JPH0471154A - Linear electron beam emission method - Google Patents

Linear electron beam emission method

Info

Publication number
JPH0471154A
JPH0471154A JP18200190A JP18200190A JPH0471154A JP H0471154 A JPH0471154 A JP H0471154A JP 18200190 A JP18200190 A JP 18200190A JP 18200190 A JP18200190 A JP 18200190A JP H0471154 A JPH0471154 A JP H0471154A
Authority
JP
Japan
Prior art keywords
sample
linear electron
linear
width
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18200190A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Nakamura
強 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18200190A priority Critical patent/JPH0471154A/en
Publication of JPH0471154A publication Critical patent/JPH0471154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To uniformize the quantity of linear electron beams emitted all over a sample by differentiating the beam profile of each of the linear electron beams having measured with a Faraday gauge having its incident beam stop formed in the shape of a slit, and then equalizing the width of a beam waveform corresponding to the maximum value and minimum value of the differentiation result data to a width for making a step movement in a direction orthogonal to a beam-scanned direction. CONSTITUTION:Linear electron beams l are scanned vertically to an incident beam stop in the shape of a slit, and then each of beam currents passing through the incident beam stop is measured as a voltage generated in a detecting resistance 4 by a monitor 5 having a beam current-differentiating function, so that the value of the beam current can be measured. Because the incident beam stop is in the shape of a slit, the beam currents measured form a unidimensional current distribution in a linear direction integrated in the slit direction of the incident beam stop. The maximum value and minimum value of the measurement result data are each located at about half the value of each of the linear beams. The space between the maximum value and the minimum value can be accordingly equalized to a width for making a step movement so as to uniformize the total quantity of emitted beams. When the return of a beam emission method to its initial position at the time of repeating the method is shifted by half the step-moved width, positions of emitted beams may be alternated with one another to heighten uniformity in the quantity of the emitted beams.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シリコン等の半導体のエツチング、成膜、ア
ニールまたは機械部品の溶接、加工等に用いる線源線状
電子ビーム装置における線状電子ビームの照射方法に関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a linear electron beam device used in a source linear electron beam device used for etching, film formation, annealing of semiconductors such as silicon, or welding and processing of mechanical parts. This relates to a beam irradiation method.

〔従来の技術〕[Conventional technology]

電子やイオンなどの荷電ビームのビーム系の測定には通
常ファラデーケージが使用され、ビーム電流やビーム電
流分布の測定など用途に合わせ各種形状か用いられてい
る(日本学術振興会第132委員会編:電子・イオンビ
ームハンドブック第2版(日刊工業新聞社(1986>
 )、P、269 >。
Faraday cages are usually used to measure beam systems of charged beams such as electrons and ions, and various shapes are used depending on the purpose, such as measuring beam current and beam current distribution (edited by the 132nd Committee of the Japan Society for the Promotion of Science). :Electron/Ion Beam Handbook 2nd edition (Nikkan Kogyo Shimbunsha (1986)
), P, 269 >.

また、ビームの走査方法はその用途に合わせ、走査電子
票微鏡のようにテレビと同様に走査するもの(日本学術
振興会第132委員会編:電子・イオンビームハンドブ
ック第2版(日刊工業新聞社(1986) ) 、P、
617 ) 、描画装置のようにマスク走査やベクタ走
査するものく日本学術振興会第132委員会編:電子・
イオンビームハンドブック第2版(日刊工業新聞社<1
986) ) 、P、429 )、電子ビームアニール
装置のようにマスクを用いてビーム照射領域を半導体の
チップ幅に合わせて走査するものく特開昭62−213
055 ) 、イオン注入装置にように試料の方を各種
方式で走査するものく日刊工業新聞社(1986) )
 、P、590 )などがある。
In addition, the scanning method of the beam depends on the application, such as a scanning electronic microscope that scans in the same way as a television (edited by the 132nd Committee of the Japan Society for the Promotion of Science: Electron and Ion Beam Handbook 2nd Edition (Nikkan Kogyo Shimbun (1986) ), P.
617), something that performs mask scanning or vector scanning like a drawing device. Edited by the 132nd Committee of the Japan Society for the Promotion of Science: Electronics.
Ion Beam Handbook 2nd Edition (Nikkan Kogyo Shimbunsha <1
986) ), P, 429), Japanese Patent Laid-Open No. 62-213, which uses a mask to scan the beam irradiation area to match the width of the semiconductor chip, as in an electron beam annealing device.
055), Nikkan Kogyo Shimbunsha (1986)), which uses various methods to scan the sample like an ion implanter.
, P, 590).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、線状電子ビームを試料に均一に照射する
場合、線状ビームという特殊性もありそ力手法は確立さ
れていない、線状ビームより幅の広い大面積にビーム照
射する場合、ビームの走査する位置をステップ移動しな
がらビーム照射する必要が生じる。この時ビームの重ね
合わせ部分のビーム照射量を他の部分と同一にしなくて
はならない。従来のビーム系測定方法では、この重ね合
わせ部分のビーム照射量が他の部分と同一になるようオ
ペレーターが電流分布を見てステップ移動幅を入力する
か、あるいは、画像処理によって重ね合わせによるビー
ム照射量を計算して算出しなくてはならず、その設定方
法が複雑であった。
However, when uniformly irradiating a sample with a linear electron beam, there is no established method due to the special characteristics of a linear beam.When irradiating a large area wider than a linear beam, beam scanning It becomes necessary to irradiate the beam while moving the position in steps. At this time, the amount of beam irradiation in the overlapping portion of the beams must be the same as that in other portions. In conventional beam-based measurement methods, the operator looks at the current distribution and inputs the step movement width so that the beam irradiation amount in this overlapping area is the same as in other areas, or the beam irradiation amount due to overlapping is determined by image processing. The amount had to be calculated and the setting method was complicated.

