JPH0471120B2 - - Google Patents

Info

Publication number
JPH0471120B2
JPH0471120B2 JP58161667A JP16166783A JPH0471120B2 JP H0471120 B2 JPH0471120 B2 JP H0471120B2 JP 58161667 A JP58161667 A JP 58161667A JP 16166783 A JP16166783 A JP 16166783A JP H0471120 B2 JPH0471120 B2 JP H0471120B2
Authority
JP
Japan
Prior art keywords
carbon atoms
fatty acid
fatty acids
oil
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58161667A
Other languages
Japanese (ja)
Other versions
JPS6053598A (en
Inventor
Tsukasa Kawada
Minoru Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP58161667A priority Critical patent/JPS6053598A/en
Publication of JPS6053598A publication Critical patent/JPS6053598A/en
Publication of JPH0471120B2 publication Critical patent/JPH0471120B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Edible Oils And Fats (AREA)
  • Fats And Perfumes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、可塑性油脂、その製造法及びそれを
含有する被覆剤に関する。 食用油脂はその物理的性質を活かして種々の用
途に供せられている。製菓用のコーテイング用油
脂、スプレー油などはその一つであり、この場合
油脂は食品の風味を向上させるとともに保護膜と
しての働きをもつ。この目的に用いられる油脂の
物性として、物理的化学的に丈夫な膜をつくるこ
と、水蒸気などの透過性の小さいこと、食感のよ
いことなどがあげられる。一般に製菓用のコーテ
イングにはカカオバターを始めとしてハードバタ
ーが使用されることが多い。しかしハードバター
は食感の点では十分であるが、その被膜は可塑性
に乏しく、脆さがあつて、目的によつては不十分
である。被膜用油脂としてはハードバターのよう
に触解域が小さく、しかもその上可塑性、伸展性
のあることが望ましい。これらの物性を満足させ
る油脂としてはグリセロールジアセトモノステア
レートを主体としたアセチン脂がよく知られてい
る。しかしこの油脂はその名称の如く、酢酸基を
もつため加水分解により、酢酸の刺激臭を発生す
ることがある。また製造に際しても過剰の酢酸を
必要としたり、原料として無水酢酸を使用する場
合は多量の酢酸が副生するなど工程も複雑であ
る。 本発明者らは長鎖脂肪酸のみの組み合せによつ
て斯様な欠点のないアセチン脂様の物性を有する
可塑性油脂を製造するため鋭意研究を重ねた結
果、今般構成脂肪酸の総炭素数が58以上であつて
かつ二飽和−不飽和型の特定のトリグリセリドが
この条件を満たしていることを見出し本発明を完
成した。 即ち、本発明は構成脂肪酸の総炭素数が58以上
であつて、かつ各構成脂肪酸がそれぞれ炭素数22
以上の飽和脂肪酸、炭素数18以上の飽和脂肪酸及
び炭素数16〜22の不飽和脂肪酸であるトリグリセ
リドを主体とする可塑性油脂、該可塑性油脂の製
法造及び該可塑性油脂を含有する被覆剤を提供す
るものである。 二飽和−不飽和型のトリグリセリドの代表的な
ものとしてジステアリルモノオレイン(S2O)が
よく知られているが、このグリセリドは不飽和酸
の結合位置がα,βにかかわらず、またその混合
物でも室温(20℃)附近ではもろい固体である。
またX線による多形はβ−型をとるため固化する
条件によつてはいわゆるフアツトプルームを生じ
る。しかるに本発明による油脂は急冷、徐冷の如
何にかかわらず固化したその外観は半透明(パラ
フイン状)で伸展性がある。またX線回折では室
温に保存した場合長期にわたつてβ′−型であつて
可塑性が安定に維持されている。 本発明の可塑性油脂を構成する脂肪酸は炭素数
22以上の飽和脂肪酸(就中ベヘン酸)、炭素数18
以上の飽和脂肪酸(好ましくはステアリン酸、ア
ラキン酸、ベヘン酸)、そして炭素数16〜22の不
飽和脂肪酸(好ましくはオレイン酸、リノール
酸、リノレン酸等の炭素数18の不飽和脂肪酸)で
ある。 本発明の可塑性油脂の主体となるトリグリセリ
ドの典型的なものはジベヘニルモノリノリエート
若しくはモノオレエートであるが、飽和酸の一つ
がステアリン酸、アラキン酸に代つてもよいし、
そられの混合物でもよい。不飽和脂肪酸の結合位
置はα,βいずれでもよいがその混合物がよい。 ベヘン酸など長鎖飽和脂肪酸をもつたトリグリ
セリドとして、すでにジベヘニルモノステアリン
などが文献にはみられるが、この油脂の物性は普
通の融点の高い固体脂と同様であり、本発明の可
塑性油脂とは全く異る。 また一般的に油脂に可塑性をもたせるには液体
油に適当な固体脂を混合融解した後、急冷、混練
して製造される。シヨートニングはその代表的な
例である。しかしこの場合は急冷、混練の条件に
よつてその物性は大きく異るし、アセチン脂や本
発明の可塑性油脂のような伸展性はない。 本発明の特定な構成脂肪酸を有する可塑性油脂
はそのまま若しくは他の公知成分と混合し食品の
表面に被覆する被覆用油脂若しくは被覆用油脂組
成物に適している。 被覆用油脂成分としては本発明の特定な構成脂
肪酸を有する可塑性油脂を融解してそのまま用い
てもよいが物性を損わない範囲において他の油脂
と混合して用いても良い。併用し得る油脂は食用
油脂であれば特に制限がなく、大豆油、ナタネ
油、パーム油、コーン油、綿実油、ヤシ油、パー
ム核油等々の植物油脂類、ラード、魚油、鯨油、
乳脂等々の動物油脂類のいずれも使用することが
でき、又、これらを水添処理したもの及びエステ
ル交換したものも使用することができる。 本発明の可塑性油脂の食品の被覆剤としての用
途は実施例にあげた様なケーキのチヨコレートコ
ーテイング用だけでなく、レーズンなどの乾燥果
実、ナツツ類などのスプレー油用として、また防
湿、乾燥を防ぐ必要のある食品(例えばゼリー)
