JPH0471682A - Method for recovering monobasic acid - Google Patents

Method for recovering monobasic acid

Info

Publication number
JPH0471682A
JPH0471682A JP18406190A JP18406190A JPH0471682A JP H0471682 A JPH0471682 A JP H0471682A JP 18406190 A JP18406190 A JP 18406190A JP 18406190 A JP18406190 A JP 18406190A JP H0471682 A JPH0471682 A JP H0471682A
Authority
JP
Japan
Prior art keywords
acid
recovered
nitrate
recovering
monovalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18406190A
Other languages
Japanese (ja)
Inventor
Toshikatsu Hamano
浜野 利勝
Ryosuke Aoki
良輔 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP18406190A priority Critical patent/JPH0471682A/en
Publication of JPH0471682A publication Critical patent/JPH0471682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To efficiently recover nitric acid present as nitrate by adding a polybasic acid to the nitrate and recovering the monobasic acid by a diffusion dialysis method with an anion exchange membrane. CONSTITUTION:A polybasic acid is added to nitrate to be recovered as nitric acid as a monobasic acid and this monobasic acid is recovered by a diffusion dialysis method with an anion exchange membrane. The nitrate returns to nitric acid and can be recovered with the membrane. When a membrane selectively permeable to monovalent ions is used as the anion exchange membrane, the transfer of the polybasic acid is prevented and the rate of recovery of the monobasic acid can be increased. If the recovered acid is permitted to be mixed with some H2SO4, about 100% nitric acid can be recovered as nitric acid radicals.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は硝酸塩等の1価の塩を効率よく回収する方法、
特に硝酸を使ったステンレス酸洗浄廃液から、硝酸を効
率よ(回収する方法に係るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for efficiently recovering monovalent salts such as nitrates,
In particular, it relates to a method for efficiently recovering nitric acid from stainless steel acid cleaning waste liquid that uses nitric acid.

[従来の技術] 硝酸やリン酸のように水中に放流されると水質を汚濁す
る物質をそのまま廃水として放出することは公害防止の
観点から許されず、特に硝酸のような比較的高価な酸を
ステンレスの酸洗浄廃液として使った場合、これを効率
よく回収することが工業的にも望ましい。
[Prior art] From the viewpoint of pollution prevention, it is not permissible to release substances such as nitric acid and phosphoric acid, which pollute the water quality if they are discharged into water, as wastewater. When used as acid cleaning waste liquid for stainless steel, it is industrially desirable to efficiently recover it.

し発明が解決しようとする課題] 従来、このようなステンレス鋼の酸洗浄廃液は、多量の
鉄が溶は出し、硝酸鉄となっており、このうち硝酸のま
まであるのは極わずかである。この為、これをイオン交
換膜によって回収しようとしても硝酸そのものしか回収
できず、大部分の硝酸塩はそのままになってしまう。
[Problems to be Solved by the Invention] Conventionally, a large amount of iron dissolves out of such stainless steel pickling waste liquid and becomes iron nitrate, and only a small amount of this remains as nitric acid. . For this reason, even if an attempt is made to recover this using an ion exchange membrane, only nitric acid itself can be recovered, and most of the nitrate remains as is.

[課題を解決する為の手段] 本発明者は、かかる不都合をな(して、効率よ(硝酸塩
となっている硝酸分を回収することを目的として種々研
究、検討した結果、回収しようとする硝酸塩等の1価の
酸に対し、2種或はそれ以上の酸を添加してアニオン交
換膜を用いた拡散透析法により、1価の酸を回収するこ
とにより、前記目的を達成し得ることを見出した。
[Means for Solving the Problem] The present inventor has conducted various studies and examinations with the aim of eliminating such inconveniences and efficiently recovering nitric acid that has become nitrate. The above objective can be achieved by adding two or more types of acids to a monovalent acid such as nitrate and recovering the monovalent acid by diffusion dialysis using an anion exchange membrane. I found out.

本発明は一般式で表わすと次のようになる。The present invention can be expressed in the following general formula.

Me(Not)z+)I2SO42HNO3+MeSO
4か(して硝酸塩は硝酸に戻り、アニオン交換膜での回
収が可能となる。
Me(Not)z+)I2SO42HNO3+MeSO
4 (Thus, the nitrate returns to nitric acid, which can be recovered using an anion exchange membrane.

本発明において用いられる2価又はそれ以上の酸として
は、硫酸、燐酸等が挙げられ、これはそれぞれ単独又は
混合して用いることができる。用いられるこれらの酸は
、例えば、硝酸と硝酸塩の混合液に対し、硝酸塩に相当
するモル数か或はそれ以上を用いるのが適当である。又
本発明が適用される2価の塩としては、硝酸塩、塩酸塩
等が挙げられる。
Examples of divalent or higher acid acids used in the present invention include sulfuric acid and phosphoric acid, which can be used alone or in combination. For example, it is appropriate to use these acids in an amount equivalent to or more than the number of moles of the nitrate in a mixed solution of nitric acid and the nitrate. Further, divalent salts to which the present invention is applied include nitrates, hydrochlorides, and the like.

又、用いられるアニオン交換膜としては、価イオン選択
透過膜を用しすること番こより、2価或はそれ以上の酸
の移動を防止して1価の酸の回収率を挙げることができ
る。回■又酸中番こ若干のH,SO4の混入が可能であ
れ(f、硝酸根として100%近い値での回収が可能で
あり、硝酸公害が回避できる。
Furthermore, by using a valence ion selective permeation membrane as the anion exchange membrane, it is possible to prevent the movement of divalent or higher valence acids and increase the recovery rate of monovalent acids. Even if it is possible to mix some H and SO4 into the acid (f), it is possible to recover nearly 100% of the nitrate radicals, and nitric acid pollution can be avoided.

[実施例] 実施例I HNO−5g/l 、 Fe(NOs)s 242g/
lの混合?夜番コH2S04(98%) 150g/l
添加し、アニオン交換月莫である旭硝子製DMV膜を用
し)で拡散透牢斤を+”rなった。上記原液を拡散透析
槽の下側力)ら100cc/Hrの速度で添加し、水を
100cc/Hrの速度で上側から添加した。拡散透析
槽の有効膜面積(士0、102m2であった。約2時間
通液し安定したところで性能を測定した。その結果回収
された酸の組成はHNo、 150g/l、H2SO4
0og/l 、Fe(NO,)32g/lであり、液量
は95cc/Hrであった。すなわちNO,根として7
3%回収されたこと(こなり、Fe(NO,)3よりH
NO3を回収したこと番こなる。
[Example] Example I HNO-5g/l, Fe(NOs)s 242g/l
A mixture of l? Night watch H2S04 (98%) 150g/l
The above stock solution was added to the bottom of the diffusion dialysis tank at a rate of 100 cc/hr, Water was added from the top at a rate of 100 cc/Hr.The effective membrane area of the diffusion dialysis tank was 102 m2.The water was passed for about 2 hours and the performance was measured when it became stable.As a result, the recovered acid Composition is HNo, 150g/l, H2SO4
0 og/l, Fe(NO,) 32 g/l, and the liquid amount was 95 cc/Hr. i.e. NO, 7 as root
3% recovery (Konari, H from Fe(NO,)3
It was my turn to collect NO3.

実施例2 上記同一実験を拡散透析槽に組込むアニオン膜としてm
個アニオン選択化膜であるASV膜を使用して行なった
。使用した拡散透析膜の有効膜面積は0.408m2の
ものを使用した。その結果、HNO3188g/l、H
2SO40,5g/l、Fe(NO,)、 0.3g/
lの混合液を98cc/Hrで得られた。すなわちNO
,根として95%回収されたことになり、Fe(No、
)3よりHNO,を回収したことになる。
Example 2 The same experiment as described above was performed using m as an anion membrane incorporated into a diffusion dialysis tank.
The experiment was carried out using an ASV membrane which is an anion-selective membrane. The effective membrane area of the diffusion dialysis membrane used was 0.408 m2. As a result, HNO3188g/l, H
2SO40.5g/l, Fe(NO,), 0.3g/l
1 of the mixed liquid was obtained at 98 cc/Hr. In other words, NO
, 95% was recovered as roots, and Fe(No,
)3, HNO was recovered.

比較例 HNO35g/1. Fe(Not)3242g/lの
混合液に硫酸を添加することな〈実施例1の方法で拡散
透析を行なった。その結果HNO34g/l、Fe(N
O3)32g/lの混合液を95cc/Hrで回収した
。回収されたNO3根は2.3%にすぎなかった。
Comparative example HNO35g/1. Diffusion dialysis was performed using the method of Example 1 without adding sulfuric acid to a mixed solution containing 3242 g/l of Fe (Not). As a result, HNO34g/l, Fe(N
A mixed solution of 32 g/l of O3) was recovered at 95 cc/Hr. Only 2.3% of NO3 roots were recovered.