本発明の目的は、このような従来の問題点を除去せしめ
、簡潔な方法でビームステップ移動幅を決定し、かつ、
線状ビームを均一に照射せしめる線状電子ビーム照射方
法を提供することにある。
An object of the present invention is to eliminate such conventional problems, determine the beam step movement width in a simple method, and
An object of the present invention is to provide a linear electron beam irradiation method that uniformly irradiates a linear beam.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、入射絞りがスリット状のファラデーケ
ージで測定した線状電子ビームのビームプロファイルを
微分し、その最大値と最小値に対応するビーム波形の幅
を、ビーム走査方向に対して直角方向にステップ移動す
る幅とし、該ステップ移動幅でビーム走査位置あるい′
は相対的に試料を順次移動し、試料全面あるいは必要領
域にビーム照射し、必要に応じてこれを繰り返す線状電
子ビーム照射方法、又は上記の方法で決定したステップ
移動幅でビーム走査位置あるいは相対的に試料を順次移
動し、試料全面あるいは必要領域にビーム照射後、初期
位置からビーム偏向幅の半分の長さずらせた位置にもど
り、まな順次ビームを照射し、再度初期位置に戻るとい
う繰り返しにより必要量のビーム照射を行なう線状電子
ビーム照射方法、又は上記の方法で試料全面あるいは必
要領域にビーム照射後、試料を90度回転させ、この向
きで再度ビーム照射し、必要に応じ再び試料を90度回
転してビーム照射を行なうという繰り返しにより必要量
のビーム照射を行なう請求項1又は2記載の線状電子ビ
ーム照射方法が得られる。
According to the present invention, the beam profile of a linear electron beam measured with a Faraday cage having a slit-shaped entrance aperture is differentiated, and the width of the beam waveform corresponding to the maximum and minimum values is calculated perpendicular to the beam scanning direction. The beam scanning position or
is a linear electron beam irradiation method in which the sample is moved sequentially relative to each other, the entire surface of the sample or a required area is irradiated with the beam, and this is repeated as necessary, or the beam scanning position or the relative By repeatedly moving the sample sequentially, irradiating the entire surface of the sample or the required area with the beam, returning to a position shifted by half the beam deflection width from the initial position, irradiating the beam sequentially, and returning to the initial position again. After irradiating the entire surface of the sample or the required area with the beam using the linear electron beam irradiation method that irradiates the required amount of beam, or the method described above, rotate the sample 90 degrees, irradiate the beam again in this direction, and reposition the sample as necessary. A linear electron beam irradiation method according to claim 1 or 2 is obtained, in which a required amount of beam irradiation is performed by repeating the beam irradiation by rotating 90 degrees.

〔実施例〕〔Example〕

次に第1図がち第5図を参照して本発明力実施例につい
て説明する。
Next, an embodiment of the present invention will be described with reference to FIG. 1 and FIG. 5.

第1図は、第5図に示すようなヒーム入射絞り6かスリ
ット状のファラデーケージ3により測定した線状ビーム
の1次元的な電流分布とその微分形状である。第5図の
線状電子ビーム1は、スリット状のビーム入射絞りに対
して垂直に走査し、入射絞りを通過したビーム電流を検
出抵抗4に生じる電圧として、微分機能を持つモニター
5で測定する。この検出抵抗に生じる電圧をモニターす
ることでビーム電流値を測定できる。縦軸にビーム電流
く検出抵抗に生しる電圧)、横軸に時間とするグラフを
描けば第1国上段のような図が書ける。ビームの走査速
度があらかじめわかれば、横軸の時間は位置としても差
し使えない。このようにして得られたビーム電流分布の
波形を微分すると、第1図下段のようになる。また、測
定されるビーム電流は、入射絞りがスリット状であるた
め、スリット方向に積分した線状方向1次元の電流分布
となる。
FIG. 1 shows a one-dimensional current distribution of a linear beam and its differential shape measured by a heam entrance aperture 6 or a slit-shaped Faraday cage 3 as shown in FIG. The linear electron beam 1 shown in FIG. 5 scans perpendicularly to a slit-shaped beam entrance aperture, and the beam current passing through the entrance aperture is measured as a voltage generated in a detection resistor 4 by a monitor 5 having a differential function. . By monitoring the voltage generated across this detection resistor, the beam current value can be measured. If you draw a graph where the vertical axis is the beam current (voltage generated in the detection resistor) and the horizontal axis is time, you can draw a diagram like the one in the top row of the first country. If the scanning speed of the beam is known in advance, the time on the horizontal axis can also be used as position. When the waveform of the beam current distribution obtained in this way is differentiated, it becomes as shown in the lower part of FIG. 1. Furthermore, since the incidence aperture is slit-shaped, the measured beam current has a one-dimensional current distribution in the linear direction integrated in the slit direction.

エツチングや成膜などの化学反応による試料の加工は、
照射された電子のエネルギーが化学反応を起こす活性化
エネルギー以上であれば加工量は照射された電子の量に
比例する。線状ビームの走査により照射された電子の量
をモニターすることは走査方向に対してのビーム電流の
積分値をモニターすることである。この走査方向に対す
るビーム電流の積分は、スリット状の入射絞りによるフ
ァラデーゲージで測定したビーム電流分布と同じことと
なる。線状ビームが試料全面あるいは必要領域に一括し
てビームを照射できる場合はビームが均一ならばビーム
照射量も均一になるが、−括照射できない場合は第4図
に示すようにビーム照射をいくつかの領域に分割して行
なわなくてはならない。すなわち、ビームの走査方向に
対して垂直にステップ移動を行い、ビームの走査、ステ
ップ移動を順次繰り返して大面積をビーム照射するもの
である。ステップ移動としてはビームの位置を電磁偏向
によって移動する方法と、ビームの走査位置は同じで試
料2の位置を移動させる方法とがある。図示しであるよ
うにビームステップ移動方向ど試料ステップ移動方向は
、試料に対して相対的にビーム走査位置が移動するよう
に逆向きとなっている。ビームの走査は、行きも帰りも
同速度で双方向のビーム走査をする方法(図中ビーム走
査方向■)と、行きと帰りの速度を極端に違えることで
、帰りでのビーム照射をほとんど影響のないものにし、
常に同方向にする方法(図中ビーム走査方向■)とがあ
る。また必要によっては、飛び飛びの位置にのみビーム
照射をすればいい場合もあり、ビームの高速走査によっ
て必要領域にまでビームを移動させることもできる(図
示せず)。分割してビーム照射する場合、試料全面に均
一に行うにはビームの重ね合わせ部分のトータルビーム
照射量を他の部分と同一にしなくてはならない。線状ビ
ーム両端の傾斜部が対称であれば、傾斜部のビーム電流
の半値に当たる部分を検出し、そこをビームの重ね合わ
せ部分とすれば、第2図に示すようにトータルとして他
部分とビーム照射量が同一になる。線状ビームの積分形
状は第1図に示すようにビームの端の部分で正と負のガ
ウス分布に近い形状となる。さらに、その最大値と最小
値は線状ビームのほぼ半値に位置する。
Processing of samples through chemical reactions such as etching and film formation is
If the energy of the irradiated electrons is greater than the activation energy that causes a chemical reaction, the amount of processing is proportional to the amount of irradiated electrons. Monitoring the amount of electrons irradiated by scanning a linear beam means monitoring the integral value of the beam current with respect to the scanning direction. The integral of the beam current with respect to the scanning direction is the same as the beam current distribution measured with a Faraday gauge using a slit-shaped entrance aperture. If the linear beam can irradiate the entire surface of the sample or the required area at once, the beam irradiation amount will be uniform if the beam is uniform. It must be divided into different areas. That is, step movement is performed perpendicular to the scanning direction of the beam, and the scanning and step movement of the beam are sequentially repeated to irradiate a large area with the beam. As the step movement, there are a method in which the beam position is moved by electromagnetic deflection, and a method in which the beam scanning position is the same but the position of the sample 2 is moved. As shown in the figure, the beam step movement direction and the sample step movement direction are opposite so that the beam scanning position moves relative to the sample. Beam scanning can be done by scanning the beam in both directions at the same speed on both going and returning (beam scanning direction ■ in the figure), and by making extreme differences in the going and returning speeds, which hardly affects the beam irradiation on the way back. to be free of
There is a method of always setting the beam in the same direction (beam scanning direction (■) in the figure). Further, depending on the need, it may be necessary to irradiate the beam only to discrete positions, and the beam can be moved to the required area by high-speed scanning of the beam (not shown). When beam irradiation is performed in divided beams, in order to irradiate the entire surface of the sample uniformly, the total beam irradiation amount in the overlapping portion of the beam must be the same as that in other portions. If the sloped parts at both ends of the linear beam are symmetrical, if the part corresponding to half the beam current of the sloped part is detected and this is defined as the overlapping part of the beam, the total difference between the other parts and the beam as shown in Figure 2 is The irradiation amount will be the same. As shown in FIG. 1, the integral shape of a linear beam is close to a positive and negative Gaussian distribution at the ends of the beam. Moreover, its maximum and minimum values are located approximately at half of the linear beam.

従ってこの間隔をステップ移動幅とすることによってト
ータルのビーム照射量を均一にできる。
Therefore, by setting this interval as the step movement width, the total beam irradiation amount can be made uniform.

第3図は第1図で示した方法で決めたステップ移動幅を
使い第2図とは別のビームの重ね合わせの方法とトータ
ルビーム照射量を示したもので、第2図で示したビーム
照射方法の繰り返し時の初期位置への戻りを、ステップ
移動幅の半分ずらせる方法である。これでビームの繰り
返し照射の時に奇数回時と偶数回時とで照射位置が互い
違いになり、均一性を高められる。
Figure 3 shows a method of overlapping the beams and the total beam irradiation amount, which is different from that shown in Figure 2, using the step movement width determined using the method shown in Figure 1. This is a method in which the return to the initial position when repeating the irradiation method is shifted by half the step movement width. With this, when repeatedly irradiating the beam, the irradiation position is alternated between odd and even times, improving uniformity.

さらに、第2図、第3図に示したビーム照射方法に加え
、ビーム照射の繰り返し時に試料を90度回転させるこ
とによってビームの走査方向を交差させて均一性を高め
てもよい(図示せず)。
Furthermore, in addition to the beam irradiation method shown in Figures 2 and 3, the sample may be rotated 90 degrees during repeated beam irradiation to intersect the beam scanning direction to improve uniformity (not shown). ).

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による線状電子ビームのス
テップ移動幅決定方法により線状電子ビームの照射量を
試料全体に均一にでき、これによって化学反応による超
LSI等の微細加工、エツチングあるいは成膜等を行な
うことができる。
As explained above, the method for determining step movement width of a linear electron beam according to the present invention makes it possible to make the irradiation amount of the linear electron beam uniform over the entire sample. A membrane etc. can be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の線状電子ビームのステップ移動幅決定
方法の概念を示した図、第2図は線状電子ビームのステ
ップ移動の一例を示した図、第3図は線状電子ビームの
ステップ移動の他の一例を示した図、第4図は線状電子
ビームの走査方法の概念を示した図、第5図は線状電子
ビームの電流測定の概念を示した図である。 1・・・線状電子ビーム、2・・・試料、3・・・ファ
ラデーケージ、4・・・検出抵抗、5・・・モニター 
6・・・ビーム入射絞り。
FIG. 1 is a diagram showing the concept of the step movement width determination method of a linear electron beam according to the present invention, FIG. 2 is a diagram showing an example of step movement of a linear electron beam, and FIG. 3 is a diagram showing a linear electron beam step movement width determination method. FIG. 4 is a diagram showing the concept of a linear electron beam scanning method, and FIG. 5 is a diagram showing the concept of linear electron beam current measurement. 1... Linear electron beam, 2... Sample, 3... Faraday cage, 4... Detection resistor, 5... Monitor
6...Beam entrance aperture.

Claims (1)

【特許請求の範囲】 1、入射絞りがスリット状のファラデーケージで測定し
た線状電子ビームのビームプロファイルを微分し、その
最大値と最小値に対応するビーム波形の幅を、ビーム走
査方向に対して直角方向にステップ移動する幅とし、該
ステップ移動幅でビーム走査位置あるいは相対的に試料
を順次移動し、試料全面あるいは必要領域にビーム照射
し、必要に応じてこれを繰り返す線状電子ビーム照射方
法。 2、請求項1記載の方法で決定したステップ移動幅でビ
ーム走査位置あるいは相対的に試料を順次移動し、試料
全面あるいは必要領域にビーム照射後、初期位置からビ
ーム偏向幅の半分の長さずらせた位置にもどり、また順
次ビームを照射し、再度初期位置に戻るという繰り返し
により必要量のビーム照射を行なう線状電子ビーム照射
方法。 3、試料全面あるいは必要領域にビーム照射後、試料を
90度回転させ、この向きで再度ビーム照射し、必要に
応じ再び試料を90度回転してビーム照射を行なうとい
う繰り返しにより必要量のビーム照射を行なう請求項1
又は2記載の線状電子ビーム照射方法。
[Claims] 1. Differentiate the beam profile of a linear electron beam measured with a Faraday cage with a slit-shaped entrance aperture, and calculate the width of the beam waveform corresponding to its maximum and minimum values with respect to the beam scanning direction. A linear electron beam irradiation method in which the sample is sequentially moved to the beam scanning position or relative to the sample in the step movement width, and the entire surface of the sample or a required area is irradiated with the beam, and this is repeated as necessary. Method. 2. Sequentially move the sample at the beam scanning position or relative to each other with the step movement width determined by the method described in claim 1, and after irradiating the entire surface of the sample or a necessary area with the beam, shift the length by half the beam deflection width from the initial position. A linear electron beam irradiation method that irradiates the required amount of beam by repeating the steps of returning to the original position, irradiating the beam in sequence, and returning to the initial position again. 3. After irradiating the entire surface of the sample or the required area with the beam, rotate the sample 90 degrees, irradiate the beam again in this direction, and repeat the process of rotating the sample 90 degrees and irradiating the beam again as necessary to achieve the required amount of beam irradiation. Claim 1
Or the linear electron beam irradiation method according to 2.
JP18200190A 1990-07-10 1990-07-10 Linear electron beam emission method Pending JPH0471154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18200190A JPH0471154A (en) 1990-07-10 1990-07-10 Linear electron beam emission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18200190A JPH0471154A (en) 1990-07-10 1990-07-10 Linear electron beam emission method

Publications (1)

Publication Number Publication Date
JPH0471154A true JPH0471154A (en) 1992-03-05

Family

ID=16110589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18200190A Pending JPH0471154A (en) 1990-07-10 1990-07-10 Linear electron beam emission method

Country Status (1)

Country Link
JP (1) JPH0471154A (en)

Similar Documents

Publication Publication Date Title
US4980562A (en) Method and apparatus for high efficiency scanning in an ion implanter
JP5074480B2 (en) Ion beam scanning control method and system for uniformly implanting ions
JPH10116581A (en) Ion beam scanning method and its device
JPH11149893A (en) Drawing device electron beam, its method and semiconductor device
US5396077A (en) Electron beam lithography apparatus having electron optics correction system
US5877505A (en) Apparatus for determining mark position on wafer
JPH0471154A (en) Linear electron beam emission method
JPH0458104A (en) Electron beam size measuring instrument
JP3960544B2 (en) Beam adjusting specimen, beam adjusting method and beam adjusting apparatus
JPS63166228A (en) Position detector
JP3684943B2 (en) Beam scanning inspection system
JP3488707B2 (en) Pattern dimension measuring device
US5332898A (en) Precision measurement using particle beam devices
JP3758214B2 (en) Charged particle equipment
JP2016139531A (en) Sample observation, inspection, measurement method, and scanning electron microscope
JP2546500B2 (en) Film thickness measurement method
JPH11271499A (en) Measuring method for beam in variable area electron beam plotting device
JPS6250648A (en) Method for analyzing noticed element in sample by electron ray irradiation
JPH04105010A (en) Method and device for shape and dimension measurement
JPH025346A (en) Ion implanter and adjustment of ion beam
JPH11237230A (en) Method and equipment for specimen measuring in electron microscope
JPH0982264A (en) Pattern inspection device and scanning electron microscope
JPH0291507A (en) Measuring instrument for fine pattern
JPH11224642A (en) Electron beam exposure device and electron beam exposure method
JPH0696715A (en) Ion implantation device