JPH11237230A - Method and equipment for specimen measuring in electron microscope - Google Patents

Method and equipment for specimen measuring in electron microscope

Info

Publication number
JPH11237230A
JPH11237230A JP4011998A JP4011998A JPH11237230A JP H11237230 A JPH11237230 A JP H11237230A JP 4011998 A JP4011998 A JP 4011998A JP 4011998 A JP4011998 A JP 4011998A JP H11237230 A JPH11237230 A JP H11237230A
Authority
JP
Japan
Prior art keywords
sample
characteristic value
correction function
electron beam
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4011998A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ueda
和弘 植田
Minoru Shimizu
実 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Instruments Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Instruments Engineering Co Ltd
Priority to JP4011998A priority Critical patent/JPH11237230A/en
Publication of JPH11237230A publication Critical patent/JPH11237230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce influence of contamination and charging-up phenomenon of a specimen, concerning characteristic values characterizing the specimen. SOLUTION: In this specimen measuring method, a portion where dimension is measured is selected on the basis of an image (secondary electron image) of a secondary electron signal, and the dimension of the portion is repeatedly measured by using a dimension measuring apparatus 15. The results are stored in a measurement results storing equipment 16. On the basis of the stored measurement results, a correction function computing equipment 17 obtains a correction function by using, e.g. a method of least squares, and further estimates a dimension measurement value zero number of measurement time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子顕微鏡における
試料測定法及び装置、特に半導体デバイスの回路パタ−
ンのようなの微細な部分の寸法を測定するのに適した電
子顕微鏡における試料測定法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a sample in an electron microscope, and more particularly to a circuit pattern for a semiconductor device.
The present invention relates to a method and an apparatus for measuring a sample in an electron microscope suitable for measuring the size of a minute portion such as an electron beam.

【0002】[0002]

【従来の技術】電子顕微鏡は半導体デバイスの回路パタ
ーンの寸法測定に用いられることが多い。これは、試料
の電子線による照射及びそれによって試料から発生する
二次電子等の検出にその基礎を置くもので、測定された
値はそのまま寸法を表す値として用いられるのが普通で
ある。
2. Description of the Related Art An electron microscope is often used for measuring the dimensions of a circuit pattern of a semiconductor device. This is based on irradiating the sample with an electron beam and detecting secondary electrons and the like generated from the sample by the irradiation, and the measured value is usually used as it is as a value representing a dimension.

【0003】[0003]

【発明が解決しようとする課題】しかし、電子線で試料
を照射すると、その表面にハイドロカーボンを主体とす
るコンタミネーションが生じ、またその表面に電子が溜
まるチャージアップ現象が生じる。このため、試料の同
一箇所を繰り返し測定すると、そのたびごとにその測定
値が変動する。このような変動は半導体デバイスの回路
パターンの微細化が急速に進むにつれて無視できなくな
ってきている。
However, when a sample is irradiated with an electron beam, contamination mainly composed of hydrocarbons occurs on the surface thereof, and a charge-up phenomenon in which electrons accumulate on the surface occurs. For this reason, when the same part of the sample is repeatedly measured, the measured value changes each time. Such fluctuations cannot be ignored as the miniaturization of circuit patterns of semiconductor devices progresses rapidly.

【0004】本発明の目的は試料を特徴づける特徴値
の、その試料のコンタミネーションやチャージアップ現
象による影響を低減するのに適した電子顕微鏡における
試料測定法及び装置を提供することにある。
An object of the present invention is to provide a method and an apparatus for measuring a sample in an electron microscope which are suitable for reducing the influence of the characteristic value characterizing the sample due to the contamination or charge-up phenomenon of the sample.

【0005】[0005]

【課題を解決するための手段】本発明によれば、試料は
電子線で照射され、それによって試料から発生する情報
信号は検出される。試料を特徴づける特徴値はそれぞれ
異なる時点において検出情報信号にもとづいて得られ、
そしてそのようにして得られた特徴値にもとづいて特徴
値補正関数が求められる。
According to the present invention, a sample is irradiated with an electron beam, whereby an information signal generated from the sample is detected. The characteristic values characterizing the sample are obtained at different times based on the detection information signal,
Then, a characteristic value correction function is obtained based on the characteristic values obtained as described above.

【0006】[0006]

【発明の実施の形態】図1は本発明にもとづく一実施例
を示す。電子源であるフィラメント1から発生する1次
電子線2はウェーネルト3及びアノード4により制御さ
れ、加速される。その加速された1次電子線2は集束レ
ンズ5及び対物レンズ8によって試料9に集束される。
1次電子線2に発生する非点収差はスティグマコイル6
を用いて補正することができる。
FIG. 1 shows an embodiment according to the present invention. A primary electron beam 2 generated from a filament 1 as an electron source is controlled and accelerated by a Wehnelt 3 and an anode 4. The accelerated primary electron beam 2 is focused on a sample 9 by a focusing lens 5 and an objective lens 8.
The astigmatism generated in the primary electron beam 2 is reduced by the stigma coil 6
Can be corrected using

【0007】走査信号発生器12からはX及びY方向の
走査信号が発生し、偏向コイル装置7に与えられる。こ
れによって1次電子線2は2次元的に偏向され、したが
って試料9は集束された維持電子線2によって2次元的
に走査される。1次電子線2の走査幅したがって後述
の、得られる像の倍率は倍率設定器13によって設定さ
れる。
[0007] A scanning signal generator 12 generates scanning signals in the X and Y directions, and is provided to the deflection coil device 7. As a result, the primary electron beam 2 is two-dimensionally deflected, so that the sample 9 is two-dimensionally scanned by the focused maintenance electron beam 2. The scanning width of the primary electron beam 2 and thus the magnification of the obtained image, which will be described later, are set by the magnification setting unit 13.

【0008】試料9からは2次電子や反射電子が発生す
るが、そのうちのたとえば2次電子10は2次電子検出
器11によって検出され、電気信号に変換される。この
電気信号は画像取込装置(メモリ)14に導入される
が、走査信号発生器12からのX及びY方向走査信号は
画像取込装置14にも導入されるので、2次電子検出器
11からの電気信号は試料9の1次電子線2による走査
と同期して画像取込装置14の対応するメモリ領域に記
憶される。したがって、そのメモリには試料9の2次電
子像が記憶される。もちろん、この記憶された像は読み
出してディスプレイ19に表示することができる。寸法
測定装置15は画像取込装置14から読み出された像信
号をもとにして、試料9を特徴づける特徴値としての試
料9の所望部分の寸法を測定する。この点はよく知られ
ているものであるので、その詳細図示は省略されてい
る。
[0008] Secondary electrons and reflected electrons are generated from the sample 9, for example, the secondary electrons 10 are detected by the secondary electron detector 11 and converted into electric signals. This electric signal is introduced into the image capturing device (memory) 14, but the X and Y direction scanning signals from the scanning signal generator 12 are also introduced into the image capturing device 14, so that the secondary electron detector 11 Is stored in the corresponding memory area of the image capturing device 14 in synchronization with the scanning of the sample 9 by the primary electron beam 2. Therefore, the secondary electron image of the sample 9 is stored in the memory. Of course, this stored image can be read out and displayed on the display 19. The size measuring device 15 measures the size of a desired portion of the sample 9 as a characteristic value characterizing the sample 9 based on the image signal read from the image capturing device 14. Since this point is well known, its detailed illustration is omitted.

【0009】試料9の同じ箇所は繰り返し測定され、そ
れによって得られるその部分の異なる時点での寸法測定
値は寸法測定装置15に接続された測定結果保存装置1
6に保存される。測定結果保存装置(メモリ)16に接
続された特徴値補正関数計算手段である補正関数計算装
置17は測定結果保存装置16に保存されている異なる
時点での寸法測定値にもとづいて特徴値補正関数である
補正関数を計算して求め、更にその補正関数にもとづい
て、試料9の1次電子線2による照射がない場合の特徴
値である寸法値、したがって試料9の電子線照射による
コンタミネーションやチャージアップの影響のない寸法
値を推定する。得られた結果はディスプレイ18に表示
されるとともにプリンタ19によっ印刷される。
The same portion of the sample 9 is repeatedly measured, and the resulting dimensional measurements at different times of the portion are stored in the measurement result storage device 1 connected to the dimensional measurement device 15.
6 is stored. A correction function calculator 17 as a feature value correction function calculator connected to the measurement result storage device (memory) 16 is a feature value correction function based on the dimension measurement values at different points in time stored in the measurement result storage device 16. Is calculated, and based on the correction function, the dimension value which is the characteristic value of the sample 9 when there is no irradiation by the primary electron beam 2, and therefore the contamination and the contamination of the sample 9 by the irradiation of the electron beam. Estimate the dimension value without the effect of charge-up. The obtained result is displayed on the display 18 and printed by the printer 19.