に可食性のコーテイング用油脂として用いること
ができる。 またコーテイング剤としてもスプレー油のよう
に油脂だけが用いられる場合の他に、チヨコレー
トコーテイングのように砂糖、粉乳、ココア、チ
ヨコレートリツカー、ピーナツバター、粉末アー
モンド、粉末チーズなどと混合して製菓用コーテ
イングとして用いることができる。例えばチヨコ
レートコーテイングでは本発明による油脂(また
は本発明による油脂の特長を損わない範囲で他の
油脂を混合したもの)25〜50%、ココア粉末10〜
15%、チヨコレートリツカー0〜15%、粉乳0〜
15%、砂糖35〜55%の範囲で用いるのがよい。こ
の場合、ココア粉末とチヨコレートリツカーの一
部または全部を、ピーナツツバター、粉末アーモ
ンドにおき代えれば各々の風味の特長を活かした
ものが得られる。 本発明の可塑性油脂の製造方法は特に限定され
ないが次の製造方法が好適である。 グリセロールジベヘン、グリセロールステアリ
ルベヘン等々の炭素数22以上の脂肪酸残基(就中
ベヘン酸残基)を必ず有する炭素数18以上の脂肪
酸ジグリセリドと無水オレイン酸、イソプロペニ
ルオレート等々の炭素数16〜22の不飽和脂肪酸の
誘導体とをエステル化反応させる方法がある。ま
たトリベヘン又は極変硬化したハイエルシンナタ
ネ油の様な炭素数22以上の脂肪酸(就中ベヘン
酸)残基を含有する炭素数18以上の脂肪酸トリグ
リセリド30〜60重量%と飽和脂肪酸含有量20重量
%以下の不飽和脂肪酸を主体とした植物油(例え
ば大豆油、ナタネ油、サフラワー油)40〜70重量
%との混合油をエステル交換し、そのエステル交
換油を溶剤分別して目的とする油脂を得る方法も
ある。この場合エステル交換は脂肪酸の無作意配
置を行うものであり、触媒は一般に用いられてい
るナトリウムメチラート、カセイソーダなどを油
脂に対し0.1〜0.3重量%用い、反応温度は70〜
150℃で行う。反応後は水洗によつて触媒を除去
する。この際炭素数18以上の飽和脂肪酸トリグリ
セリドが炭素数18以上の脂肪酸のメチル若しくは
エチルエステルとトリアセチンのエステル交換反
応生成物であつてもよい。溶剤分別はn−ヘキサ
ン、アセトンなど油脂の分別に用いられる溶剤を
油脂に対して2〜5倍量用いる。この溶剤にエス
テル交換油を溶かし、15〜25℃に冷却し析出する
三飽和グリセリドを別する。液を−5〜5℃
に冷却して析出する二飽和−不飽和グリセリドを
採取して、目的物を得る。 以下、実施例により本発明を更に詳述する。 実施例 1 極度硬化したハイエルシンナタネ油(脂肪酸組
成パルミチン酸2.9%、ステアリン酸40.7%、ア
ラキン酸7.4%、ベヘン酸46.9%、その他2.0%)
50wt%とサフラワー油(パルミチン酸6.5%、ス
テアリン酸2.5%、オレイン酸16.0%、リノール
酸74.1%、リノレン酸0.9%)50wt%の混合油を
油脂に対し0.1%のソジウムメチラートを触媒と
し、80℃で30分間処理してエステル交換油を得
る。このエステル交換油を1g当り5mlのアセト
ン中、60℃で溶かした後撹拌下25℃まで冷却し
て、析出した三飽和トリグリセリドを主体とした
高融点部(収率:エステル交換油に対し15%)を
除去する。この液を3〜5℃まで撹拌下冷却し
て、析出した目的とする区分(中融点区分)を採
取した。 この区分は溶剤を除去した後常法により脱臭し
て目的物とする。 この工程で副生した高融点区分と低融点区分は
エステル交換前の原料に混合して、再使用するこ
とができる。 実施例 2 ベヘン酸メチル(ステアリン酸14.2%、アラキ
ン酸11.4%、ベヘン酸72.0%、その他2.3%)500
g、ナタネ油(パルミチン酸3.6%、ステアリン
酸1.7%、オレイン酸57.7%、リノール酸22.2%、
リノレン酸12.7%、エルシン酸2.3%)500g、ト
リアセチン110gを混合し、対油0.15%のソジウ
ムメチラートを触媒とし、20mmHg、70℃で副生
するメチルアセテートを除去しながら反応させ、
エステル交換脂を得た。 このエステル交換脂を油脂1g当り2.5mlのn
−ヘキサンに溶解し、17〜19℃まで冷却して析出
した高融点部を別する。この液を0〜2℃に
冷却して、析出した目的とする中融点区分を採取
し、実施例1と同様に処理して目的物を得た。 実施例 3 トリベヘン(ステアリン酸10.9%、アラキン酸
8.5%、ベヘン酸80.6%)200g、大豆油(パルミ
チン酸10.6%、ステアリン酸41%、オレイン酸
24.4%、リノール酸53.7%、リノレン酸7.2%、)
200gの混合油を実施例1と同様にエステル交換
後溶剤分別によつて目的とする区分を得た。 実施例 4 極度硬化した魚油脂肪酸の高沸点区分(パルミ
チン酸1.3%、ステアリン酸18.2%、アラキン酸
38.8%、ベヘン酸37.2%、その他1.7%)を原料と
したトリグリセリド50wt%と、サフラワー油
50wt%の混合油を実施例1と同様にエステル交
換後、溶剤分別して目的とする区分を得た。 比較例 1 比較のためベヘン酸、アラキン酸を含まない極
度硬化した大豆油(パルミチン酸10.5%、ステア
リン酸89.5%)200gとサフラワー油200gの混合
油を実施例1に準じてエステル交換、溶剤分別を
行つて中融点区分を採取した。 実施例1〜4及び比較例1で得られた中融点区
分の分析値を表1に、ガスクロマトグラフイーに
よるトリグリセリド組成と20℃に1ケ月保存した
後の外観を表−2に示す。又、各中融点区分の20
℃、1ケ月保存後に測定したX線回折図を第1図
に示す。尚、図中Aは実施例1〜4の、Bは比較
例1の結果である。
TECHNICAL FIELD The present invention relates to a plastic fat and oil, a method for producing the same, and a coating material containing the same. Edible fats and oils are used for various purposes by taking advantage of their physical properties. One example is coating oils and spray oils for confectionery, in which case the oils not only improve the flavor of foods but also function as a protective film. The physical properties of oils and fats used for this purpose include the ability to form a physically and chemically strong film, low permeability to water vapor, and good texture. Generally, hard butters such as cocoa butter are often used for coatings for confectionery. However, although hard butter has a satisfactory texture, its coating has poor plasticity and is brittle, making it insufficient for some purposes. It is desirable that the coating oil has a small catalytic range like hard butter, and also has plasticity and extensibility. Acetin fat, which is mainly composed of glycerol diacetomonostearate, is well known as a fat that satisfies these physical properties. However, as its name suggests, this oil and fat has acetic acid groups, so when it is hydrolyzed, it can generate the pungent odor of acetic acid. Furthermore, the manufacturing process is complicated, as excessive acetic acid is required, and when acetic anhydride is used as a raw material, a large amount of acetic acid is produced as a by-product. The present inventors have conducted extensive research in order to produce a plastic fat with physical properties similar to acetin fat without such drawbacks by combining only long-chain fatty acids, and as a result, we have now found that the total number of carbon atoms in the constituent fatty acids is 58 or more. The present invention was completed based on the discovery that a specific disaturated-unsaturated triglyceride satisfies this condition. In other words, the present invention provides a method in which the total number of carbon atoms of the constituent fatty acids is 58 or more, and each constituent fatty acid has a carbon number of 22 or more.
The present invention provides a plastic oil and fat mainly composed of the above saturated fatty acids, saturated fatty acids having 18 or more carbon atoms, and triglycerides that are unsaturated fatty acids having 16 to 22 carbon atoms, a method for producing the plastic oil, and a coating material containing the plastic oil. It is something. Distearyl monoolein (S 2 O) is well known as a typical disaturated-unsaturated triglyceride, but this glyceride can be used regardless of the bonding position of the unsaturated acid, α or β. Even the mixture is a brittle solid at room temperature (20°C).
Furthermore, since the polymorphism detected by X-rays takes the β-form, a so-called fat plume may be produced depending on the solidification conditions. However, the appearance of the solidified oil and fat according to the present invention is translucent (paraffin-like) and extensible, regardless of whether it is rapidly cooled or slowly cooled. Further, X-ray diffraction shows that it is in the β'-form and its plasticity is stably maintained over a long period of time when stored at room temperature. The fatty acid constituting the plastic fat of the present invention has a carbon number of
Saturated fatty acids of 22 or more (especially behenic acid), carbon number 18
The above saturated fatty acids (preferably stearic acid, arachidic acid, behenic acid), and unsaturated fatty acids having 16 to 22 carbon atoms (preferably unsaturated fatty acids having 18 carbon atoms such as oleic acid, linoleic acid, and linolenic acid) . Typical triglycerides that are the main component of the plastic fats and oils of the present invention are dibehenyl monolinoleate or monooleate, but one of the saturated acids may be substituted with stearic acid or arachidic acid,
A mixture of these may also be used. The bonding position of the unsaturated fatty acid may be either α or β, but a mixture thereof is preferred. Dibehenylmonostearin and other triglycerides with long-chain saturated fatty acids such as behenic acid have already been found in the literature, but the physical properties of this oil and fat are similar to ordinary solid fats with a high melting point, and the plastic oil and fat of the present invention is completely different. Generally, in order to impart plasticity to a fat or oil, a suitable solid fat is mixed and melted in a liquid oil, and then the mixture is rapidly cooled and kneaded. Shortening is a typical example. However, in this case, its physical properties vary greatly depending on the conditions of quenching and kneading, and it does not have the extensibility of acetin fat or the plastic fat of the present invention. The plastic fats and oils having the specific constituent fatty acids of the present invention are suitable for coating fats and oils or coating fat compositions to be coated on the surface of foods, either as they are or mixed with other known ingredients. As the coating oil/fat component, the plastic oil/fat having the specific constituent fatty acids of the present invention may be melted and used as it is, but it may also be mixed with other fats/oils as long as the physical properties are not impaired. There are no particular restrictions on the oils and fats that can be used in combination, as long as they are edible, and include vegetable oils such as soybean oil, rapeseed oil, palm oil, corn oil, cottonseed oil, coconut oil, palm kernel oil, lard, fish oil, whale oil,
Any animal fats and oils such as milk fat can be used, and those obtained by hydrogenation or transesterification can also be used. The plastic oil and fat of the present invention can be used as a food coating agent not only for coating cakes as mentioned in the examples, but also as a spray oil for dry fruits such as raisins, nuts, etc., and for moisture-proofing and drying. Foods that need to be avoided (e.g. jelly)
It can be used as an edible coating oil. In addition, as a coating agent, in addition to cases where only fats and oils are used as in spray oil, it is also used in confectionery by mixing with sugar, powdered milk, cocoa, tyokolate liquor, peanut butter, powdered almonds, powdered cheese, etc. as in thiokolate coating. It can be used as a coating. For example, in a thiokolate coating, 25 to 50% of the oil according to the present invention (or a mixture of other oils and fats within a range that does not impair the characteristics of the oil and fat according to the present invention) and 10 to 10% cocoa powder.
