JPH0471619A - Method and device for treating gaseous nf3 - Google Patents

Method and device for treating gaseous nf3

Info

Publication number
JPH0471619A
JPH0471619A JP2182183A JP18218390A JPH0471619A JP H0471619 A JPH0471619 A JP H0471619A JP 2182183 A JP2182183 A JP 2182183A JP 18218390 A JP18218390 A JP 18218390A JP H0471619 A JPH0471619 A JP H0471619A
Authority
JP
Japan
Prior art keywords
gas
honeycomb structure
carbon material
exhaust gas
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2182183A
Other languages
Japanese (ja)
Other versions
JP3006717B2 (en
Inventor
Akira Yoshino
明 吉野
Koichi Tomota
友田 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Sanso Co Ltd
Original Assignee
Daido Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Sanso Co Ltd filed Critical Daido Sanso Co Ltd
Priority to JP2182183A priority Critical patent/JP3006717B2/en
Priority to KR1019900015109A priority patent/KR100199453B1/en
Priority to US07/827,538 priority patent/US5176889A/en
Publication of JPH0471619A publication Critical patent/JPH0471619A/en
Priority to US08/137,518 priority patent/US5401473A/en
Application granted granted Critical
Publication of JP3006717B2 publication Critical patent/JP3006717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/02Preparation of nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/083Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms
    • C01B21/0832Binary compounds of nitrogen with halogens
    • C01B21/0835Nitrogen trifluoride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Abstract

PURPOSE:To prevent the consumption of a carbon material as a catalyst and a rapid increase in the differential pressure in replacement by forming the carbon material into a honeycomb structure pierced with many through-holes, passing a waste gas through the through-hole and bringing the waste gas into contact with the carbon material. CONSTITUTION:A waste gas enters a three-way valve 12. In this case, a reaction cylinder 1 is used between the cylinders 1 and 2, and the cylinder 2 is reserved. The waste gas is introduced into the cylinder 1 and catalyzed by the carbon material in the through-hole of a honeycomb structure to form harmless gaseous CF4 and N2. The honeycomb structure is consumed in the treatment of the waste gas. When the differential pressure of a differential pressure gage is decreased below a definite value, the cylinders 1 and 2 are opened, and the honeycomb structure is replaced by a fresh one. Since the honeycomb structure is provided with many through-holes from the beginning and the through-hole is not clogged with powdery carbon, the differential pressure is not rapidly increased by the replacement of the honeycomb structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2、NF3ガスを含有する排ガスを毒性のない
CF、ガスとN2ガスに変えるN F 3ガスの処理法
およびそれに用いる装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to 2. A method for processing NF3 gas that converts exhaust gas containing NF3 gas into non-toxic CF, gas and N2 gas, and an apparatus used therefor. It is.

〔従来の技術] 半導体用のドライエツチングガスあるいはクリニングガ
スとして、一般に、N F 3ガスが使用されるように
なっている。すなわち、NF!放電中においてイオン化
した反応ガスでシリコンをエツチングすると、反応生成
物は揮発性物質となるため、従来のフロロカーボンプラ
ズマ中でのエツチングに比べ、炭素(C)あるいはイオ
ウ(S)によるウェハー表面の反応残渣汚染がなく、ま
た反応残渣汚染がないためエツチング速度が速くなると
いう利点がある。このような点から、NF。
[Prior Art] NF3 gas is generally used as a dry etching gas or cleaning gas for semiconductors. In other words, NF! When silicon is etched with ionized reactive gas during discharge, the reaction products become volatile substances, so compared to conventional etching in fluorocarbon plasma, reaction residues on the wafer surface due to carbon (C) or sulfur (S) are reduced. There is no contamination and there is no reaction residue contamination, which has the advantage of increasing the etching rate. From this point of view, NF.

ガスが多用されるようになってきているが、NF3ガス
は常温で非常に安定(したがって、大気中に放出しても
分解されず生物に対する悪影響が懸念される)で、かつ
不燃性ガスであるが、許容濃度10ppmの毒性ガスで
あることから、NF、を含む排ガスの処理が大きな問題
となる。
Although gases are increasingly being used, NF3 gas is extremely stable at room temperature (therefore, even if released into the atmosphere, it will not decompose and there is concern that it may have negative effects on living organisms) and is a nonflammable gas. However, since NF is a toxic gas with an allowable concentration of 10 ppm, the treatment of exhaust gas containing NF poses a major problem.

[発明が解決しようとする課題] 本願出願人は、上記NF3ガスを含む排ガスを木炭等の
炭素塊と高温で反応させて、毒性のないCF、ガスとN
2ガスに変える方法を提案し、すでに出願している(特
願昭6l−78863)。
[Problems to be Solved by the Invention] The applicant of the present application has developed a method of reacting exhaust gas containing the above NF3 gas with carbon lumps such as charcoal at high temperatures to produce non-toxic CF, gas and N.
We have proposed a method of changing to two gases and have already filed an application (Japanese Patent Application No. 61-78863).

この方法は、炭素塊として粒状の炭素を用い、これを反
応筒に詰めその粒状炭素の間を上記NF3を含有する排
ガスを通過させ、その過程でNF。
In this method, granular carbon is used as a carbon mass, and the NF3-containing exhaust gas is passed between the granular carbon particles, which is packed in a reaction tube, and in the process, NF3 is released.

を毒性のないCF、ガスとN2ガスに変えるというもの
である。この方法は、N F ’sを無毒なCF。
The idea is to change the gas into non-toxic CF, gas and N2 gas. This method converts NF's into non-toxic CFs.

とN2とに変えるという点ならびにNF、排ガス中に0
□が混入していてもそれをCO2ガスに変えるという点
で優れている。すなわち、NF、排ガス処理の他の方法
として、Siを触媒とする方法があるが、この方法では
N F xを猛毒の5iFaの再処理に余分な工程を要
するという欠点を有している。そして、最近ではNF、
による洗浄効果を高める目的で、0□を併用することが
行われるようになっているが、Si触媒を用いる上記方
法では0□がSiと反応して固形SiO□となり、これ
が配管類の詰まりの原因となっている。炭素塊を触媒と
する本願出願人の上記方法によれば、NF、がそのまま
毒性のないCF、とN2ガスとに変わるのであり、また
NF、排ガス中に0□が含まれていても0.はCと反応
しCO□ガスとなることから配管類の詰まりも生じない
。ところが、この提案法に係る装置を実際に組み立てて
操業した場合に、つぎのような問題が生じた。すなわち
、上記粒状炭素は、NF、との反応によって消費され徐
々に粒径が小さくなることから各粒子間の間隔が狭くな
ってNF3排ガスの流通抵抗が徐々に大きくなる結果、
反応筒の入口側と出口側の差圧が大きくなる。したがっ
て、NF、排ガス処理装置と、パイプを介して接続して
いる半導体製造装置において、その背圧(出口側圧力)
が高くなる。これによって、半導体製造装置内の圧力が
高くなり、この圧力変動によって安定な操業が損なわれ
るようになる。また、上記処理装置では、粒状炭素の消
費の程度を、レーザービームを用いた液面計を応用し、
反応筒に詰められた粒状炭素層の上面を位置を検出する
ことにより求めており、その上面の位置が基準となる位
置よりも下がったときに、反応筒内に粒状炭素を補充す
るようになっている。この場合、上記補充により粒状炭
素の層厚が大になり、また粒状炭素間の間隔が詰る(粒
状炭素と混在する粉末状炭素が粒状炭素間に入り混む)
ことから、NFI排ガスの流通抵抗が急激に大きくなり
、そのように、半導体製造装置の背圧が急激に上昇し安
定な操業が損なわれるようになる。
and N2, as well as NF, zero in the exhaust gas.
It is excellent in that even if □ is mixed in, it can be converted into CO2 gas. That is, as another method for treating NF and exhaust gas, there is a method using Si as a catalyst, but this method has the drawback that an extra step is required to reprocess 5iFa, which is highly toxic to NF x. And recently, NF,
In order to increase the cleaning effect of 0□, it has become common to use 0□ in combination. However, in the above method using a Si catalyst, 0□ reacts with Si to form solid SiO□, which helps prevent clogging of pipes. It is the cause. According to the above method of the present applicant using a carbon block as a catalyst, NF is directly converted into non-toxic CF and N2 gas, and even if 0□ is contained in NF or exhaust gas, 0. Because it reacts with C and becomes CO□ gas, piping will not be clogged. However, when the apparatus according to this proposed method was actually assembled and operated, the following problems arose. That is, the granular carbon is consumed by the reaction with NF, and the particle size gradually decreases, so the intervals between each particle become narrower, and the flow resistance of NF3 exhaust gas gradually increases.
The pressure difference between the inlet and outlet sides of the reaction column increases. Therefore, in semiconductor manufacturing equipment connected to NF and exhaust gas treatment equipment via pipes, the back pressure (outlet side pressure)
becomes higher. This increases the pressure within the semiconductor manufacturing equipment, and this pressure fluctuation impairs stable operation. In addition, in the above processing equipment, the degree of consumption of granular carbon is measured by applying a liquid level gauge using a laser beam.
The top surface of the granular carbon layer packed in the reaction tube is determined by detecting the position, and when the top surface position falls below the reference position, granular carbon is replenished into the reaction tube. ing. In this case, the above replenishment increases the layer thickness of the granular carbon and also narrows the gaps between the granular carbon (powdered carbon mixed with the granular carbon gets mixed in between the granular carbon)
Therefore, the flow resistance of the NFI exhaust gas increases rapidly, and the back pressure of the semiconductor manufacturing equipment increases rapidly, impairing stable operation.

本発明は、このような事情に鑑みなされたもので、触媒
となる炭素材の消費ないし交換時に差圧の急激な上昇を
招かないNF、ガスの処理法およびそれに用いる装置の
提供をその目的とする。
The present invention was made in view of the above circumstances, and an object thereof is to provide a method for processing NF and gas that does not cause a sudden increase in differential pressure when consuming or replacing a carbon material serving as a catalyst, and an apparatus used therein. do.

[課題を解決するための手段] 上記の目的を達成するため、本発明は、N F 3ガス
を含有する排ガスを高温で炭素材と接触させて毒性のな
いCF、ガスとN2ガスに変えるNF。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method for converting exhaust gas containing NF3 gas into non-toxic CF, gas and N2 gas by contacting the exhaust gas containing NF3 gas with a carbon material at high temperature. .

ガスの処理法において、炭素材を多数の貫通孔が集積し
たハニカム構造体に形成し、NF3ガスを含有する排ガ
スを上記ハニカム構造体の貫通孔を通過させ、その通過
の過程で上記貫通孔の孔壁の炭素材と接触させるという
NF、ガスの処理法を第1の要旨とし、上記の方法を実
現するための装置として、反応筒を開閉自在に形成し、
炭素材をハニカム構造体に形成して上記反応筒内に交換
可能に充填するNF、ガスの処理装置を第2の要旨とす
る。
In a gas treatment method, a carbon material is formed into a honeycomb structure in which a large number of through holes are accumulated, and exhaust gas containing NF3 gas is passed through the through holes in the honeycomb structure, and in the process of passing, the through holes are The first gist is a method of treating NF and gas by bringing them into contact with the carbon material on the pore wall, and as an apparatus for realizing the above method, a reaction column is formed so as to be openable and closable.
The second gist is an NF and gas processing apparatus in which a carbon material is formed into a honeycomb structure and is replaceably filled in the reaction column.

〔作用〕[Effect]

本発明は、炭素材をハニカム構造体に形成し、NF、ガ
スを含有する排ガスを上記ハニカム構造体の貫通孔を通
過させ、その通過の過程で貫通孔の孔壁の炭素材と接触
させ反応させることによつてNF3ガスをCF、ガスと
N2ガスに変える。
The present invention involves forming a carbon material into a honeycomb structure, allowing exhaust gas containing NF and gas to pass through the through holes of the honeycomb structure, and in the process of passing through, contacting with the carbon material on the hole wall of the through hole to cause a reaction. NF3 gas is converted into CF gas and N2 gas by

この場合、NF3との反応によって炭素材が消費される
と、それはハニカム構造体の貫通孔を大径にすることと
なる。したがって、本発明では、炭素材の消費が逆に上
記差圧を小さくすることとなる。また、本発明では、上
記差圧が所定の値よりも小さくなると、上記ハニカム構
造体を交換することとなるが、ハニカム構造体には当初
から多数の貫通孔が形成されており、またその孔が粉末
状炭素で詰ることもないことから、ハニカム構造体の交
換によって上記差圧が急激に大きくなることもない。
In this case, when the carbon material is consumed by the reaction with NF3, the diameter of the through-holes in the honeycomb structure is increased. Therefore, in the present invention, the consumption of carbon material conversely reduces the differential pressure. Further, in the present invention, when the differential pressure becomes smaller than a predetermined value, the honeycomb structure is replaced, but the honeycomb structure has a large number of through holes formed from the beginning, and Since the honeycomb structure is not clogged with powdered carbon, the pressure difference does not suddenly increase due to replacement of the honeycomb structure.

つぎに、本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明は、NF3ガスを含有する排ガスを高温で、ハニ
カム構造に形成された炭素材と接触させて反応させ、毒
性のないCF、ガスとN2ガスに変換する。
The present invention converts exhaust gas containing NF3 gas into non-toxic CF, gas and N2 gas by bringing it into contact with a carbon material formed in a honeycomb structure at high temperature to cause a reaction.

この場合、NF3ガスと炭素材との反応は、下記の反応
式で表される。
In this case, the reaction between the NF3 gas and the carbon material is expressed by the following reaction formula.

4NF、+3C→3CF4 +2Nz この時の反応温度は、300〜600°Cに設定するこ
とが望ましい。すなわち、上記温度範囲より温度が低す
ぎると、NF、が炭素材に吸着されて四フッ化炭素(C
F、)として脱離しなくなり、逆に、温度が高すぎると
、反応筒自体の腐蝕が急激に進行すると同時に、反応熱
の制御が困難となるからである。この結果から、本発明
において、NF、ガスを含有する排ガスを高温で炭素材
と接触させる場合における高温とは、300〜600°
Cの温度範囲を意味することとなる。
4NF, +3C→3CF4 +2Nz The reaction temperature at this time is preferably set at 300 to 600°C. That is, if the temperature is too low than the above temperature range, NF is adsorbed to the carbon material and carbon tetrafluoride (C
On the other hand, if the temperature is too high, corrosion of the reaction tube itself will rapidly progress and at the same time it will become difficult to control the reaction heat. From this result, in the present invention, when the exhaust gas containing NF and gas is brought into contact with the carbon material at high temperature, the high temperature is 300 to 600°.
This means a temperature range of C.

本発明で処理する排ガス中のNF、の濃度は、低濃度(
例えばppmオーダー)から高濃度(例えば10.Ov
 o 1%)迄の広範囲にわたっている。この場合、上
記の反応は発熱反応であるため、高濃度(例えば40v
of%以上)でNF3を含む排ガスを処理する場合には
反応筒の温度が高くなりすぎる。したがって、このよう
な高濃度のNF、を処理する場合には、通常、N2ガス
のような不活性ガスをキャリアガスとして同時に吹き込
み(実質的にN F 3濃度は3Qvoヱ%程度に落ち
る)、そのキャリアガスの流通によって反応筒の温度の
上昇を防ぐことができる。なお、上記濃度を下まわる濃
度のNF、排ガスについても、不活性ガスをキャリアガ
スとして用いても差し支えはない。
The concentration of NF in the exhaust gas treated in the present invention is low (
For example, ppm order) to high concentration (for example, 10.Ov
o 1%). In this case, since the above reaction is exothermic, high concentrations (e.g. 40v
of % or more), the temperature of the reaction column becomes too high when treating exhaust gas containing NF3. Therefore, when processing such a high concentration of NF, an inert gas such as N2 gas is usually blown in at the same time as a carrier gas (substantially the NF3 concentration falls to about 3Qvo%), The flow of the carrier gas can prevent the temperature of the reaction tube from rising. Note that even for NF and exhaust gas having a concentration lower than the above concentration, there is no problem even if an inert gas is used as a carrier gas.

一般に、上記ハニカム構造体は、その貫通孔の直径が0
.1〜15moに設定され、貫通孔の長さが10cm〜
5mの範囲内、好適には、1〜2mに設定される。通常
、高濃度のNF、排ガスについては、貫通孔の長さが長
いハニカム構造体が用いられ、低濃度のNF3排ガスに
は、貫通孔の長さの短いハニカム構造体が用いられる。
Generally, the honeycomb structure has through holes with a diameter of 0.
.. 1 to 15mo, and the length of the through hole is 10cm to
It is set within a range of 5 m, preferably 1 to 2 m. Usually, a honeycomb structure with long through holes is used for high concentration NF and exhaust gas, and a honeycomb structure with short through holes is used for low concentration NF3 exhaust gas.

上記ハニカム構造の炭素材の形成は、微細な水分を含有
しない純炭素粒子を焼結等させることによって行うこと
ができ、その外周は反応筒内に収まるように、通常円筒
状に形成され、円筒の軸方向にハニカム構造の貫通孔が
沿った状態となるように反応筒内に収容される。上記貫
通孔は、通常、入口側(第1図の左側)から出口側(図
示の右側)迄直径が同一に設定されるが、第2図に示す
ように、入口側が大径で出口側にかけて徐々に細径にな
るように形成することも行われる。また、第3図に示す
ように、貫通孔の途中から2段状に細くなるように形成
することも行われる。また、さらに3段状ないし4段状
等多段状に形成することも行われる。このようにするこ
とにより、貫通孔内で排ガスが旋回するようになり、N
F3ガスと貫通孔の孔壁の炭素材との接触がより効果的
に行われるようになる。また、上記貫通孔は、上記のよ
うに開口部が六角形状のものに限定されるものではなく
、丸穴状、三角穴状、四角穴状等であってもよい。
The above honeycomb structured carbon material can be formed by sintering fine water-free pure carbon particles. The reactor is accommodated in the reaction cylinder so that the through holes of the honeycomb structure are aligned in the axial direction of the reactor. The diameter of the above-mentioned through-hole is normally set to be the same from the inlet side (left side in Figure 1) to the outlet side (right side in the figure), but as shown in Figure 2, the diameter is larger on the inlet side and extends toward the outlet side. It is also possible to form the diameter gradually to become smaller. Further, as shown in FIG. 3, the through hole may be formed so as to become narrower in two steps from the middle. Furthermore, formation in multiple stages such as three or four stages is also performed. By doing this, the exhaust gas will swirl inside the through hole, and the N
Contact between the F3 gas and the carbon material on the hole wall of the through hole becomes more effective. Furthermore, the through-hole is not limited to having a hexagonal opening as described above, but may be round, triangular, square, or the like.

また、高濃度のNF、を上記ハニカム構造体で処理する
場合に、先に述べたようにNF3ガスの濃度を予め検出
し、排ガスと不活性ガスとの混合割合を決定するのでは
な(、高濃度のNF、ガスが反応すると反応熱が発生し
て反応筒内の温度が高くなることから、この反応筒内の
温度を検出し、その温度に合わせて不活性ガスの混合割
合を自動的に制?il(温度が高くなると不活性ガスの
混合量が大で温度が低くなるとこの逆にする)するよう
にしてもよい。
Furthermore, when treating high-concentration NF with the honeycomb structure, the concentration of NF3 gas is detected in advance and the mixing ratio of exhaust gas and inert gas is determined as described above. When high concentrations of NF and gas react, reaction heat is generated and the temperature inside the reaction cylinder increases.The temperature inside the reaction cylinder is detected and the mixing ratio of inert gas is automatically adjusted according to that temperature. Alternatively, the amount of inert gas mixed may be increased as the temperature increases, and vice versa as the temperature decreases.

また、上記のようにハニカム構造体を非常に長尺なもの
にする場合には、長さの短いハニカム構造体を多段に積
重することが行われる。このようにすると、安価に長尺
なハニカム構造体が得られるようになる。
Furthermore, when the honeycomb structure is made to be very long as described above, short honeycomb structures are stacked in multiple stages. In this way, a long honeycomb structure can be obtained at low cost.

つぎに、実施例について説明する。Next, examples will be described.

〔実施例] 第4図は、この発明の、NF3含有排ガスの処理装置の
一例を示している。この装置は、左右−対の反応筒1,
2を備え、この反応筒1,2内には、第1図に示すハニ
カム構造体がその貫通孔を反応筒1,2の長手方向(図
示の上下方向)に合わせて挿嵌されている。上記ハニカ
ム構造体の底面は、反応筒の内周面に設けられたリング
状のっぽ部(図示せず)で支えられており、その反応筒
1.2内への着脱は、反応筒1,2の胴部を左右に開い
て行われる。すなわち、上記反応筒1,2は、その胴部
3が第5図に示すように、その長手方向に沿って左右に
2つ割り状に分割されていて、ヒンジ部4を中心に左右
に開閉できるようになっている。5は上記2つ割り状部
を閉じた状態で保持する止具である。20は反応筒1,
2の入口側と出口側の差圧を計る差圧計である。これら
の反応筒1,2には、第4図に示すように、電熱ヒータ
ー6が設けられており、またNF3を含む排ガスの導入
孔7から延びるパイプ8が接続されている。このパイプ
8には、導入孔7側にガス混合器9が設けられ、このガ
ス混合器9に不活性ガス導入口10から延びる不活性ガ
スパイプ11が取付けられている。上記ガス混合器9の
下流側のパイプ8の部分には、三方弁12が設けられて
おり、そこからパイプ8が左右に分岐して反応筒12に
接続されている。上記反応筒1,2には、温度センサー
を含む制御部13が設けられており、反応筒1,2内の
温度が高くなると、不活性ガスパイプ11に設けられた
調節弁14を開くか、その開度を大にして不活性ガスの
導入量を多くし、NF、の濃度を下げるようになってい
る。上記温度が低くなると、上記弁14の制御により不
活性ガスの導入を低減ないし遮断するようになっている
。なお、15はコントロフルボックスであり、導入孔7
例のパイプ8の部分に設けられたNF3濃度センサー1
6の濃度信号にもとづき不活性ガスパイプ11の調節弁
14を制御して、各反応筒1.2に供給されるNF、の
濃度を適正に調節するようになっている。このように、
この装置は、反応筒1,2内の温度を基準にしてNF3
の濃度を制御するという制御系以外に、上記コントロー
ルボックス15を中心とする制御系も有している。通常
は、反応筒1,2に設けられた温度センサー付制御部1
3の制御により、上記パルプ14の制御がなされ、その
系の故障時等にコントロールボックス15系の制御系が
使用される。
[Example] FIG. 4 shows an example of an apparatus for treating NF3-containing exhaust gas according to the present invention. This device consists of a pair of left and right reaction tubes 1,
2, and a honeycomb structure shown in FIG. 1 is inserted into the reaction tubes 1 and 2 with its through holes aligned with the longitudinal direction (vertical direction in the drawing) of the reaction tubes 1 and 2. The bottom surface of the honeycomb structure is supported by a ring-shaped top (not shown) provided on the inner peripheral surface of the reaction tube, and it can be attached to and removed from the reaction tube 1.2. It is performed by opening the torso to the left and right. That is, as shown in FIG. 5, the reaction tubes 1 and 2 have a body section 3 that is divided into two halves along the longitudinal direction to the left and right, and can be opened and closed left and right around a hinge section 4. It is now possible to do so. Reference numeral 5 denotes a stopper for holding the two halves in a closed state. 20 is the reaction tube 1,
This is a differential pressure gauge that measures the differential pressure between the inlet and outlet sides of 2. As shown in FIG. 4, these reaction tubes 1 and 2 are provided with an electric heater 6, and are connected to a pipe 8 extending from an inlet 7 for exhaust gas containing NF3. This pipe 8 is provided with a gas mixer 9 on the inlet hole 7 side, and an inert gas pipe 11 extending from an inert gas inlet 10 is attached to this gas mixer 9. A three-way valve 12 is provided at a portion of the pipe 8 on the downstream side of the gas mixer 9, from which the pipe 8 branches left and right and is connected to a reaction tube 12. The reaction tubes 1 and 2 are provided with a control section 13 including a temperature sensor, and when the temperature inside the reaction tubes 1 and 2 becomes high, the control valve 14 provided in the inert gas pipe 11 is opened or The opening degree is increased to increase the amount of inert gas introduced, thereby lowering the concentration of NF. When the temperature becomes low, the valve 14 is controlled to reduce or cut off the introduction of inert gas. In addition, 15 is a control full box, and the introduction hole 7
NF3 concentration sensor 1 installed in the pipe 8 part of the example
The control valve 14 of the inert gas pipe 11 is controlled based on the concentration signal of NF 6, to appropriately adjust the concentration of NF supplied to each reaction column 1.2. in this way,
This device uses NF3 based on the temperature inside the reaction tubes 1 and 2.
In addition to the control system for controlling the concentration of , there is also a control system centered on the control box 15 . Usually, a control unit 1 with a temperature sensor installed in the reaction tubes 1 and 2
3, the pulp 14 is controlled, and the control system of the control box 15 is used in the event of a failure of that system.

このような構造の装置において、N F 3を含む排ガ
スは、その導入ロアからパイプ8を通り、ガス混合器9
を経由し三方弁12に入る。この場合、反応筒1または
2のいずれか一方1が使用され、他方2は予備とされる
。したがって、上記排ガスは反応筒1内に導入され、ハ
ニカム構造体の貫通孔内において炭素材と接触して反応
し、無毒のCF、ガスとN2とになる。この無毒ガスは
、処理ガス排出パイプ17を通り排気孔18から外部に
排出される。そして、NF、排ガスの処理によってハニ
カム構造体が消費され、差圧計20の差圧が一定値を下
まわると、第5図の反応筒1.2を開き、新たなハニカ
ム構造体と交換することが行われる。第4図において、
19は冷却コイル、−点鎖線は、上記各部を収容する処
理ボックスである。
In the device having such a structure, the exhaust gas containing N F 3 passes through the pipe 8 from the introduction lower part to the gas mixer 9.
It enters the three-way valve 12 via. In this case, either one of reaction columns 1 or 2 is used, and the other 2 is kept as a reserve. Therefore, the exhaust gas is introduced into the reaction tube 1, contacts and reacts with the carbon material in the through holes of the honeycomb structure, and becomes non-toxic CF, gas and N2. This non-toxic gas passes through the process gas discharge pipe 17 and is discharged to the outside from the exhaust hole 18. When the honeycomb structure is consumed by the treatment of NF and exhaust gas and the differential pressure of the differential pressure gauge 20 falls below a certain value, the reaction tube 1.2 shown in FIG. 5 is opened and replaced with a new honeycomb structure. will be held. In Figure 4,
19 is a cooling coil, and the dashed line is a processing box that accommodates each of the above parts.

つぎに、実際にNF3を含む排ガスの処理を行った具体
例について説明する。
Next, a specific example in which exhaust gas containing NF3 was actually treated will be described.

〔具体例1〕 濃度100%のNF、を、上記第4図の装置(第2図に
示す貫通孔をもつハニカム構造体組み込み)を用い、反
応温度400°C1反応圧力1気圧、流量SV3 (]
−2501/Hrで処理した。その結果を第1表に示す
。ここでS■=流量(f/Hr)/充填容積(りである
。同表かられかる通り、NF、は5ppm以下(ガスク
ロマトグラフィー検出限界)まで処理されている。
[Specific Example 1] NF at a concentration of 100% was prepared using the apparatus shown in Fig. 4 (incorporating a honeycomb structure with through holes shown in Fig. 2) at a reaction temperature of 400°C, a reaction pressure of 1 atm, and a flow rate of SV3 ( ]
-2501/Hr. The results are shown in Table 1. Here, S■=flow rate (f/Hr)/filling volume (ri).As can be seen from the table, NF is treated to 5 ppm or less (gas chromatography detection limit).

〔具体例2] NF3をN2ガスで濃度3%まで希釈し、上記第4図の
装置(入口と出口の径が同一のハニカム構造体組み込み
)で処理を行った。その結果を第2表に示す。本発明に
よればこのような低濃度のものも完全に処理できること
がわかる。
[Specific Example 2] NF3 was diluted to a concentration of 3% with N2 gas, and treated using the apparatus shown in FIG. 4 (incorporating a honeycomb structure with the same inlet and outlet diameters). The results are shown in Table 2. It can be seen that according to the present invention, even such low concentrations can be completely treated.

〔具体例3〕 NF、の濃度を4%とし、1%の塩素ガス(C12)と
1%の塩酸(HCj2)を加えたものを上記第4図の装
置(第3図の貫通孔をもつハニカム構造体を組み込み)
で処理した。その結果を第3表に示す。同表から、塩素
系のガスが混入しても反応が阻害されずに処理が行われ
ることがわかる。
[Specific Example 3] The concentration of NF was set to 4%, and 1% chlorine gas (C12) and 1% hydrochloric acid (HCj2) were added to the apparatus shown in Figure 4 (with the through hole shown in Figure 3). (Incorporates honeycomb structure)
Processed with. The results are shown in Table 3. From the same table, it can be seen that even if chlorine-based gas is mixed in, the reaction is not inhibited and the treatment is carried out.

(以下余白) 〔発明の効果〕 以上のように、本発明は、NF3と反応させる炭素材と
して多数の貫通孔を有するハニカム構造体を使用するこ
とから、NF、との反応によってハニカム構造炭素材が
消費されると、それはハニカム構造炭素材の貫通孔の径
の増大となって現れる。したがって、炭素材の消費によ
って従来例のように差圧が大きくなることがなく、逆に
差圧が小さくなる。したがって、NF3排ガスの処理装
置と接続されている半導体製造装置の背圧の上昇にもと
づく内部の圧力変動が生じず安定した操業を実現できる
ようになる。また、本発明では、上記差圧が所定の値よ
りも小さくなると、上記ハニカム構造体を交換すること
となるが、ハニカム構造体には当初から多数の貫通孔が
形成されており、またその孔が粉末状炭素で詰ることも
ないことから、ハニカム構造体の交換によって上記差圧
が急激に大きくなることもない。
(The following is a blank space) [Effects of the Invention] As described above, the present invention uses a honeycomb structure having a large number of through holes as a carbon material to be reacted with NF3. When consumed, it appears as an increase in the diameter of the through holes in the honeycomb structured carbon material. Therefore, unlike the conventional example, the differential pressure does not increase due to consumption of the carbon material, and on the contrary, the differential pressure decreases. Therefore, stable operation can be realized without causing internal pressure fluctuations due to increases in back pressure of the semiconductor manufacturing equipment connected to the NF3 exhaust gas treatment equipment. Further, in the present invention, when the differential pressure becomes smaller than a predetermined value, the honeycomb structure is replaced, but the honeycomb structure has a large number of through holes formed from the beginning, and Since the honeycomb structure is not clogged with powdered carbon, the pressure difference does not suddenly increase due to replacement of the honeycomb structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に用いるハニカム構造体の一例の説明
図、第2図および第3図はその貫通孔の変形例の形状を
示す説明図、第4図はこの発明のNF3ガスの処理装置
の一実施例の構成図、第5図はその反応筒の拡大説明図
である。 1.2・・・反応筒 7・・・排ガス導入孔 8・・・
パイプ 9・・・ガス混合器 10・・・不活性ガス導
入孔11・・・パイプ 13・・・制御部 14・・・
調節弁 17・・・排出パイプ
FIG. 1 is an explanatory diagram of an example of a honeycomb structure used in the present invention, FIGS. 2 and 3 are explanatory diagrams showing modified examples of the shape of the through holes, and FIG. 4 is an NF3 gas processing apparatus of the present invention. FIG. 5 is an enlarged explanatory view of the reaction tube. 1.2...Reaction tube 7...Exhaust gas introduction hole 8...
Pipe 9... Gas mixer 10... Inert gas introduction hole 11... Pipe 13... Control section 14...
Control valve 17...Discharge pipe

Claims (3)

【特許請求の範囲】[Claims] (1)NF_3ガスを含有する排ガスを高温で炭素材と
接触させて毒性のないCF_4ガスとN_2ガスに変え
るNF_4ガスの処理法において、炭素材を多数の貫通
孔が集積したハニカム構造体に形成し、NF_3ガスを
含有する排ガスを上記ハニカム構造体の貫通孔を通過さ
せ、その通過の過程で上記貫通孔の孔壁の炭素材と接触
させることを特徴とするNF_3ガスの処理法。
(1) In the NF_4 gas treatment method, the exhaust gas containing NF_3 gas is brought into contact with a carbon material at high temperature to turn it into non-toxic CF_4 gas and N_2 gas, in which the carbon material is formed into a honeycomb structure with a large number of through holes. A method for treating NF_3 gas, characterized in that the exhaust gas containing NF_3 gas is passed through the through-holes of the honeycomb structure, and in the process of passing, the exhaust gas is brought into contact with the carbon material on the wall of the through-holes.
(2)貫通孔の直径が0.1〜15mmに設定されてい
る請求項(1)記載のNF_3ガスの処理法。
(2) The method for processing NF_3 gas according to claim (1), wherein the diameter of the through hole is set to 0.1 to 15 mm.
(3)NF_3ガスを含有する排ガスの導入管と、この
導入管の端部に接続された反応筒と、この反応筒内に充
填される炭素材と、反応筒から延びる処理済ガス排出管
を備え、炭素材がハニカム構造体に形成されているとと
もに、上記反応筒が開閉自在に形成され、上記ハニカム
構造体が上記排ガスの流通方向にハニカムの貫通孔を揃
えた状態で上記反応筒内に交換可能に充填されているこ
とを特徴とするNF_3ガス処理装置。
(3) An inlet pipe for exhaust gas containing NF_3 gas, a reaction tube connected to the end of this inlet tube, a carbon material filled in this reaction tube, and a treated gas discharge tube extending from the reaction tube. The carbon material is formed in the honeycomb structure, and the reaction tube is formed to be openable and closable, and the honeycomb structure is inserted into the reaction tube with the through holes of the honeycomb aligned in the flow direction of the exhaust gas. An NF_3 gas processing device characterized by being filled in a replaceable manner.
JP2182183A 1990-07-09 1990-07-09 NF lower 3 gas treatment method and equipment used for it Expired - Fee Related JP3006717B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2182183A JP3006717B2 (en) 1990-07-09 1990-07-09 NF lower 3 gas treatment method and equipment used for it
KR1019900015109A KR100199453B1 (en) 1990-07-09 1990-09-21 Method and apparatus for treating nitrogen fluorides gas
US07/827,538 US5176889A (en) 1990-07-09 1992-01-30 Method and apparatus for treatment of NF3 gas
US08/137,518 US5401473A (en) 1990-07-09 1993-10-18 Method and apparatus for treatment of NF3 gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2182183A JP3006717B2 (en) 1990-07-09 1990-07-09 NF lower 3 gas treatment method and equipment used for it

Publications (2)

Publication Number Publication Date
JPH0471619A true JPH0471619A (en) 1992-03-06
JP3006717B2 JP3006717B2 (en) 2000-02-07

Family

ID=16113793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2182183A Expired - Fee Related JP3006717B2 (en) 1990-07-09 1990-07-09 NF lower 3 gas treatment method and equipment used for it

Country Status (2)

Country Link
JP (1) JP3006717B2 (en)
KR (1) KR100199453B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116425118A (en) * 2023-03-31 2023-07-14 南大光电(淄博)有限公司 Method for producing high-purity fluorine gas by cracking nitrogen trifluoride and cracking reactor thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116425118A (en) * 2023-03-31 2023-07-14 南大光电(淄博)有限公司 Method for producing high-purity fluorine gas by cracking nitrogen trifluoride and cracking reactor thereof

Also Published As

Publication number Publication date
KR100199453B1 (en) 1999-06-15
JP3006717B2 (en) 2000-02-07
KR920002204A (en) 1992-02-28

Similar Documents

Publication Publication Date Title
US5417934A (en) Dry exhaust gas conditioning
CA1164630A (en) Dry bed scavenging hydrogen sulfide from gas
JPH03135419A (en) Method of removing gaseous hydrogenation product
US6514471B1 (en) Removing fluorine from semiconductor processing exhaust gas
JPH0671552B2 (en) A continuous process for successively treating finely divided solids which can be fluidized at low gas velocities.
JPH02273511A (en) Method for detoxifying halides of nitrogen or carbon
US5176889A (en) Method and apparatus for treatment of NF3 gas
JPH0471619A (en) Method and device for treating gaseous nf3
EP0738684B1 (en) Ozone generating apparatus
KR100808618B1 (en) Process and apparatus for treating gas containing fluorine-containing compounds and co
EP0928631B1 (en) Apparatus for treating exhaust gases containing hydrogen
JP2004249285A (en) Method of decomposing fluoride compound
US5401473A (en) Method and apparatus for treatment of NF3 gas
JPS62289222A (en) Gas adsorption and capture apparatus
US5468459A (en) Gas stream treatment method for removing per-fluorocarbons
JP3264453B2 (en) NF 3 gas pretreatment method
JP2812833B2 (en) How to remove silane
Yoshino et al. Method and apparatus for treatment of NF 3 gas
JP3228459B2 (en) Decomposition method of halide gas
JPH11114360A (en) Waste gas treating device
KR101972934B1 (en) Apparatus for Preventing Tube Plugging and Fire Due to Monosilane Produced in Semiconductor or Silicon Manufacturing Process and Method for Preventing Tube Plugging and Fire Thereby
JPH04271810A (en) Dehumidifier
JPH0623220A (en) Dry type harm-removing device
JP4406488B2 (en) Exhaust gas treatment agent and treatment method
JPH11267443A (en) Dry type harm removing device and method for gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees