will be described below based on the drawings.

〔実施例〕〔Example〕

第1図は本発明に係る線引工程を説明する図
で、第2図に本発明により製造される光フアイバ
の断面構造を示す。加熱ヒータ2の加熱下で光フ
アイバ母材1から熔融・紡糸された直後の光フア
イバ1′に、コーテイングダイス3により被覆樹
脂4を塗布する。その後光フアイバ1′に塗布し
た被覆樹脂4を焼付炉5において焼付・硬化さ
せ、保護被覆層7を形成して巻取機6に巻き取
る。
FIG. 1 is a diagram illustrating a drawing process according to the present invention, and FIG. 2 shows a cross-sectional structure of an optical fiber manufactured according to the present invention. A coating resin 4 is applied by a coating die 3 to an optical fiber 1' which has just been melted and spun from an optical fiber base material 1 under heating by a heater 2. Thereafter, the coating resin 4 applied to the optical fiber 1' is baked and hardened in a baking furnace 5 to form a protective coating layer 7, which is then wound onto a winder 6.

本発明において用いる被覆樹脂4としては、ア
セチレン末端の全芳香族ポリイミド樹脂またはポ
リイソイミド樹脂を適用する。これらの樹脂は粉
末状態にあり、これら粉末状態の樹脂を溶解する
溶媒としては、N−メチルピロリドン(以下
NMPと記す。)、ビス(2−メトキシエチル)エ
ーテル、ジオキサン、テトラヒドロフラン
(THF)、トルエン/アセトン1対1溶液などが
ある。これらの溶媒に上記の粉末状態の樹脂を溶
解する際、樹脂は濃度を自由に調整できる。その
結果、従来はコーテイングダイス径に大きく影響
し、微妙な調整が不可能であつた被覆層を、被覆
樹脂の濃度を変えることにより制御可能となつ
た。本実施例においては、NMP溶液に溶かした
上記の樹脂を濃度20〜30%まで変化させることに
より、同一内径のコーテイングダイスを用いて、
被覆厚を3〜15μmまで連続的に変化させること
ができた。この本発明による被覆厚を連続的に変
化させることのできる特徴は、肉厚の被覆を施し
たいとき有利であり、通常一層の被覆厚3〜5μm
を3〜4回繰返して得られるところを、一層のみ
の被覆で15μm厚の被覆を塗布することができ、
線引工程の簡素化および製造時間の短縮化が可能
となる。
As the coating resin 4 used in the present invention, an acetylene-terminated wholly aromatic polyimide resin or polyisoimide resin is used. These resins are in powder form, and N-methylpyrrolidone (hereinafter referred to as
It is written as NMP. ), bis(2-methoxyethyl) ether, dioxane, tetrahydrofuran (THF), and a 1:1 toluene/acetone solution. When dissolving the above powdered resin in these solvents, the concentration of the resin can be freely adjusted. As a result, it has become possible to control the coating layer, which previously had a large effect on the diameter of the coating die and was impossible to finely adjust, by changing the concentration of the coating resin. In this example, by varying the concentration of the above resin dissolved in NMP solution from 20 to 30%, using a coating die with the same inner diameter,
The coating thickness could be varied continuously from 3 to 15 μm. This feature of the present invention, in which the coating thickness can be continuously changed, is advantageous when it is desired to apply a thick coating, and typically a single coating thickness of 3 to 5 μm is used.
By repeating this process 3 to 4 times, it is possible to apply a coating with a thickness of 15 μm using only one layer.
It becomes possible to simplify the wire drawing process and shorten manufacturing time.

また、本発明で、使用する被覆樹脂は全芳香族
系のポリイミド樹脂であることから、ベンゼン環
はエーテルとケトンにより連結しており、メチレ
ン基で連結されているものより高い耐熱性を示
す。
Furthermore, since the coating resin used in the present invention is a wholly aromatic polyimide resin, the benzene rings are connected through ether and ketone, and exhibit higher heat resistance than those connected through methylene groups.

本実施例では、第1図で示す線引工程で樹脂の
塗布・焼付を行つた。本実施例の場合、塗布・焼
付を行つた樹脂は十分な硬化反応をしていないの
で、脆弱性を有することから、完全な硬化反応を
行わせるため150℃以上の温度で30分以上の時間、
好ましくは150℃以上600℃以下、30分以上で24時
間以下、本実施例では260℃の温度で180分間加熱
処理を行つた。その結果連続使用温度で316℃
(600°F)においても樹脂の劣化は認められず、光
フアイバの伝送特性も良好であつた。なお本実施
例では、加熱処理を別工程で行つているが、第1
図の線引工程に含め、一連の製造法によることも
勿論可能である。
In this example, the resin was applied and baked in the wire drawing process shown in FIG. In the case of this example, the resin that was applied and baked did not undergo a sufficient curing reaction and was therefore brittle. Therefore, in order to perform a complete curing reaction, the resin was heated at a temperature of 150°C or higher for 30 minutes or more. ,
Preferably, the heat treatment was performed at a temperature of 150° C. or more and 600° C. or less for 30 minutes or more and 24 hours or less, and in this example, the heat treatment was performed at a temperature of 260° C. for 180 minutes. As a result, the continuous use temperature is 316℃
No deterioration of the resin was observed even at (600°F), and the transmission characteristics of the optical fiber were good. Note that in this example, the heat treatment is performed in a separate process, but the first
Of course, it is also possible to use a series of manufacturing methods including the drawing process shown in the figure.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の光フアイバの製
造方法は光フアイバに被覆する材料としてアセチ
レン末端の全芳香族ポリイミドまたはポリイソイ
ミド樹脂を用いることにより、連続316℃の高温
下においても樹脂の劣化および光フアイバとして
の機械特性、伝送特性いずれにおいても劣化を生
じない高耐熱性の光フアイバを製造することがで
きる。
As explained above, the optical fiber manufacturing method of the present invention uses an acetylene-terminated fully aromatic polyimide or polyisoimide resin as the material for coating the optical fiber, so that even under continuous high temperature conditions of 316°C, resin deterioration and light emission are prevented. It is possible to manufacture a highly heat-resistant optical fiber that does not cause deterioration in either the mechanical properties or the transmission properties of the fiber.

また、シリコン樹脂などの他の樹脂により被覆
を施した光フアイバに比べ、本発明により製造し
た光フアイバは細径でかつ可撓性も十分あること
から取扱いが容易である。
Furthermore, compared to optical fibers coated with other resins such as silicone resins, the optical fibers manufactured according to the present invention have a smaller diameter and sufficient flexibility, making them easier to handle.

さらに、本発明に用いる被覆樹脂は、濃度を任
意に選定できることから、希望の被覆厚を容易に
実現でき、肉厚の被覆を施す場合でも、被覆樹脂
を高濃度にすることにより塗布回数は少しで済
み、製造工程の簡素化および製造時間の短縮がは
かられる。
Furthermore, since the concentration of the coating resin used in the present invention can be selected arbitrarily, the desired coating thickness can be easily achieved, and even when applying a thick coating, the high concentration of the coating resin allows for fewer applications. This simplifies the manufacturing process and shortens manufacturing time.

さらにまた、本発明の製造方法によれば良好な
フアイバ強度を与える塗布性能を維持できる孔径
の一つのダイスを用いる種々の径の線材を得るこ
とができる。
Furthermore, according to the manufacturing method of the present invention, wire rods of various diameters can be obtained using a single die having a hole diameter that can maintain coating performance that provides good fiber strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光フアイバの線引工程を
説明する図、第2図は本発明により製造される光
フアイバの断面構造である。 1……光フアイバ母材、1′……光フアイバ、
2……加熱ヒータ、3……コーテイングダイス、
4……被覆樹脂、5……焼付炉、6……巻取機、
7……保護被覆層。
FIG. 1 is a diagram illustrating the drawing process of an optical fiber according to the present invention, and FIG. 2 is a cross-sectional structure of the optical fiber manufactured according to the present invention. 1... Optical fiber base material, 1'... Optical fiber,
2... Heater, 3... Coating die,
4... Coating resin, 5... Baking furnace, 6... Winding machine,
7...Protective coating layer.

Claims (1)