【0010】図2は図1の実施例における本発明にもと
づく試料測定のフローを示す。ステップ1からステップ
5までは一般に行われているこのうである。ステップ1
において2次電子信号による像(2次電子像)を形成
し、ステップ2で寸法の測定を行う箇所を選択する。像
に含まれるノイズによる測定値の変動現象させるために
ステップ3において平滑化処理を行う。ステップ4では
ステップ3で得られた信号をもとにして測定位置の選択
を行い、倍率を考慮してステップ5において選択され位
置の寸法測定値を算出する。
FIG. 2 shows a flow of the sample measurement based on the present invention in the embodiment of FIG. Steps 1 to 5 are generally performed. Step 1
In step (2), an image (secondary electron image) is formed by a secondary electron signal, and in step 2, a portion for measuring a dimension is selected. In step 3, a smoothing process is performed in order to cause the measurement value to fluctuate due to noise included in the image. In step 4, a measurement position is selected based on the signal obtained in step 3, and a dimension measurement value of the position selected in step 5 is calculated in consideration of the magnification.

【0011】本発明の実施例ではそのような処理に加
え、ステップ6において測定値を一旦保存し、ステップ
1からステップ5までの処理を複数回繰り返す。これに
より同じ箇所の異なった時点での測定値が保存される。
ステップ7ではステップ6で保存された複数の測定値に
もとづき、測定回数または測定時点をもとにして補正関
数を求め、そしてステップ8ではその補正関数より時間
t(t≧0)又は測定回数n(n≧0)の時点での寸法
値を推定値として算出する。
In the embodiment of the present invention, in addition to such processing, the measured value is temporarily stored in step 6, and the processing from step 1 to step 5 is repeated a plurality of times. This saves the measurements at the same point at different times.
In step 7, a correction function is determined based on the number of measurements or the measurement time point based on the plurality of measurement values stored in step 6, and in step 8, the time t (t ≧ 0) or the number of measurements n is calculated from the correction function. The dimension value at the time of (n ≧ 0) is calculated as an estimated value.

【0012】表1は本発明にもとづく寸法測定結果を示
す。この測定結果は試料の同一箇所を連続して10回測
定して得られたものである。
Table 1 shows the results of dimension measurement based on the present invention. This measurement result was obtained by continuously measuring the same portion of the sample 10 times.

【0013】[0013]

【表1】 [Table 1]

【0014】図3は得られた測定結果から、測定回数を
x軸に、測定値をy軸にとり、測定値の変動に対して求
められた補正関数としての近似曲線を示す。これは測定
値の変動に対して最小二乗法による直線近似を行って得
たものである。得られた近似曲線からコンタミネーショ
ンなどの影響を受けない測定0回目の測定値、0.4467が
求められた。
FIG. 3 shows an approximate curve as a correction function obtained with respect to the fluctuation of the measured value, with the number of measurements taken on the x-axis and the measured value taken on the y-axis from the obtained measurement results. This is obtained by performing a linear approximation by the least squares method on the fluctuation of the measured value. From the obtained approximate curve, a measured value of 0.4467, which was not affected by contamination and the like, was obtained.

【0015】実施例では、測定値の変動に対して最小二
乗法による直線近似を行ったが、測定値に急激な変動が
ある場合も、実施例と同様にして補正関数としての特性
曲線を求め近似を行うことができる。
In the embodiment, a straight line approximation by the least squares method is performed on the fluctuation of the measured value. However, even when the measured value has a sudden fluctuation, a characteristic curve as a correction function is obtained in the same manner as in the embodiment. An approximation can be made.

【0016】実施例では、試料から発生して検出される
情報信号は2次電子信号であるが、その検出対象は反射
電子等であってもよい。
In the embodiment, the information signal generated and detected from the sample is a secondary electron signal, but the detection target may be a reflected electron or the like.

【0017】実施例では、試料を特徴づける特徴値は試
料の寸法値であるが、これに限定されるものではなく、
たとえば試料から発生するX線による試料の元素分析値
であってもよい。
In the embodiment, the characteristic value characterizing the sample is the dimension value of the sample, but is not limited thereto.
For example, an elemental analysis value of the sample by X-rays generated from the sample may be used.

【0018】[0018]

【発明の効果】本発明によれば、試料を特徴づける特徴
値の、その試料のコンタミネーションやチャージアップ
現象による影響を低減するのに適した電子顕微鏡におけ
る試料測定法及び装置が提供される。
According to the present invention, there is provided a method and an apparatus for measuring a sample in an electron microscope suitable for reducing the influence of a characteristic value characterizing the sample due to contamination or charge-up phenomenon of the sample.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にもとづく一実施例の概念図。FIG. 1 is a conceptual diagram of one embodiment based on the present invention.

【図2】図1の実施例における本発明にもとづく試料測
定のフロー図。
FIG. 2 is a flowchart of sample measurement based on the present invention in the embodiment of FIG. 1;

【図3】得られた測定結果をもとにして求められた補正
関数としての近似曲線を示す図。
FIG. 3 is a diagram showing an approximate curve as a correction function obtained based on an obtained measurement result.

【符号の説明】[Explanation of symbols]

1:フィラメント、2:1次電子線、3:ウェーネル
ト、4:アノード、5:収束レンズ、6:スティグマコ
イル、7:偏向コイル装置、8:対物レンズ、9:試
料、10:2次電子、11:2次電子検出器、12:走
査信号発生器、13:倍率設定器、14:画像取込装置
(メモリ)、15:寸法測定装置、16:測定結果保存
装(用メモリ)、17:補正関数計算装置、18:ディ
スプレイ、19:プリンタ。
1: filament, 2: primary electron beam, 3: Wehnelt, 4: anode, 5: converging lens, 6: stigma coil, 7: deflection coil device, 8: objective lens, 9: sample, 10: secondary electron, 11: secondary electron detector, 12: scanning signal generator, 13: magnification setting device, 14: image capturing device (memory), 15: dimension measuring device, 16: measurement result storage device (memory), 17: Correction function calculator, 18: display, 19: printer.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】試料を電子線で照射して、その試料から発
生する情報信号を検出するステップと、前記試料を特徴
づける特徴値をそれぞれ異なる時点において前記検出し
た情報信号にもとづいて得るステップと、そのようにし
て得られた特徴値にもとづいて特徴値補正関数を求める
ステップとを含む電子顕微鏡における試料測定法。
A step of irradiating a sample with an electron beam to detect an information signal generated from the sample; and a step of obtaining characteristic values characterizing the sample at different times based on the detected information signal. Obtaining a characteristic value correction function based on the characteristic values obtained in this manner.
【請求項2】請求項1において、前記特徴値補正関数に
もとづいて前記試料の前記電子線による照射がない場合
の前記試料の特徴値を推定するステップを含むことを特
徴とする電子顕微鏡における試料測定方法。
2. A sample in an electron microscope according to claim 1, further comprising a step of estimating a feature value of said sample when said sample is not irradiated with said electron beam based on said feature value correction function. Measuring method.
【請求項3】請求項1において、前記特徴値補正関数は
最小二乗法による直線近似関数であることを特徴とする
電子顕微鏡における試料測定方法。
3. The method according to claim 1, wherein the characteristic value correction function is a linear approximation function by a least squares method.
【請求項4】請求項1において、前記特徴値は前記試料
の寸法を表していることを特徴とする電子顕微鏡におけ
る試料測定方法。
4. The sample measuring method according to claim 1, wherein said characteristic value represents a size of said sample.
【請求項5】試料を電子線で照射し、それによって前記
試料から発生する情報信号を検出する手段と、前記試料
を特徴づける特徴値をそれぞれ異なる時点において前記
検出した情報信号にもとづいて得て、その得た特徴値に
もとづいて特徴値補正関数を求める手段とを備えている
ことを特徴とする電子顕微鏡における試料測定装置。
5. A means for irradiating a sample with an electron beam, thereby detecting an information signal generated from the sample, and obtaining characteristic values characterizing the sample at different time points based on the detected information signal. Means for obtaining a characteristic value correction function based on the obtained characteristic value.
【請求項6】請求項5において、前記特徴値を記憶する
手段を備えていることを特徴とする電子顕微鏡における
試料測定装置。
6. An apparatus according to claim 5, further comprising means for storing said characteristic value.
【請求項7】請求項5において、前記特徴値補正関数は
最小二乗法による直線近似関数であることを特徴とする
電子顕微鏡における試料測定装置。
7. An apparatus according to claim 5, wherein said characteristic value correction function is a linear approximation function by a least squares method.
【請求項8】請求項5において、前記特徴値補正関数を
求める手段は前記特徴値補正関数にもとづいて前記試料
の前記電子線による照射前の前記試料の特徴値を推定す
ることを特徴とする電子顕微鏡における試料測定装置。
8. The apparatus according to claim 5, wherein said means for calculating the characteristic value correction function estimates a characteristic value of the sample before irradiation of the sample with the electron beam based on the characteristic value correction function. Sample measuring device in electron microscope.
【請求項9】請求項5において、前記特徴値は前記試料
の寸法を表していることを特徴とする電子顕微鏡におけ
る試料測定装置。
9. An apparatus according to claim 5, wherein said characteristic value represents a size of said sample.
JP4011998A 1998-02-23 1998-02-23 Method and equipment for specimen measuring in electron microscope Pending JPH11237230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4011998A JPH11237230A (en) 1998-02-23 1998-02-23 Method and equipment for specimen measuring in electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4011998A JPH11237230A (en) 1998-02-23 1998-02-23 Method and equipment for specimen measuring in electron microscope

Publications (1)

Publication Number Publication Date
JPH11237230A true JPH11237230A (en) 1999-08-31

Family

ID=12571952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4011998A Pending JPH11237230A (en) 1998-02-23 1998-02-23 Method and equipment for specimen measuring in electron microscope

Country Status (1)

Country Link
JP (1) JPH11237230A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108827A1 (en) * 2001-02-23 2002-09-12 Infineon Technologies Ag Measuring method for determining the width of a structure on a mask
WO2003098149A1 (en) * 2002-05-20 2003-11-27 Hitachi High-Technologies Corporation Sample dimension measuring method and scanning electron microscope
US7285777B2 (en) 2001-08-29 2007-10-23 Hitachi High-Technologies Corporation Sample dimension measuring method and scanning electron microscope
US7659508B2 (en) 2001-08-29 2010-02-09 Hitachi, Ltd. Method for measuring dimensions of sample and scanning electron microscope

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108827A1 (en) * 2001-02-23 2002-09-12 Infineon Technologies Ag Measuring method for determining the width of a structure on a mask
DE10108827C2 (en) * 2001-02-23 2003-01-30 Infineon Technologies Ag Measuring method for determining the width of a structure on a mask
US6646260B2 (en) 2001-02-23 2003-11-11 Infineon Technologies Ag Measurement technique for determining the width of a structure on a mask
US7285777B2 (en) 2001-08-29 2007-10-23 Hitachi High-Technologies Corporation Sample dimension measuring method and scanning electron microscope
US7659508B2 (en) 2001-08-29 2010-02-09 Hitachi, Ltd. Method for measuring dimensions of sample and scanning electron microscope
US8080789B2 (en) 2001-08-29 2011-12-20 Hitachi, Ltd. Sample dimension measuring method and scanning electron microscope
WO2003098149A1 (en) * 2002-05-20 2003-11-27 Hitachi High-Technologies Corporation Sample dimension measuring method and scanning electron microscope
US7910886B2 (en) 2002-05-20 2011-03-22 Hitachi High-Technologies Corporation Sample dimension measuring method and scanning electron microscope

Similar Documents

Publication Publication Date Title
US7164126B2 (en) Method of forming a sample image and charged particle beam apparatus
JP5202071B2 (en) Charged particle microscope apparatus and image processing method using the same
US8030614B2 (en) Charged particle beam apparatus and dimension measuring method
US7034296B2 (en) Method of forming a sample image and charged particle beam apparatus
US20060284088A1 (en) Focus correction method for inspection of circuit patterns
US20050199811A1 (en) Image evaluation method and microscope
US20030136907A1 (en) Charged particle beam apparatus
US20050151078A1 (en) Method for determining depression/protrusion of sample and charged particle beam apparatus therefor
JP4231798B2 (en) Charged particle beam equipment and magnification measurement method
JP2010276487A (en) Template creating method for template matching, and template creating apparatus
JP5966087B2 (en) Pattern shape evaluation apparatus and method
US20070187599A1 (en) Charged particle beam apparatus, charged particle beam focusing method, microstructure measuring method, microstructure inspecting method, semiconductor device manufacturing method, and program
JP2006170969A (en) Method for determining measured value
US8263935B2 (en) Charged particle beam apparatus
JP4194526B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
US20070029478A1 (en) Method of forming a sample image and charged particle beam apparatus
JP3961438B2 (en) PATTERN MEASURING DEVICE, PATTERN MEASURING METHOD, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP2006032202A (en) Charged particle beam device
JPH11237230A (en) Method and equipment for specimen measuring in electron microscope
JP6207893B2 (en) Template creation device for sample observation equipment
JP2008084565A (en) Scanning electron microscope, and its measuring method
JP2011179819A (en) Pattern measuring method and computer program
JP6101445B2 (en) Signal processing apparatus and charged particle beam apparatus
JP4231891B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP2001185592A (en) Inspection apparatus and method of inspection