JPS6250648A - Method for analyzing noticed element in sample by electron ray irradiation - Google Patents

Method for analyzing noticed element in sample by electron ray irradiation

Info

Publication number
JPS6250648A
JPS6250648A JP60191271A JP19127185A JPS6250648A JP S6250648 A JPS6250648 A JP S6250648A JP 60191271 A JP60191271 A JP 60191271A JP 19127185 A JP19127185 A JP 19127185A JP S6250648 A JPS6250648 A JP S6250648A
Authority
JP
Japan
Prior art keywords
ray
sample
electron beam
detection signal
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60191271A
Other languages
Japanese (ja)
Inventor
Hiroshi Tajima
博 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP60191271A priority Critical patent/JPS6250648A/en
Publication of JPS6250648A publication Critical patent/JPS6250648A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To non-destructively analyze the concn. distribution of a noticed element in the depth direction in a short period by determining the concn. distribution of the noticed element at the specified depth in accordance with the differential signal between an X-ray detection signal when an electron ray is irradiated to the analytical point of a sample and an X-ray detection signal obtd. by changing the diameter of an electron beam. CONSTITUTION:The electron beam 2 emitted from an electron gun 1 is accelerated by the high voltage from a high-voltage power source 16 and is converted by a convergent lens 3 and an objective lens 4. The converged beam irradiates the sample 5, from which the characteristic X-ray 6 is generated. The X-ray 6 is detected by an X-ray detector 8 by increasing the acceleration voltage each slightly. The detection signal is fed to a measuring circuit 9 by which the X-ray intensity is counted. The beam diameter of the X-ray beam 2 decreases gradually in this stage and the region where the X-ray is generated increases in the depth direction. A control circuit 10 stores the count value in a storage circuit 11 and stores the difference in the count values before and after the increase of the acceleration voltage by one step into the storage circuit 11. The concn. distribution of the noticed element at the specific point in the depth direction of the element is calculated in an arithmetic circuit 12 in accordance with the stored value thereof and is displayed on a display device 13.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子線を試料に照射して、特性X線を検出し、
このX線の検出に基づいて試料に含まれる注目元素の濃
度を分析するようにした方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention irradiates a sample with an electron beam, detects characteristic X-rays,
The present invention relates to a method for analyzing the concentration of an element of interest contained in a sample based on the detection of these X-rays.

[従来の技術] 分析電子顕微鏡等において、ある元素に注目してその元
素が試料の深さ方向にどのように分布しているかを分析
する場合、従来においては、分析点をエツチング等によ
り削って徐々に深さを深くして行きながら電子線を照射
して分析していた。
[Prior art] When using an analytical electron microscope or the like to focus on a certain element and analyze how that element is distributed in the depth direction of a sample, conventionally, the analysis point is removed by etching or the like. The electron beam was irradiated and analyzed while gradually increasing the depth.

[発明が解決しようとする問題点] そのためこのような従来の方法では、試料を破壊しなけ
れば分析を行なうことができないと共に、表面のエツチ
ングに時間がかかるため、短時間に分析を行なうことは
できなかった。
[Problems to be solved by the invention] Therefore, with such conventional methods, analysis cannot be performed without destroying the sample, and etching the surface takes time, making it difficult to perform analysis in a short time. could not.

特に時間がかかるという欠点は、試料の2点間における
注目元素の深さ方向の濃度分布や、ある特定深さにおけ
る注目元素の二次元的な分布を分析しようとする場合に
は、測定点の数が多いため、解決をせまられる大きな問
題となっていた。
The downside is that it takes a particularly long time to analyze the concentration distribution of the element of interest in the depth direction between two points on the sample, or the two-dimensional distribution of the element of interest at a certain depth. Because of the large number of cases, it was a big problem that needed to be solved.

本発明は以上の欠点を解消して、試料中の注目元素の深
さ方向の分布を短時間で、且つ非破壊で分析することを
目的としている。
The present invention aims to eliminate the above-mentioned drawbacks and analyze the depthwise distribution of an element of interest in a sample in a short time and non-destructively.