【特許請求の範囲】 1 光フアイバ母材を加熱熔融して線引きした光
フアイバの外周に樹脂を塗布・硬化して種々の厚
みの樹脂被覆を施す光フアイバの製造方法におい
て、 前記樹脂被覆を施す工程は、 アセチレン末端の全芳香族ポリイミド樹脂また
はポリイソイミド樹脂のいずれか、あるいは組合
せによる合成樹脂をN−メチルピロリドン、ビス
(2−メトキシエチル)エーテル、ジオキサン、
テトラヒドロフラン、トルエン/アセトン1対1
溶液から選ばれた溶媒に溶解し、所定の被覆厚を
与える濃度に希釈した後同一内径のコーテイング
ダイスを用いて塗布し、焼付けてなることを特徴
とする光フアイバの製造方法。 2 光フアイバ母体を加熱熔融して線引きした光
フアイバの外周に樹脂を塗布・硬化して種々の厚
みの樹脂被覆を施す光フアイバの製造方法におい
て、 前記樹脂被覆を施す工程は、 アセチレン末端の全芳香族ポリイミド樹脂また
はポリイソイミド樹脂のいずれか、あるいは組合
せによる合成樹脂をN−メチルピロリドン、ビス
(2−メトキシエチル)エーテル、ジオキサン、
テトラヒドロフラン、トルエン/アセトン1対1
溶液から選ばれた溶媒に溶解し、所定の被覆厚を
与える濃度に希釈した後同一内径のコーテイング
ダイスを用いて塗布し、焼付け、しかる後、 前記合成樹脂を塗布・焼付けた光フアイバに
150℃以上の温度で少なくとも30分の時間、加熱
処理を施す ことを特徴とする光フアイバの製造方法。
[Scope of Claims] 1. A method for manufacturing an optical fiber in which a resin coating of various thicknesses is applied by coating and curing the outer periphery of an optical fiber obtained by heating and melting an optical fiber base material and drawing the fiber, comprising: applying the resin coating. The process involves adding a synthetic resin made of either an acetylene-terminated fully aromatic polyimide resin or a polyisoimide resin, or a combination thereof, to N-methylpyrrolidone, bis(2-methoxyethyl) ether, dioxane,
Tetrahydrofuran, toluene/acetone 1:1
1. A method for producing an optical fiber, which comprises dissolving the solution in a selected solvent, diluting the solution to a concentration that provides a predetermined coating thickness, applying the coating using a coating die having the same inner diameter, and baking. 2. In a method for manufacturing an optical fiber in which a resin coating of various thicknesses is applied by applying and curing a resin on the outer circumference of an optical fiber which is drawn by heating and melting an optical fiber matrix, the step of applying the resin coating includes the step of applying the resin coating to the entire acetylene end. A synthetic resin made of aromatic polyimide resin or polyisoimide resin, or a combination of N-methylpyrrolidone, bis(2-methoxyethyl)ether, dioxane,
Tetrahydrofuran, toluene/acetone 1:1
After dissolving in a solvent selected from the solution and diluting it to a concentration that provides a predetermined coating thickness, it is applied using a coating die with the same inner diameter and baked, and then applied to the optical fiber coated and baked with the synthetic resin.
1. A method for producing an optical fiber, comprising heat treatment at a temperature of 150° C. or higher for at least 30 minutes.
JP61161714A 1986-07-09 1986-07-09 Production of optical fiber Granted JPS6317242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61161714A JPS6317242A (en) 1986-07-09 1986-07-09 Production of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61161714A JPS6317242A (en) 1986-07-09 1986-07-09 Production of optical fiber

Publications (2)

Publication Number Publication Date
JPS6317242A JPS6317242A (en) 1988-01-25
JPH0471859B2 true JPH0471859B2 (en) 1992-11-16

Family

ID=15740482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61161714A Granted JPS6317242A (en) 1986-07-09 1986-07-09 Production of optical fiber

Country Status (1)

Country Link
JP (1) JPS6317242A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483499A (en) * 2010-08-18 2012-05-30 株式会社藤仓 Polarization maintaining fiber and optical fiber sensor using same
US8641274B2 (en) 2010-08-18 2014-02-04 Fujikura Ltd. Polarization-maintaining fiber and optical fiber sensor using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119865A (en) * 1977-03-28 1978-10-19 Gulf Research Development Co Process for preparing acetylene substituted polyimide oligomer
JPS5811449A (en) * 1981-07-14 1983-01-22 センジミア−エンジニアリング コ−ポレ−シヨン Method and device for temporarily taking custody of band material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119865A (en) * 1977-03-28 1978-10-19 Gulf Research Development Co Process for preparing acetylene substituted polyimide oligomer
JPS5811449A (en) * 1981-07-14 1983-01-22 センジミア−エンジニアリング コ−ポレ−シヨン Method and device for temporarily taking custody of band material

Also Published As

Publication number Publication date
JPS6317242A (en) 1988-01-25

Similar Documents

Publication Publication Date Title
US5334421A (en) Process for color coding an optical fiber
JPH0471859B2 (en)
US20050135763A1 (en) Optical fiber with a mechanically strippable coating and methods of making the same
JPS61136941A (en) Manufacture of metal-coated optical fiber
EP0223087B1 (en) Insulation process by impregnation of electrical conductors
JP2587682B2 (en) Manufacturing method of glass based optical fiber
JPH02233537A (en) Production of optical fiber core
JPH01278435A (en) Production of glass-based optical fiber
JPS6110044A (en) Production of fiber for optical transmission
JP2582618B2 (en) Manufacturing method of glass based optical fiber
JP3554190B2 (en) Manufacturing method of spacer for optical cable
JP2601719Y2 (en) Heat resistant optical fiber
JPS63222048A (en) Production of optical fiber core wire or optical fiber unit
JP2581285B2 (en) Manufacturing method of heat resistant optical fiber
JPS58195456A (en) Coil for electric machine
JP2597724B2 (en) Superconductive magnet
JPH0468251B2 (en)
JPH0346559A (en) Quartz glass capillary
JPS61151033A (en) Apparatus for drawing optical fiber
JPH0115045B2 (en)
JPH04144944A (en) Glass fiber for light transmission
JPH0815585A (en) Heat resistant optical fiber
JPH0421548A (en) Glass fiber for optical transmission
JPH0214852A (en) Production of glass based optical fiber and quartz glass based multiple fiber
JPS6071552A (en) Preparation of assembled filament body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees