JPH0471144B2 - - Google Patents

Info

Publication number
JPH0471144B2
JPH0471144B2 JP58235739A JP23573983A JPH0471144B2 JP H0471144 B2 JPH0471144 B2 JP H0471144B2 JP 58235739 A JP58235739 A JP 58235739A JP 23573983 A JP23573983 A JP 23573983A JP H0471144 B2 JPH0471144 B2 JP H0471144B2
Authority
JP
Japan
Prior art keywords
temperature
heat
cold
zeolite
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58235739A
Other languages
Japanese (ja)
Other versions
JPS60126562A (en
Inventor
Kimimasa Myazaki
Tadayasu Mitsumata
Minoru Tagashira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23573983A priority Critical patent/JPS60126562A/en
Publication of JPS60126562A publication Critical patent/JPS60126562A/en
Publication of JPH0471144B2 publication Critical patent/JPH0471144B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えば日陰と日向の様に、無限に熱
量はあるが温度差が少ないためエネルギー源とし
ては使用が不可能であつた熱エネルギー源の温度
差を拡大し、利用可能なエネルギー源に交換する
ためのヒートポンプの駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the use of thermal energy sources, such as those in the shade and in the sun, which have an infinite amount of heat but cannot be used as an energy source because the temperature difference is small. The present invention relates to a method of driving a heat pump to amplify the temperature difference and replace it with a usable energy source.

従来例の構成とその問題点 ケミカルヒートポンプは第1図に示すように吸
収一再生器1、蒸発−凝縮器2およびバルブ3か
ら構成されている。吸収再生器1には吸収剤が充
填され、蒸発−凝縮器2には冷媒が充填されてい
る。以下、代表的な例として、吸収剤にゼオライ
ト、冷媒に水を用いた場合について説明する。す
なわち容器間で水の蒸気を出入りさせ、それにと
もなう水の潜熱の移動をエネルギーとして用いる
ものである。従来ケミカルヒートポンプの基本的
な駆動原理は2種類知られている。これらは第1
種および第2種と呼ばれている。第1種ケミカル
ヒートポンプの駆動原理を第2図に、第2種ケミ
カルヒートポンプの駆動原理を第3図に示す。い
ずれの図も横軸は温度、縦軸は容器内の水蒸気圧
を示している。曲線1は吸収−再生器1内の水蒸
気圧を、曲線2は蒸発−凝縮器2内の水蒸気圧を
表している。各方式とも、駆動は2つの過程から
成つており、各々の過程での水蒸気の移動方向を
単線矢印で、熱エネルギーの移動方向を複線矢印
で示している。熱源および冷熱源をqで、熱及び
冷熱の出力をQで表す。
Structure of a conventional example and its problems A chemical heat pump is composed of an absorption-regenerator 1, an evaporator-condenser 2, and a valve 3, as shown in FIG. The absorption regenerator 1 is filled with an absorbent, and the evaporator-condenser 2 is filled with a refrigerant. Hereinafter, as a typical example, a case will be described in which zeolite is used as the absorbent and water is used as the refrigerant. In other words, water vapor is moved in and out between containers, and the accompanying transfer of latent heat from the water is used as energy. Conventionally, two types of basic driving principles of chemical heat pumps are known. These are the first
They are called the species and the second species. The driving principle of the first type chemical heat pump is shown in FIG. 2, and the driving principle of the second type chemical heat pump is shown in FIG. In both figures, the horizontal axis shows temperature and the vertical axis shows water vapor pressure inside the container. Curve 1 represents the water vapor pressure in the absorption-regenerator 1, and curve 2 represents the water vapor pressure in the evaporator-condenser 2. In each method, the drive consists of two processes, and the direction of movement of water vapor in each process is shown by a single line arrow, and the direction of movement of thermal energy is shown by a double line arrow. The heat source and cold source are represented by q, and the heat and cold output is represented by Q.

第2図すなわち、第1種ケミカルヒートポンプ
の駆動方式は高温の熱源を用いて冷熱を得る、冷
房用の駆動といえる。これは以下の2つの過程か
らなつている。
In other words, the drive method of the first type chemical heat pump can be said to be a drive for air conditioning, in which cold heat is obtained using a high-temperature heat source. This consists of the following two processes.

