JPH0471164A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH0471164A
JPH0471164A JP2183703A JP18370390A JPH0471164A JP H0471164 A JPH0471164 A JP H0471164A JP 2183703 A JP2183703 A JP 2183703A JP 18370390 A JP18370390 A JP 18370390A JP H0471164 A JPH0471164 A JP H0471164A
Authority
JP
Japan
Prior art keywords
electrolyte
reaction layer
reaction
layer
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2183703A
Other languages
Japanese (ja)
Inventor
Masaki Ito
雅樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2183703A priority Critical patent/JPH0471164A/en
Publication of JPH0471164A publication Critical patent/JPH0471164A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To eliminate the need for carton paper so as to decrease the internal resistance of a cell while improving the output power of the cell by mixing a specified amount of fiber or grain, inactive upon an electrolyte, with the material of a reaction layer, and increasing the bore diameter and void ratio of porous structure being formed in the reaction layer specified times over those of porous structure in a matrix layer. CONSTITUTION:Each of a cathode 1 and an anode 2 includes a basic member 4 made of a conductive porous-material, and is composed by monolithically laminating a reaction layer 5 on the inside of the basic member 4. And air is fed to the cathode 1 while hydrogen is fed to the anode 2, so that both the reaction gases react upon each other respectively in the two reaction layers 5 via an electrolyte in a matrix layer 3 to generate water and electric energy. Each of the reaction layers 5 forms such structure as having its bore diameter increased by 10 to 100 times and its void ratio increased by 1.2 to 1.4 times through the process of mixing 50 to 70wt.% of fiber or grain, inactive upon the electrolyte, besides a catalyst support conductive-grain with the material of the reaction layer. Since the reaction layer itself may have the ability to transmit the electrolyte so as to eliminate the need for interposing carbon paper, the internal resistance of a fuel battery cell may be decreased to improve the output power of the cell.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は内部抵抗を低減して出力を向上した燃料電池セ
ルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell with reduced internal resistance and improved output.

〔従来技術〕[Prior art]

燃料電池のセルは、陽極の電極基材と陰極の電極基材と
の間に、反応層(触媒層)を介してリン酸などの電解液
保持用マトリクス層を介在させた構成からなっている。
A fuel cell has a structure in which a matrix layer for holding an electrolyte such as phosphoric acid is interposed between an anode electrode base material and a cathode electrode base material via a reaction layer (catalyst layer). .

この構成材のうちマトリックス層は、電気絶縁性、ガス
・リーク防止性、電解液伝達能などの特性を備えている
ことが必要である。
Among these constituent materials, the matrix layer needs to have properties such as electrical insulation, gas leak prevention, and electrolyte transfer ability.

一方、燃料電池の使用形態には、用途によって連続運転
されるものと、発電、停止、保存を絶えず繰り返すよう
に間欠運転されるものとがある。ところが後者の間欠運
転の場合には、マトリックス層の電解液(リン酸など)
が、それ自体の体積膨張収縮や保管時の水分吸収などに
よってセル系外に運び出されるため、前者の連続運転の
場合に比べて電解液の消失速度が速くなるという傾向が
ある。このようにセル内の電解液が不足したままで燃料
電池の運転を継続すると、ある時点において反応ガスが
セル内部を通過してしまうようになり、出力が低下して
発電不能に陥ってしまうことになる。
On the other hand, fuel cells can be used in two ways, depending on the purpose: those that operate continuously, and those that operate intermittently, constantly repeating power generation, stopping, and storage. However, in the latter case of intermittent operation, the electrolyte (phosphoric acid, etc.) in the matrix layer
However, because the electrolyte is carried out of the cell system due to its own volumetric expansion and contraction and moisture absorption during storage, the rate of disappearance of the electrolyte tends to be faster than in the former case of continuous operation. If the fuel cell continues to operate with insufficient electrolyte in the cell, at some point the reactant gas will pass through the cell, resulting in a decrease in output and an inability to generate electricity. become.

このような現象を防止するには、不足した電解液を系外
から補給してやる必要があり、かつその補給した電解液
をなるべく短時間にセル面内に分布させるようにする必
要がある。このような対策のため、従来は燃料電池の両
極間にマトリクス層と共に大きな空隙率を有するカーボ
ンペーパを挟み込むようにしていた。しかし、コノカー
ボンベーパを介在させることにより燃料電池セルの内部
抵抗が増加し、出力を低下させる原因になっていた。
To prevent such a phenomenon, it is necessary to replenish the insufficient electrolyte from outside the system, and it is necessary to distribute the replenished electrolyte within the cell surface in as short a time as possible. As a countermeasure against this problem, conventionally, carbon paper having a large porosity is sandwiched between the two electrodes of the fuel cell together with the matrix layer. However, the presence of conocarbon vapor increases the internal resistance of the fuel cell, causing a reduction in output.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、反応層自体に電解液をセル面内に短時
間に分布させる機能をもたせることによって従来のカー
ボンペーパを不要にし、それによってセルの内部抵抗を
低減し、出力を向上させるようにした燃料電池セルを提
供することにある。
The purpose of the present invention is to eliminate the need for conventional carbon paper by providing the reaction layer itself with the function of distributing the electrolyte within the cell surface in a short time, thereby reducing the internal resistance of the cell and improving the output. The purpose of the present invention is to provide a fuel cell that has the following characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明は、陽極の電極基材と陰極の
電極基材との間に、触媒担持導電性粒子からなる反応層
を介して電解液保持用マトリクス層を挟んだ構成からな
る燃料電池セルにおいて、前記反応層に電解液に対して
不活性な繊維又は粒子を50〜70重量%混合し、該反
応層に形成される多孔構造を前記マトリクス層の多孔構
造に比べてボア径を10〜100倍、空隙率を1.2〜
1.4倍にしたことを特徴とするものである。
The present invention, which achieves the above object, is a fuel having a structure in which an electrolyte holding matrix layer is sandwiched between an anode electrode base material and a cathode electrode base material with a reaction layer made of catalyst-supported conductive particles interposed therebetween. In the battery cell, 50 to 70% by weight of fibers or particles inert to the electrolyte are mixed in the reaction layer, and the porous structure formed in the reaction layer has a bore diameter smaller than that of the matrix layer. 10 to 100 times, porosity 1.2 to
It is characterized by being 1.4 times larger.

反応層がこのような多孔構造を有することによって、そ
れ自体が電解液を伝達する機能を存するようになり、補
給された電解液を短時間のうちにセル面内方向に拡散分
布させることができるようになる。このため、従来の燃
料電池において電解液伝達に必要とされたカーボンペー
パが不要になるのである。
Because the reaction layer has such a porous structure, it has the function of transmitting the electrolyte, and the replenished electrolyte can be diffused and distributed within the cell surface in a short time. It becomes like this. This eliminates the need for carbon paper, which is required for electrolyte transfer in conventional fuel cells.

本発明において反応層を構成する触媒担持導電性粒子は
特に限定されるものではないが、好ましくは白金を担持
したカーボンブラックを使用するのがよい。また、反応
層に混合する不活性な繊維又は粒子としては、電解液に
対して不活性なものであれば特に限定されないが、好ま
しくは炭素繊維、フェノール繊維、カーボンブラックな
どを挙げることができる。繊維の場合は小さな短繊維状
に切断又は砕いて混合することが望ましい。これら触媒
担持導電性粒子と不活性な繊維又は粒子とは均一に混合
してバインダにより一体に結着し、多孔体にされる。バ
インダとしては撥水性を有する四フッ化エチレン(PT
FE)が最も好ましく、このほか同じく撥水性であるフ
ッ化アルコキシエチレン(PFA)、フッ化エチレンプ
ロピレンエーテル(FEP)などのフッ素樹脂も使用す
ることができる。
Although the catalyst-supporting conductive particles constituting the reaction layer in the present invention are not particularly limited, carbon black supporting platinum is preferably used. Further, the inert fibers or particles to be mixed in the reaction layer are not particularly limited as long as they are inert to the electrolytic solution, but carbon fibers, phenol fibers, carbon black, etc. can be preferably used. In the case of fibers, it is desirable to cut or crush them into small short fibers and mix them. These catalyst-supported conductive particles and inert fibers or particles are uniformly mixed and bound together by a binder to form a porous body. The binder is polytetrafluoroethylene (PT), which has water repellency.
FE) is most preferred, and fluororesins such as fluorinated alkoxyethylene (PFA) and fluorinated ethylene propylene ether (FEP), which are also water repellent, can also be used.

本発明において、電解液に対して不活性な繊維又は粒子
を混合して形成される反応層の多孔構造は、そのボア径
及び空隙率がマトリクス層の多孔構造のボア径及び空隙
率よりも大きくなっている。しかも、その反応層の多孔
構造はマトリクス層の多孔構造に比べてボア径が10〜
100倍、空隙率が1.2〜1.4倍になっている。反
応層のボア径がマトリクス層のそれの10倍よりも小さ
く、また空隙率がマトリクス層のそれの1.2倍よりも
小さくては、反応層自体に電解液の伝達能をもたせるこ
とはできず、本発明の目的は達成されない。しかし、反
応層のボア径がマトリクス層のそれの100倍を超える
ほどに大きかったり、また空隙率がマトリクス層のそれ
の1.4倍を超えるほどに大きくては、反応層が電解液
を吸収しすぎてしまい、反応ガス拡散律則による性能低
下のため好ましくない。
In the present invention, the porous structure of the reaction layer formed by mixing fibers or particles inert to the electrolytic solution has a bore diameter and porosity larger than that of the porous structure of the matrix layer. It has become. Moreover, the porous structure of the reaction layer has a bore diameter of 10 to 10 mm compared to the porous structure of the matrix layer.
100 times, and the porosity is 1.2 to 1.4 times. If the bore diameter of the reaction layer is smaller than 10 times that of the matrix layer and the porosity is smaller than 1.2 times that of the matrix layer, the reaction layer itself cannot have electrolyte transfer ability. First, the purpose of the present invention is not achieved. However, if the bore diameter of the reaction layer is larger than 100 times that of the matrix layer or the porosity is larger than 1.4 times that of the matrix layer, the reaction layer absorbs the electrolyte. This is not preferable because it causes performance degradation due to reaction gas diffusion law.

このような多孔構造の反応層を形成するには、上記不活
性な繊維又は粒子の混合量を少なくとも50重量%、好
ましくは60重量%以上にすることが必要である。しか
し、この混合量は70重量%を上限とすべきであり、こ
れよりも多くなっては反応層内の触媒担持導電性粒子の
量が不足し、本来の反応層の機能を低下するため好まし
くない。
In order to form a reaction layer with such a porous structure, it is necessary that the amount of the inert fibers or particles mixed is at least 50% by weight, preferably 60% by weight or more. However, the upper limit of this mixing amount should be 70% by weight; if it exceeds 70%, the amount of catalyst-supported conductive particles in the reaction layer will be insufficient and the original function of the reaction layer will deteriorate, so it is preferable. do not have.

マトリクス層としては公知のものがいずれも使用可能で
あるが、特にシリコンカーバイド(SiC)、  ジル
コニア(ZrO□)などの粒子を四フッ化エチレン(P
TFE) 、フッ化アルコキシエチレン(PFA)、フ
ッ化エチレンプロピレンエーテル(FEP)などをバイ
ンダとして結着成形した多孔体を使用するのがよい。こ
のマトリクス層が有するボア径は0.1”1.Oam、
空隙率は50〜60%が一般的である。
Any known matrix layer can be used, but in particular silicon carbide (SiC), zirconia (ZrO□) particles and tetrafluoroethylene (P) can be used.
It is preferable to use a porous body formed by binding and molding a binder such as TFE), fluorinated alkoxyethylene (PFA), or fluorinated ethylene propylene ether (FEP). The bore diameter of this matrix layer is 0.1"1.Oam,
The porosity is generally 50 to 60%.

第1図は、上述した各構成材料からなる本発明による燃
料電池セルの一例を示す。
FIG. 1 shows an example of a fuel cell according to the present invention made of the above-mentioned constituent materials.

図において、1は陽極、2は陰極、3は電解液保持用の
マトリクス層である。陽極lと陰極2とは、それぞれ導
電性多孔物質からなる基材4を有し、その基材4の内側
に反応層5を一体に設けて構成されている。そして、陽
極1に空気が供給されると共に、陰極2に水素が供給さ
れることにより、両反応ガスはマトリクス層3の電解液
を介することにより各反応層で反応して水と電気エネル
ギを発生する。その反応層5は、前述したように触媒担
持導電性粒子のほかに、電解液に対して不活性な繊維又
は粒子を50〜70重量%混合することにより前述した
ボア径、空隙率を形成する構造になっている。
In the figure, 1 is an anode, 2 is a cathode, and 3 is a matrix layer for holding an electrolyte. The anode 1 and the cathode 2 each have a base material 4 made of a conductive porous material, and a reaction layer 5 is integrally provided inside the base material 4. Then, by supplying air to the anode 1 and hydrogen to the cathode 2, both reaction gases react in each reaction layer via the electrolyte in the matrix layer 3, generating water and electrical energy. do. The reaction layer 5 has the above-described bore diameter and porosity by mixing 50 to 70% by weight of fibers or particles that are inert to the electrolytic solution in addition to the catalyst-supported conductive particles. It has a structure.

このような構造によって厚応層自体が電解液伝達能をも
ち、−カーボンベーパの介在を不要にすることができる
。したがって、燃料電池セルの内部抵抗を低減させて出
力を向上することができる。
With such a structure, the thick layer itself has an electrolyte transfer ability, and the intervention of carbon vapor can be made unnecessary. Therefore, the internal resistance of the fuel cell can be reduced and the output can be improved.

〔実施例〕〔Example〕

下記の構成からなる実施例1.実施例2.従来例、比較
例の4種類の反応層を試作した。
Example 1 consisting of the following configuration. Example 2. Four types of reaction layers were prototyped: a conventional example and a comparative example.

実施例1 白金/カーボンブラック 2.0 g(33重量%)炭
素繊維        3.0 g(50重量%)PT
FE (パイ7ダ)     1.0 g(17重量%
)実施例2 白金/カーボンブラック 3.0 g(26重量%)炭
素繊維        7.0 g(60重量%)PT
FE (バインダ)     1.5 g(13重量%
)比較例 白金/カーボンブラック 2.0 g(40重量%)炭
素繊維        2.0 g(40重量%)PT
FE (バインダ)      L、Og(20重蟹%
)従来例 白金/カーボンブラック 3.0 g(80重量%)炭
素繊維 PTFE (バインダ)     0.75g(20重
量%)これら4種類の反応層について、下記する電解液
伝達能テスト法によって、電解液伝達能D(cn+/h
)を測定したところ、下記の表のような結果が得られた
Example 1 Platinum/carbon black 2.0 g (33% by weight) Carbon fiber 3.0 g (50% by weight) PT
FE (Pi7da) 1.0 g (17% by weight
) Example 2 Platinum/carbon black 3.0 g (26% by weight) Carbon fiber 7.0 g (60% by weight) PT
FE (binder) 1.5 g (13% by weight
) Comparative example Platinum/carbon black 2.0 g (40% by weight) Carbon fiber 2.0 g (40% by weight) PT
FE (binder) L, Og (20%
) Conventional example Platinum/carbon black 3.0 g (80% by weight) Carbon fiber PTFE (binder) 0.75 g (20% by weight) Regarding these four types of reaction layers, the electrolyte transfer ability test method described below was conducted. Transmission capacity D (cn+/h
), the results shown in the table below were obtained.

く電解液伝達能テスト法〉 第2図に示すようにヒータ101で加熱されたカーボン
板100の上に反応層試料Sを載せて、その反応層試料
Sを150℃に加熱したのち、その一端に電解液として
一定量1 、5ccのリン酸Eを滴下し、このリン酸E
が反応層試料Sの面内を矢印A方向に1時間当りに移動
する距離(ca+/h)を測定し、それを電解液伝達能
りとした。
As shown in Fig. 2, the reaction layer sample S was placed on the carbon plate 100 heated by the heater 101, and after heating the reaction layer sample S to 150°C, one end of the reaction layer sample S was placed on the carbon plate 100 heated by the heater 101. A fixed amount of 1.5 cc of phosphoric acid E is added dropwise as an electrolyte to the phosphoric acid E.
The distance (ca+/h) traveled per hour in the direction of arrow A within the surface of the reaction layer sample S was measured, and this was taken as the electrolyte transfer ability.

表に示す結果から、本発明による反応層は、それ自体が
大きな電解液伝達能を有していることがわかる。
From the results shown in the table, it can be seen that the reaction layer according to the present invention itself has a large electrolyte transfer ability.

また、従来例の反応層と実施例2の反応層とをそれぞれ
燃料電池セルに組み、各燃料電池のセル抵抗値を測定し
たところ、前者の従来例の燃料電池のセル抵抗値は5m
Ωであったが、後者の実施例2の燃料電池のセル抵抗値
は3mΩに低下していた。この内部抵抗の低下によりセ
ル電圧は、150 a+A−cs−”ニおいて610m
Vから640膳V に向上した。
In addition, when the reaction layer of the conventional example and the reaction layer of Example 2 were assembled into a fuel cell and the cell resistance of each fuel cell was measured, the cell resistance of the former conventional fuel cell was 5 m
Ω, but the cell resistance value of the latter fuel cell of Example 2 had decreased to 3 mΩ. Due to this decrease in internal resistance, the cell voltage becomes 610 m at 150 a+A-cs-"
It improved from V to 640 V.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明の燃料電池セルによれば、反応
層自体に電解液をセル面内に短時間第1図は本発明の実
施例からなる燃料電池セルの説明図、第2図は反応層の
電解液伝達能テスト法の説明図である。
As described above, according to the fuel cell of the present invention, the electrolyte is applied to the reaction layer itself within the cell surface for a short time. FIG. 3 is an explanatory diagram of a test method for electrolyte transfer ability of a reaction layer.

l・・・陽極、2・・・陰極、3・・・マトリクス層、
4・・・基材、5・・・反応層。
l... Anode, 2... Cathode, 3... Matrix layer,
4... Base material, 5... Reaction layer.

代理人 弁理士 小 川 信 −Agent: Patent Attorney Nobuo Kogawa -

Claims (1)

【特許請求の範囲】[Claims] 陽極の電極基材と陰極の電極基材との間に、触媒担持導
電性粒子からなる反応層を介して電解液保持用マトリク
ス層を挟んだ構成からなる燃料電池セルにおいて、前記
反応層に電解液に対して不活性な繊維又は粒子を50〜
70重量%混合し、該反応層に形成される多孔構造を前
記マトリクス層の多孔構造に比べてボア径を10〜10
0倍、空隙率を1.2〜1.4倍にした燃料電池セル。
In a fuel cell having a structure in which an electrolyte holding matrix layer is sandwiched between an anode electrode base material and a cathode electrode base material with a reaction layer made of catalyst-supported conductive particles interposed therebetween, the reaction layer is electrolyzed. 50~50% of fibers or particles that are inert to the liquid
70% by weight of the mixture, and the porous structure formed in the reaction layer has a bore diameter of 10 to 10% compared to the porous structure of the matrix layer.
A fuel cell with a porosity of 1.2 to 1.4 times.
JP2183703A 1990-07-11 1990-07-11 Fuel cell Pending JPH0471164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2183703A JPH0471164A (en) 1990-07-11 1990-07-11 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2183703A JPH0471164A (en) 1990-07-11 1990-07-11 Fuel cell

Publications (1)

Publication Number Publication Date
JPH0471164A true JPH0471164A (en) 1992-03-05

Family

ID=16140475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2183703A Pending JPH0471164A (en) 1990-07-11 1990-07-11 Fuel cell

Country Status (1)

Country Link
JP (1) JPH0471164A (en)

Similar Documents

Publication Publication Date Title
EP1944819B1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
JP3107229B2 (en) Diaphragm humidification structure of solid polymer electrolyte fuel cell and electrolytic cell
JP2842150B2 (en) Polymer electrolyte fuel cell
KR100421708B1 (en) Fuel cell and method of menufacture thereof
US5441822A (en) Electrode used in electrochemical reaction and fuel cell using the same
JPH0151856B2 (en)
JP2000502205A (en) Method and apparatus for reducing reactant crossover in an electrochemical fuel cell
JPH11144740A (en) Solid high-molecular fuel cell
US4467019A (en) Fuel cell with electrolyte feed system
US20220149388A1 (en) Cathode catalyst layer for fuel cell and fuel cell
JPH0817440A (en) Electrode for polymer electrolyte-type electrochemical cell
JP3459615B2 (en) Electrode for fuel cell and fuel cell
KR100548118B1 (en) Electrode for fuel cell and fuel cell
JPH06275282A (en) Fuel cell
US4751062A (en) Fuel cell with electrolyte matrix assembly
JPH0471164A (en) Fuel cell
JP3495668B2 (en) Fuel cell manufacturing method
JP2006286478A (en) Membrane electrode assembly
JP2003142121A (en) Solid high polymer type fuel cell
JP2000228205A (en) High polymer electrolyte fuel cell
JPH02226659A (en) Electrode construction for fuel cell
JPH0888011A (en) Solid polymer electrolyte fuel cell
CN107887611A (en) A kind of low platinum loading electrodes preparation method of high temperature membrane cell high-performance
EP0106605A1 (en) Fuel cell with multiple porosity electrolyte matrix assembly and electrolyte feed system
JPH04218267A (en) Solid electrolyte type fuel cell