Claims (1)

【特許請求の範囲】 1、回収しようとする硝酸塩等の1価の塩に対し、2価
又はそれ以上の酸を添加してアニオン交換膜を用いた拡
散透析法による1価の酸の回収方法。 2、1価の塩が硝酸塩である請求項1の1価の酸の回収
方法。 3、1価の塩が塩酸塩である請求項1の1価の酸の回収
方法。 4、2価又はそれ以上の酸が硫酸及び/又は燐酸である
請求項1の1価の酸の回収方法。5、アニオン交換膜は
、1価アニオン選択透過膜である請求項1の1価の酸の
回収方法。
[Claims] 1. A method for recovering a monovalent acid by adding a divalent or more acid to a monovalent salt such as nitrate to be recovered and using a diffusion dialysis method using an anion exchange membrane. . 2. The method for recovering monovalent acids according to claim 1, wherein the monovalent salt is a nitrate. 3. The method for recovering a monovalent acid according to claim 1, wherein the monovalent salt is a hydrochloride. 2. The method for recovering monovalent acids according to claim 1, wherein the tetravalent, divalent or higher acid is sulfuric acid and/or phosphoric acid. 5. The method for recovering monovalent acids according to claim 1, wherein the anion exchange membrane is a monovalent anion selectively permeable membrane.
JP18406190A 1990-07-13 1990-07-13 Method for recovering monobasic acid Pending JPH0471682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18406190A JPH0471682A (en) 1990-07-13 1990-07-13 Method for recovering monobasic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18406190A JPH0471682A (en) 1990-07-13 1990-07-13 Method for recovering monobasic acid

Publications (1)

Publication Number Publication Date
JPH0471682A true JPH0471682A (en) 1992-03-06

Family

ID=16146695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18406190A Pending JPH0471682A (en) 1990-07-13 1990-07-13 Method for recovering monobasic acid

Country Status (1)

Country Link
JP (1) JPH0471682A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1939142A1 (en) * 2006-12-22 2008-07-02 The European Community, represented by the European Commission Method for nitrate collection
DE102011077706A1 (en) 2010-06-17 2011-12-22 Nextgen Solar, Llc Bicontinuous, interpenetrating composite useful in photovoltaic device e.g. solar cell, comprises semiconducting organic phase, semiconducting particulate phase, p-n junctions at interfaces, and processing aid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1939142A1 (en) * 2006-12-22 2008-07-02 The European Community, represented by the European Commission Method for nitrate collection
DE102011077706A1 (en) 2010-06-17 2011-12-22 Nextgen Solar, Llc Bicontinuous, interpenetrating composite useful in photovoltaic device e.g. solar cell, comprises semiconducting organic phase, semiconducting particulate phase, p-n junctions at interfaces, and processing aid

Similar Documents

Publication Publication Date Title
CA2518846C (en) Process for the dissolution of copper metal
Kobuchi et al. Application of ion exchange membranes to the recovery of acids by diffusion dialysis
CN105056768A (en) Hydrotalcite-similar composite forward osmosis membrane supporting layer and preparation method thereof
DE69937452D1 (en) INORGANIC COMPOSITION, PROCESS FOR THEIR PREPARATION AND THEIR USE
CN114408900A (en) Method for preparing carbon nano-particles by using humic acid and application
JPH01130782A (en) Regeneration and recovery of nitric acid-hydrofluoric acid mixture
CN100418890C (en) Method for preparing potassium ferrate by using waste liquid from acid washing steel
JPH0471682A (en) Method for recovering monobasic acid
JP4815082B2 (en) Treatment method of iron-containing sulfuric acid solution
CN105601015B (en) A kind of Zero discharge treatment method of steel pickling waste liquor
JPH0483708A (en) Method for recovering nitric acid
JPH03146118A (en) Treatment method of aluminum material surface treatment wastewater
DE868433C (en) Process for removing polyvalent metal ions from ion exchangers
DE3321069A1 (en) METHOD FOR PRODUCING WITHOUT precipitation of solids at temperatures of at least 20 (ARROW UP) O (ARROW UP) C LAGERFAEHIGEN STABLE ABFALLOESUNGSKONZENTRATEN high salt concentration FROM ORGANIC SUBSTANCES, AND ALSO boric AND / OR borates, nitrates, PERMANGANATE AND OTHER inorganic salts and inorganic acids AND LIQUID WASTE SOLUTIONS FROM NUCLEAR POWER PLANTS
AT211276B (en) Process for cleaning commercial ferrosilicon and technical silicon
JP4393616B2 (en) Boron fixing agent and treatment method of boron-containing waste water
JP2000290251A (en) Peracetic acid composition
SU654010A1 (en) Method of concentrating liquid radioactive waste
JP2001089884A (en) Method for recovering aqueous solution of nitric acid from pickling waste solution
AT143032B (en) Cosmetic agent.
DE873995C (en) Process for removing the accompanying substances from production from technical hydrogen peroxide solutions
JP2741998B2 (en) Inorganic flocculant produced from phosphoric acid waste liquid
Candedo et al. GIC-2 in Acid Pickling Conditions
JPH0490827A (en) Extraction of metal ions
JPS59230691A (en) Treatment of fluoric acid-containing waste pickling liquid