冷房過程 最初はゼオライトは完全な乾燥状態であるもの
とする。吸収−再生器1を冷熱源dに置き、バル
ブを開くと、吸収−再生器1内のゼオライトに容
器内の水蒸気が吸収され(図のc点からd点)、
蒸発−凝縮器2内の水が蒸発する。この時水の蒸
発潜熱Q2がうばわれ、冷熱源より低い温度で蒸
発−凝縮器2が冷却される。すなわち、冷熱出力
が得られる。
Cooling process Initially, the zeolite is completely dry. When the absorption-regenerator 1 is placed on a cold heat source d and the valve is opened, the water vapor in the container is absorbed by the zeolite in the absorption-regenerator 1 (from point c to point d in the figure).
Evaporation - the water in the condenser 2 evaporates. At this time, the latent heat of vaporization Q 2 of water is taken away, and the evaporator-condenser 2 is cooled at a lower temperature than the cold heat source. That is, cold output can be obtained.

再生過程 冷房過程が終了した時点で吸収−再生器1を熱
源(図のa点)において加熱する。水蒸気は吸収
−再生器1内のゼオライトから強制的に追い出さ
れつつ、蒸発−凝縮器2において凝縮し(図のa
点からb点)、冷房過程を行う前の状態に戻る。
Regeneration process At the end of the cooling process, the absorption-regenerator 1 is heated by a heat source (point a in the figure). Water vapor is forcibly expelled from the zeolite in the absorption-regenerator 1 and condensed in the evaporation-condenser 2 (a in the figure).
From point b), the state returns to the state before the cooling process.

次に第3図を用いて第2種ケミカルヒートポン
プの駆動原理を説明する。これも同様に以下の2
つの過程からなる。
Next, the driving principle of the second type chemical heat pump will be explained using FIG. Similarly, the following 2
It consists of two processes.

暖房過程 最初はゼオライトは完全な乾燥状態であるもの
とする。蒸発−凝縮器2を熱源gに置き、バルブ
を開くと、吸収−再生器1内のゼオライトに容器
内の水蒸気が吸収される(図のg点からh点)。
この時水の吸着熱Q4が発生し、吸収−再生器1
から熱源より高い温度での熱出力が得られる。
Heating process Initially, the zeolite is completely dry. When the evaporator-condenser 2 is placed on a heat source g and the valve is opened, the water vapor in the container is absorbed by the zeolite in the absorption-regenerator 1 (points g to h in the figure).
At this time, the heat of adsorption Q4 of water is generated, and the absorption-regenerator 1
provides heat output at a higher temperature than the heat source.

再生過程 暖房過程が終了した時点で蒸発−凝縮器2を冷
熱源(図のf点)において冷却する。水蒸気は吸
収−再生器1内のゼオライトから強制的に追い出
されつつ、蒸発−凝縮器2において凝縮し(図の
e点からf点)、暖房過程を行う前の状態に戻る。
Regeneration Process At the end of the heating process, the evaporator-condenser 2 is cooled at the cold source (point f in the figure). While the water vapor is forcibly expelled from the zeolite in the absorption-regenerator 1, it is condensed in the evaporator-condenser 2 (points e to f in the figure), returning to the state before the heating process.

以上第1種及び第2種の駆動方法において、そ
れぞれ一方の過程は温度の低い方から高い方へ熱
(水蒸気)が流れている。すなわち、第1種では
冷房過程(cからd)、第2種では暖房過程(g
からh)である。これがヒートポンプと呼ばれる
理由でもあるが、逆に各々の再生過程、すなわ
ち、第2図におけるaからbおよび第3図におけ
るeからfの過程は熱が高い方から低い方へ流れ
ている。このため、出力として得られる熱出力
(図2のb点および図3のh点)と冷熱出力(図
2のc点および図3のe点)との温度差は、入力
として用いる熱源(図2のa点および図3のg
点)と冷熱源(図2のd点および図3のf点)と
の温度差よりも必ず減少する。一般に熱エネルギ
ーは2点の温度差が大きいほど利用価値の高いも
のであるから、上記第1種及び第2種の駆動方法
はいずれも、総合的にみると熱エネルギーの質を
低下させているといえる。
In the first and second types of driving methods described above, heat (water vapor) flows from the lower temperature side to the higher temperature side in each one of the processes. In other words, the first type is the cooling process (c to d), and the second type is the heating process (g
to h). This is also the reason why it is called a heat pump, but conversely, in each regeneration process, that is, the process from a to b in FIG. 2 and from e to f in FIG. 3, heat flows from the higher side to the lower side. Therefore, the temperature difference between the thermal output (point b in Fig. 2 and point h in Fig. 3) obtained as output and the cold output (point c in Fig. 2 and point e in Fig. 3) is the same as the temperature difference between the heat source used as input (point b in Fig. Point a in 2 and g in Figure 3
point) and the cold source (point d in FIG. 2 and point f in FIG. 3). In general, the greater the temperature difference between two points, the higher the utility value of thermal energy, so both of the above-mentioned type 1 and type 2 driving methods reduce the quality of thermal energy when viewed comprehensively. It can be said.

発明の目的 本発明は従来の駆動方式であつた、第1種及び
第2種の方式に変わる新規なケミカルヒートポン
プの原理、いわば第3種ケミカルヒートポンプと
いうべき駆動方法を提供するものである。本発明
を用いることにより、出力として用いる熱エネル
ギーと冷熱エネルギーの2点の温度差が、入力と
して用いる熱源及び冷熱源の2点の温度差を上回
ることができる。その結果、例えば日陰と日向あ
るいは地表と地中の様に熱量としては無限だが、
小さい温度差のため従来用いることのできなかつ
た低質の熱エネルギーを、大きい温度差の高質エ
ネルギーに改変せしめることを可能とする。
OBJECTS OF THE INVENTION The present invention provides a new principle of a chemical heat pump, which is a drive method that can be called a third type chemical heat pump, which replaces the conventional drive methods of type 1 and type 2. By using the present invention, the temperature difference between two points, thermal energy and cold energy used as output, can exceed the temperature difference between two points, a heat source and a cold source used as input. As a result, the amount of heat is infinite, for example between the shade and the sun, or between the surface and underground.
It is possible to convert low-quality thermal energy, which could not be used conventionally due to a small temperature difference, into high-quality energy with a large temperature difference.

発明の構成 本発明は開閉自在のバルブで連結した2つの槽
からなり、充填物質上の冷媒(例えば水)蒸気の
蒸気圧−温度曲線が交差する特性を有する2種の
充填物質を各々の槽に充填し、空気などの、冷媒
以外の気体を除去して密閉した構造を有するケミ
カルヒートポンプにおいて、冷媒蒸気の蒸気圧−
温度曲線が交差する温度をTXとしたとき入力と
して用いる冷熱源の温度をTX以下、また熱源の
温度をTX以上で駆動させる。このとき、出力と
して、冷熱源より低い温度で冷熱が、また、熱源
より高い温度で熱が得られるものである。
Structure of the Invention The present invention consists of two tanks connected by a valve that can be opened and closed, and two types of filling materials having the characteristic that the vapor pressure-temperature curves of the refrigerant (e.g., water) vapor on the filling materials intersect are placed in each tank. In chemical heat pumps, which have a sealed structure after removing gas other than the refrigerant, such as air, the vapor pressure of the refrigerant vapor -
When the temperature at which the temperature curves intersect is T X , the temperature of the cold source used as input is below T X , and the temperature of the heat source is driven above T X. At this time, as output, cold heat can be obtained at a temperature lower than that of the cold heat source, and heat can be obtained at a temperature higher than that of the heat source.

実施例の説明 最初に新型ゼオライトの合成法の一例を示す。
アルミン酸ナトリウム90g、水ガラス150g、水
酸化ナトリウム27g、水800g、セピオライト10
gを混合し、得たゾルを110℃で約6時間加熱し
て新型ゼオライトの結晶を得た。これを数回洗浄
し、アルカリ分を落した後、直径1/16インチの円
筒状に圧縮成型し、120℃で2時間、さらに550℃
で1時間加熱して最終生成物とした。
Description of Examples First, an example of a method for synthesizing a new type of zeolite will be shown.
Sodium aluminate 90g, water glass 150g, sodium hydroxide 27g, water 800g, sepiolite 10
The resulting sol was heated at 110°C for about 6 hours to obtain crystals of a new type of zeolite. After washing this several times to remove the alkaline content, it was compression molded into a cylindrical shape with a diameter of 1/16 inch, heated at 120℃ for 2 hours, and then heated to 550℃.
The final product was heated for 1 hour.

13Xの市販ゼオライト(直径1/16インチ円筒状
ペレツト……以下従来型ゼオライトとする)と上
記の方法で得た新型ゼオライトをそれぞれ350℃
で6時間乾燥し、この重量を100%としてそれぞ
れ5%、10%相当の水分を吸温させ、水蒸気圧と
温度の関係を測定した結果を第4図に示す。図中
破線で表わしたのが新型ゼオライト、実線が従来
型ゼオライトの蒸気圧−温度曲線である。その他
の記号等は前記第2図、第3図に準じて示してい
る。両者の曲線は傾きが異なり、55℃付近で交差
している。
13X commercially available zeolite (1/16 inch diameter cylindrical pellets...hereinafter referred to as conventional zeolite) and the new zeolite obtained by the above method were heated at 350°C.
Figure 4 shows the results of measuring the relationship between water vapor pressure and temperature. In the figure, the broken line represents the vapor pressure-temperature curve of the new zeolite, and the solid line represents the conventional zeolite. Other symbols etc. are shown according to the above-mentioned FIGS. 2 and 3. The two curves have different slopes and intersect at around 55°C.

この特性を用いてケミカルヒートポンプを構成
した。すなわち第1図で示した吸収−再生器1に
新型ゼオライトの10%含水物、蒸発−凝縮器2に
従来型ゼオライトの乾燥物を充填した。第1の過
程として蒸発−凝縮器2を75℃に加熱すると吸収
−再生器1から100℃の高級熱エネルギーが得ら
れた(図中iからjに水蒸気(熱)が移動)。第
2過程として系全体を常温まで冷却すると15℃の
高級冷熱と30℃の低級熱が得られた(図中kから
lに水蒸気(熱)が移動)。つまり2つの過程に
おいて、いずれも低温側から高温側へ熱としての
水蒸気が流れた。その結果として75℃という低級
な熱エネルギーと30℃という低級な冷熱エネルギ
ーが、100℃と15℃のいずれもより高級な熱、冷
熱エネルギーに変換された。当然のことながら本
発明の発展例として本発明を複数個連結すれば、
得られる熱あるいは冷熱エネルギーは、さらにそ
の質を向上させることが可能である。
A chemical heat pump was constructed using this characteristic. That is, the absorption-regenerator 1 shown in FIG. 1 was filled with 10% hydrated new zeolite, and the evaporator-condenser 2 was filled with dry conventional zeolite. In the first process, when the evaporator-condenser 2 was heated to 75°C, high-grade thermal energy of 100°C was obtained from the absorber-regenerator 1 (steam (heat) moved from i to j in the figure). In the second step, when the entire system was cooled to room temperature, high-grade cold heat of 15°C and low-grade heat of 30°C were obtained (steam (heat) moved from k to l in the figure). In other words, in both processes, water vapor as heat flowed from the low temperature side to the high temperature side. As a result, the low-grade heat energy of 75℃ and the low-grade cold energy of 30℃ were converted into higher-grade heat and cold energy at both 100℃ and 15℃. Naturally, as an example of the development of the present invention, if a plurality of the present inventions are connected,
The quality of the heat or cold energy obtained can be further improved.

発明の効果 本発明のケミカルヒートポンプの駆動方法によ
れば、加えた冷熱源の温度より低い温度で冷熱出
力を得、さらに、加えた熱源の温度より高い温度
で熱出力を得ることができる。即ち入力した熱源
−冷熱源の温度差を増幅することが可能となる。
これにより熱エネルギーの利用価値をさらに高め
る効果が得られる。
Effects of the Invention According to the method for driving a chemical heat pump of the present invention, a cold output can be obtained at a temperature lower than the temperature of the added cold heat source, and a thermal output can be obtained at a temperature higher than the temperature of the added heat source. That is, it becomes possible to amplify the input temperature difference between the heat source and the cold source.
This has the effect of further increasing the utility value of thermal energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はケミカルヒートポンプの構成図、第2
図は第1種ケミカルヒートポンプの動作原理図、
第3図は第2種ケミカルヒートポンプの動作原理
図、第4図は本発明の動作原理図である。 1……吸収−再生器、2……蒸発−凝縮器、3
……バルブ。
Figure 1 is a configuration diagram of a chemical heat pump, Figure 2
The diagram shows the operating principle of a first-class chemical heat pump.
FIG. 3 is a diagram of the operating principle of the second type chemical heat pump, and FIG. 4 is a diagram of the operating principle of the present invention. 1... Absorption-regenerator, 2... Evaporation-condenser, 3
……valve.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも2層を開閉自在に連結し、各槽内
の充填物質上の冷媒蒸気圧を温度に対して描いた
曲線がある温度TXにおいて交差する関係にある
物質を異なる層に充填したケミカルヒートポンプ
において、熱源をTXよりも高い温度に設け、冷
熱源をTXよりも低い温度に設けたことを特徴と
するケミカルヒートポンプの駆動方法。
1 A chemical heat pump in which at least two layers are connected so as to be openable and closable, and the different layers are filled with substances whose relationship is such that a curve drawn between the refrigerant vapor pressure on the filling substance in each tank and the temperature intersects at a certain temperature T A method for driving a chemical heat pump, characterized in that a heat source is provided at a temperature higher than T X and a cold source is provided at a temperature lower than T X.
JP23573983A 1983-12-14 1983-12-14 Chemical heat pump Granted JPS60126562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23573983A JPS60126562A (en) 1983-12-14 1983-12-14 Chemical heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23573983A JPS60126562A (en) 1983-12-14 1983-12-14 Chemical heat pump

Publications (2)

Publication Number Publication Date
JPS60126562A JPS60126562A (en) 1985-07-06
JPH0471144B2 true JPH0471144B2 (en) 1992-11-12

Family

ID=16990500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23573983A Granted JPS60126562A (en) 1983-12-14 1983-12-14 Chemical heat pump

Country Status (1)

Country Link
JP (1) JPS60126562A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665942B2 (en) * 1984-04-24 1994-08-24 松下電器産業株式会社 Chemical heat pump
FR2582790B1 (en) * 1985-06-04 1987-07-24 Elf Aquitaine THERMOCHEMICAL PROCESS AND DEVICE FOR STORING AND CLEARING HEAT

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543313A (en) * 1978-09-20 1980-03-27 Mitsubishi Heavy Ind Ltd Hydrogen type heat absorbing apparatus
JPS5546372A (en) * 1978-09-28 1980-04-01 Matsushita Electric Ind Co Ltd Heat controlling device
JPS57115655A (en) * 1981-01-06 1982-07-19 Sekisui Chemical Co Ltd Heat pump apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543313A (en) * 1978-09-20 1980-03-27 Mitsubishi Heavy Ind Ltd Hydrogen type heat absorbing apparatus
JPS5546372A (en) * 1978-09-28 1980-04-01 Matsushita Electric Ind Co Ltd Heat controlling device
JPS57115655A (en) * 1981-01-06 1982-07-19 Sekisui Chemical Co Ltd Heat pump apparatus

Also Published As

Publication number Publication date
JPS60126562A (en) 1985-07-06

Similar Documents

Publication Publication Date Title
US4205529A (en) LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery
US4309980A (en) Closed vaporization heat transfer system
JPH06510595A (en) Dual temperature heat pump equipment and systems
JP5772172B2 (en) Heat recovery utilization system and heat recovery utilization method
Boubakri A new conception of an adsorptive solar-powered ice maker
CN205618211U (en) It is sealed system for organic rankine cycle
JPH0471144B2 (en)
CN102679617B (en) Compression-driven adsorption refrigeration method and heat pump system
Chandra et al. Theoretical studies on adsorption heat transformer using zeolite-water vapour pair
JPH0665942B2 (en) Chemical heat pump
JPH11117713A (en) Chemical heat-accumulating type intake air cooling device
Pohl et al. Investigation and comparison of two configurations of a novel open-cycle absorption chiller
JP7173098B2 (en) Cold generation method
WO1985005170A1 (en) Heat pump energized by low-grade heat source
JPH0252786B2 (en)
JPH0762546B2 (en) Heat storage method
JP2003294336A (en) Heat pump system using zeolite adsorbent
JPH0471145B2 (en)
Nyang’au et al. Solar adsorption cooling with focus on using steatite adsorbent: A review
KR920007601B1 (en) Absorption type refrigerator
JPS59129362A (en) Manufacture of chemical heat pump
Chalaev et al. Assessment of the operation of a low-temperature adsorption refrigerator
JPS59129360A (en) Manufacture of chemical heat pump
JPS58120084A (en) Closing type vaporization-heat transmission system and method of transmitting heat of vaporization
JPS629839B2 (en)