[問題点を解決するための手段] 本問題点を解決するため本発明は、試料に電子線を照射
し、該電子線の照射によって試料から発生した特性X線
を検出し、該X線の検出に基づいて試料を分析する方法
において、試料上の分析点に対して電子線を照射して第
1のX線検出信号を得ると共に、該電子線の加速電圧を
増加(又は減少)させ且つ該電子ビームの径を減少(又
は増加)させて該分析点に電子ビームを照射し、該照射
により第2のX線検出信号を得、該第1.第2のX線検
出信号の差を求め、該差信号に基づいて該分析点の表面
から一定深さにおける注目元素の濃度分布を求めるよう
にしたことを特徴としている。
[Means for solving the problem] In order to solve this problem, the present invention irradiates a sample with an electron beam, detects characteristic X-rays generated from the sample by the irradiation with the electron beam, and detects the characteristic In a method of analyzing a sample based on detection, an analysis point on the sample is irradiated with an electron beam to obtain a first X-ray detection signal, and the accelerating voltage of the electron beam is increased (or decreased); The diameter of the electron beam is decreased (or increased) and the analysis point is irradiated with the electron beam, a second X-ray detection signal is obtained by the irradiation, and the first. The present invention is characterized in that the difference between the second X-ray detection signals is determined, and the concentration distribution of the element of interest at a certain depth from the surface of the analysis point is determined based on the difference signal.

[実施例] 以下本発明の実施例を図面を用いて詳述する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明を実施するための装置の一例を示すもの
である。第1図において、電子銃1から電子ビーム2が
放射され、この電子ビーム2は収束レンズ3により収束
され、更に対物レンズ4によって収束されて試料5に照
射される。そしてこの試料5の照射部分から発生する特
性X線6がX線分光結晶7を通してX線検出器8に導か
れ検出信号が得られる。この検出信号はX線強度をカウ
ントする測定回路9に送られ、所定エネルギーのX線検
出信号のみが取り出されて測定される。測定回路9より
のカウント値は制御回路10に接続された記憶回路11
に記憶される。12は記憶回路11よりのデータをもと
に特性X線の有無の判断と各種の演算をする演痺回路で
、演算回路12よりの演算結果は表示装置13に表示さ
れる。14は電子ビーム2を二次元的に走査するための
走査コイル、15は走査コイル14に走査信号を供給す
る走査電源、16は電子ビーム2を加速するための高圧
電源で、該高圧電源16は高圧制御回路17によりコン
トロールされる。18は収束レンズ3.対物レンズ4の
それぞれのレンズ電流をコントロールするための電子光
学系制御回路で、これらの走査電源15.高圧制御回路
17.電子光学系制御回路18はそれぞれ制御回路10
によってコントロールされる。19は試料5を載置する
試料ステージで、該試料ステージ19は制御口M10に
よって制御されるステージ駆動回路20によって駆動さ
れる。
FIG. 1 shows an example of an apparatus for carrying out the present invention. In FIG. 1, an electron beam 2 is emitted from an electron gun 1, which is converged by a converging lens 3, further converged by an objective lens 4, and irradiated onto a sample 5. Characteristic X-rays 6 generated from the irradiated portion of the sample 5 are guided to an X-ray detector 8 through an X-ray spectroscopy crystal 7, and a detection signal is obtained. This detection signal is sent to a measurement circuit 9 that counts the X-ray intensity, and only the X-ray detection signal with a predetermined energy is extracted and measured. The count value from the measurement circuit 9 is stored in the memory circuit 11 connected to the control circuit 10.
is memorized. Reference numeral 12 denotes a numbing circuit that determines the presence or absence of characteristic X-rays and performs various calculations based on the data from the storage circuit 11. The calculation results from the calculation circuit 12 are displayed on the display device 13. 14 is a scanning coil for two-dimensionally scanning the electron beam 2; 15 is a scanning power supply for supplying a scanning signal to the scanning coil 14; 16 is a high-voltage power supply for accelerating the electron beam 2; It is controlled by a high voltage control circuit 17. 18 is a converging lens 3. An electron optical system control circuit for controlling each lens current of the objective lens 4, and these scanning power supplies 15. High voltage control circuit 17. Each of the electron optical system control circuits 18 and 10
controlled by. Reference numeral 19 denotes a sample stage on which the sample 5 is placed, and the sample stage 19 is driven by a stage drive circuit 20 controlled by a control port M10.

このような構成において、電子銃1より放射した電子ビ
ーム2は高圧電源17よりの高電圧によって加速され、
収束レンズ3.対物レンズ4により細く絞られて試料5
に照射され、電子ビーム2が照射された試料5からは各
元素特有の特性X線6が発生する。
In such a configuration, the electron beam 2 emitted from the electron gun 1 is accelerated by the high voltage from the high voltage power supply 17,
Convergent lens 3. The sample 5 is narrowed down by the objective lens 4.
The sample 5 irradiated with the electron beam 2 generates characteristic X-rays 6 unique to each element.

ところで、試料に電子ビームを照射することにより、試
料の電子ビーム照射部分よりX線が発生する領域は、第
2図(a)、(b)に示すように電子ビーム径φを一定
とした場合は加速電圧■が高(なればなる番よど深くな
るだけでなく、横方向(電子線の入射方向と垂直な方向
)に広くなることが知られている。
By the way, when a sample is irradiated with an electron beam, the area where X-rays are generated from the electron beam irradiated part of the sample is as shown in Figures 2 (a) and (b), assuming the electron beam diameter φ is constant. It is known that the higher the accelerating voltage ■, the deeper the beam becomes, as well as wider in the lateral direction (direction perpendicular to the incident direction of the electron beam).

しかして、通常分析する試料は、第3図に示すように注
目する元素eが表面に存在してるばかりでなく、深い部
分にも存在している場合が多い。
As shown in FIG. 3, in a sample that is normally analyzed, the element e of interest is not only present on the surface, but also often exists deep within the sample.

そこで本発明においては、試料に電子線が照射された際
のX線発生の性質を利用して深さ方向の試料分析を行な
うもので、試F15に照射する電子ビーム2の加速電圧
■を走査に対応させてV11V2 、V3と少しづつ上
げて、試料5から発生する特性X線6をカウントする。
Therefore, in the present invention, the sample is analyzed in the depth direction by utilizing the properties of X-ray generation when the sample is irradiated with an electron beam, and the acceleration voltage The characteristic X-rays 6 generated from the sample 5 are counted by increasing V11, V2 and V3 little by little.

この場合、電子ビーム2の加速電圧を上げることにより
X線の発生領域は横方向にも広がるため、照射する電子
ビーム2のビーム径φを1回目走査ではビーム径φ1゜
2回目走査ではビーム径φ2・・・・・・とビーム径φ
を加速電圧に連動させて細(し、X線の発生f!4VL
を横方向には広げず深さ方向にのみ増加させてゆく。
In this case, by increasing the accelerating voltage of the electron beam 2, the X-ray generation area expands in the horizontal direction, so the beam diameter φ of the electron beam 2 to be irradiated is changed from φ1° in the first scan to beam diameter φ1° in the second scan. φ2... and beam diameter φ
is linked to the accelerating voltage to generate X-rays f!4VL
is increased only in the depth direction without expanding in the lateral direction.

第4図は、このような方法で試料5を電子ビーム2で走
査した場合の試料上の位tiA、B、・・・・・・Eに
おける各加速電圧V+ 、V2 、Vsにおけるカウン
ト値を棒グラフで示したものである。
FIG. 4 is a bar graph showing the count values at each acceleration voltage V+, V2, Vs at positions tiA, B, ...E on the sample when the sample 5 is scanned by the electron beam 2 using this method. This is shown in .

第3図と第4図を対照することにより、以下の点が点が
明らかとなる。即ち、走査フレーム毎に電子ビームの加
速電圧を1ステツプずつ上げると共に、ビーム径φを1
ステツプずつ小さくして行くと、前述したようにX線発
生領域は深さ方向のみに増加して行くから、第3図の点
Bにおけるように特性X線のカウント値が加速電圧を上
げる前と同じであれば、注目元素eは深さ1よりも深い
領域においては殆んど分布していず、又、第3図におけ
る点Cにおけるようにカウント値が一定の割合で増加し
ている場合には、注目元素eは深さ2及び3の部分にお
いて表面と同一の濃度で分布していることになる。
By comparing FIG. 3 and FIG. 4, the following points become clear. That is, the acceleration voltage of the electron beam is increased by one step for each scanning frame, and the beam diameter φ is increased by one step.
If the step is made smaller, the X-ray generation area increases only in the depth direction as described above, so the characteristic If they are the same, the element of interest e is hardly distributed in a region deeper than depth 1, and if the count value is increasing at a constant rate as at point C in Figure 3, This means that the element of interest e is distributed at depths 2 and 3 at the same concentration as on the surface.

そこで、制御回路10は最初の加速電圧における各分析
点よりのカウント値を記憶回路11に送って記憶させる
と共に、加速電圧を1ステップ上げた後におけるカウン
ト値信号が送られて来ると、この記憶値を読み出して、
各分析点について加速電圧を上げた後におけるカウント
値から上げる前のカウント値を減じ、その差信号を記憶
回路11に記憶させる。従って、記憶回路11には加速
電圧がVo+iΔVの場合のカウント値と、加速電圧が
Vo+(i+1)Δ■の場合のカウント値との差がi=
0.1.2.・・・の値に対して、しかも各分析点につ
いて記憶される。
Therefore, the control circuit 10 sends the count values from each analysis point at the initial acceleration voltage to the storage circuit 11 to be stored therein, and when the count value signal after increasing the acceleration voltage by one step is sent, this memory circuit Read the value and
For each analysis point, the count value before raising the acceleration voltage is subtracted from the count value after raising the acceleration voltage, and the difference signal is stored in the storage circuit 11. Therefore, the memory circuit 11 stores the difference between the count value when the acceleration voltage is Vo+iΔV and the count value when the acceleration voltage is Vo+(i+1)Δ■.
0.1.2. ... and is stored for each analysis point.

そこで、制御回路10よりの制御信号に基づいて特定の
分析点をオペレータが指定すれば、制御回路10はこの
分析点について記憶回路11の記憶値を読み出し、この
記憶値に基づいて特定点における注目元素の深さ方向の
濃度分布を表示することができる。
Therefore, when the operator specifies a specific analysis point based on a control signal from the control circuit 10, the control circuit 10 reads out the stored value of the storage circuit 11 for this analysis point, and based on this stored value, the operator specifies a specific analysis point. The concentration distribution of elements in the depth direction can be displayed.

第5図(a)は、このようにして表示装置13に表示さ
れた第3図の点Cにおける元素の深さ方向の分布例を示
しており、第5図(b)は点Eにおける深さ方向の元素
分布を例示している。
5(a) shows an example of the distribution of elements in the depth direction at point C in FIG. 3 displayed on the display device 13 in this way, and FIG. 5(b) shows the depth distribution at point E. This shows an example of element distribution in the horizontal direction.

更に又、オペレータが試料の特定の深さを指示すれば、
制御回路10は記憶回路11に記憶されている特定の深
さに対応した差信号のみを読み出し、この読み出された
値に基づいてこの特定の深さにおける注目元素の二次元
的な濃度分布も表示することができる。
Furthermore, if the operator indicates a specific depth of the sample,
The control circuit 10 reads only the difference signal corresponding to a specific depth stored in the memory circuit 11, and based on this read value, also determines the two-dimensional concentration distribution of the element of interest at this specific depth. can be displayed.

第5図(C)は、このようにして表示された第3図にお
ける深さ3の元素の濃度分布を例示している。
FIG. 5(C) illustrates the element concentration distribution at depth 3 in FIG. 3 displayed in this way.

尚、上述した実施例においては、本発明の代表的な例示
に過ぎず、実施にあたっては幾多の他の態様を取り得る
The embodiments described above are merely representative examples of the present invention, and the present invention may be implemented in many other forms.

例えば、上述した実施例においては、加速電圧を徐々に
増加させると共に、電子線の径を徐々に減少させたが、
加速電圧を徐々に減少せしめると共に、電子線の径を徐
々に増加させるようにしても良い。
For example, in the embodiment described above, the acceleration voltage was gradually increased and the diameter of the electron beam was gradually decreased.
The diameter of the electron beam may be gradually increased while decreasing the accelerating voltage gradually.

更に又、上述した実施例においては、X線の発生領域が
深まるに従い増加するX線の減衰効果を無視したが、こ
の効果をも補正してより精度の高い分析を行なうことも
できる。
Furthermore, in the embodiments described above, the X-ray attenuation effect, which increases as the X-ray generation region deepens, is ignored, but this effect can also be corrected for more accurate analysis.

[発明の効果] 以上詳述したように本発明によれば、試料の深さ方向の
元素分布を非破壊で短時間に分析することができる。
[Effects of the Invention] As described in detail above, according to the present invention, the elemental distribution in the depth direction of a sample can be analyzed non-destructively and in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づく試料中の注目元素の分析方法を
実施するための分析電子顕微鏡の一例を示す図、第2図
(a)、(b)は電子ビーム照射による試料中のX線発
生領域を説明するための図、第3図は試料中の注目元素
eの存在と電子ビーム2の照射状態を説明するための図
、第4図は各走査毎に得られたカウント値を棒グラフで
表示した例を示ず図、第5図は表示装置13の表示例を
示すための図である。 1:電子銃、2:電子ビーム、3:収束レンズ、4:対
物レンズ、5:試料、6:特性X線、7:X線分光結晶
、8:X線検出器、9:測定回路、10:制御回路、1
1:記憶回路、12:演算回路、13:表示装置、14
:走査コイル、15:走査電源、16:高圧電源、17
:高圧制御回路、18:電子光学系制御回路、19:試
料ステージ、20:ステージ駆動回路。
Figure 1 is a diagram showing an example of an analytical electron microscope for carrying out the method of analyzing elements of interest in a sample based on the present invention, and Figures 2 (a) and (b) are X-rays in the sample by electron beam irradiation. Figure 3 is a diagram to explain the occurrence region, Figure 3 is a diagram to explain the presence of the element of interest e in the sample and the irradiation state of the electron beam 2, Figure 4 is a bar graph showing the count values obtained for each scan. FIG. 5 is a diagram showing an example of the display on the display device 13. 1: Electron gun, 2: Electron beam, 3: Convergent lens, 4: Objective lens, 5: Sample, 6: Characteristic X-ray, 7: X-ray spectrometer crystal, 8: X-ray detector, 9: Measurement circuit, 10 :Control circuit, 1
1: Memory circuit, 12: Arithmetic circuit, 13: Display device, 14
: Scanning coil, 15: Scanning power supply, 16: High voltage power supply, 17
: High voltage control circuit, 18: Electron optical system control circuit, 19: Sample stage, 20: Stage drive circuit.

Claims (1)

【特許請求の範囲】[Claims] 試料に電子線を照射し、該電子線の照射によって試料か
ら発生した特性X線を検出し、該X線の検出に基づいて
試料を分析する方法において、試料上の分析点に対して
電子線を照射して第1のX線検出信号を得ると共に、該
電子線の加速電圧を増加(又は減少)させ且つ該電子ビ
ームの径を減少(又は増加)させて該分析点に電子ビー
ムを照射し、該照射により第2のX線検出信号を得、該
第1、第2のX線検出信号の差を求め、該差信号に基づ
いて該分析点の表面から一定深さにおける注目元素の濃
度分布を求めるようにした電子線照射による試料中の注
目元素の分析方法。
A method in which a sample is irradiated with an electron beam, characteristic X-rays generated from the sample are detected by the irradiation with the electron beam, and the sample is analyzed based on the detection of the X-rays. irradiating the electron beam to obtain a first X-ray detection signal, increasing (or decreasing) the accelerating voltage of the electron beam, decreasing (or increasing) the diameter of the electron beam, and irradiating the analysis point with the electron beam. Then, a second X-ray detection signal is obtained by the irradiation, the difference between the first and second X-ray detection signals is determined, and the target element is detected at a certain depth from the surface of the analysis point based on the difference signal. A method for analyzing elements of interest in a sample using electron beam irradiation to determine the concentration distribution.
JP60191271A 1985-08-30 1985-08-30 Method for analyzing noticed element in sample by electron ray irradiation Pending JPS6250648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60191271A JPS6250648A (en) 1985-08-30 1985-08-30 Method for analyzing noticed element in sample by electron ray irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60191271A JPS6250648A (en) 1985-08-30 1985-08-30 Method for analyzing noticed element in sample by electron ray irradiation

Publications (1)

Publication Number Publication Date
JPS6250648A true JPS6250648A (en) 1987-03-05

Family

ID=16271766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60191271A Pending JPS6250648A (en) 1985-08-30 1985-08-30 Method for analyzing noticed element in sample by electron ray irradiation

Country Status (1)

Country Link
JP (1) JPS6250648A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118456A (en) * 1989-09-30 1991-05-21 Shimadzu Corp X-ray spectrochemical analysis method
JP2002039976A (en) * 2000-07-19 2002-02-06 Shimadzu Corp Method for correcting measured data of electron beam micro-analyzer
JP2004163135A (en) * 2002-11-11 2004-06-10 Jeol Ltd X-ray analysis apparatus
JP2015184040A (en) * 2014-03-20 2015-10-22 株式会社日立ハイテクサイエンス Energy dispersive x-ray analyzer and method for analyzing energy dispersive x-ray

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118456A (en) * 1989-09-30 1991-05-21 Shimadzu Corp X-ray spectrochemical analysis method
JP2002039976A (en) * 2000-07-19 2002-02-06 Shimadzu Corp Method for correcting measured data of electron beam micro-analyzer
JP4517323B2 (en) * 2000-07-19 2010-08-04 株式会社島津製作所 Electron microanalyzer measurement data correction method
JP2004163135A (en) * 2002-11-11 2004-06-10 Jeol Ltd X-ray analysis apparatus
JP2015184040A (en) * 2014-03-20 2015-10-22 株式会社日立ハイテクサイエンス Energy dispersive x-ray analyzer and method for analyzing energy dispersive x-ray

Similar Documents

Publication Publication Date Title
JP2602287B2 (en) X-ray mask defect inspection method and apparatus
KR20140059688A (en) Frame accumulation scanning method for energy dispersive x-ray fluorescence spectrometer
US3881108A (en) Ion microprobe analyzer
US3840743A (en) Ion microanalyzer
JPH07192669A (en) Adjusting method for electric field ionization type gas phase ion source
JPH0510822B2 (en)
JPS6250648A (en) Method for analyzing noticed element in sample by electron ray irradiation
US5350920A (en) Ion beam analyzing apparatus
US3986025A (en) Ion microanalyzer
JP2730229B2 (en) Charged particle beam irradiation type analyzer
JP2008082767A (en) Particle beam analyzer
JP2006172919A (en) Scanning electron microscope having three-dimensional shape analysis function
JPH0673296B2 (en) Secondary ion mass spectrometer
JP2861153B2 (en) Charged particle beam irradiation type analyzer
JPH02145950A (en) X-ray photoelectron analyzer
JPH10213556A (en) Device and method for analyzing surface element
JPH07288096A (en) Electrification detecting method for sample and scanning electron microscope
JP3140557B2 (en) Laser ionization neutral particle mass spectrometer and analysis method using the same
JPS63224135A (en) Electron beam diameter measuring device
JP2000155103A (en) Electron beam apparatus
JPS6326935A (en) Analyzing device using charged particle beam
JPH02144840A (en) Automatic focusing method for charged particle beam device
JPH03241654A (en) Surface analyzer
JPH03285241A (en) Secondary ion mass analyzer
JPH04363851A (en) Ion beam machining device