15%, 0 to 15% milk powder, 0 to 15% milk powder
It is best to use a range of 15% sugar and 35-55% sugar. In this case, by substituting some or all of the cocoa powder and cocoa powder with peanut butter or powdered almonds, a product that takes advantage of the flavor characteristics of each can be obtained. Although the method for producing the plastic fat of the present invention is not particularly limited, the following production method is suitable. Fatty acid diglycerides with 18 or more carbon atoms, such as glycerol dibehene and glycerol stearyl behen, which always have a fatty acid residue with 22 or more carbon atoms (particularly behenic acid residue), and 16-22 carbon atoms, such as oleic anhydride, isopropenyl oleate, etc. There is a method of carrying out an esterification reaction with a derivative of an unsaturated fatty acid. In addition, 30-60% by weight of fatty acid triglycerides with 18 or more carbon atoms containing fatty acid residues with 22 or more carbon atoms (especially behenic acid) such as tribehene or extremely hardened high-quality rapeseed oil, and saturated fatty acid content of 20% by weight. % or less of unsaturated fatty acids (e.g., soybean oil, rapeseed oil, safflower oil) with 40 to 70% by weight, and the transesterified oil is fractionated with a solvent to obtain the desired fat or oil. There are ways to get it. In this case, transesterification involves randomly arranging fatty acids, and the catalyst used is commonly used sodium methylate, caustic soda, etc. at 0.1 to 0.3% by weight based on the fat and oil, and the reaction temperature was 70 to 70%.
Perform at 150℃. After the reaction, the catalyst is removed by washing with water. In this case, the saturated fatty acid triglyceride having 18 or more carbon atoms may be a transesterification product of methyl or ethyl ester of a fatty acid having 18 or more carbon atoms and triacetin. For solvent fractionation, a solvent used for fractionating fats and oils, such as n-hexane and acetone, is used in an amount 2 to 5 times the amount of fats and oils. Dissolve the transesterified oil in this solvent, cool it to 15-25°C, and separate the precipitated trisaturated glyceride. Keep the liquid at -5~5℃
The desired product is obtained by collecting the precipitated disaturated-unsaturated glyceride upon cooling. Hereinafter, the present invention will be explained in further detail with reference to Examples. Example 1 Extremely hardened high quality rapeseed oil (fatty acid composition 2.9% palmitic acid, 40.7% stearic acid, 7.4% arachidic acid, 46.9% behenic acid, 2.0% others)
A mixed oil of 50wt% and safflower oil (6.5% palmitic acid, 2.5% stearic acid, 16.0% oleic acid, 74.1% linoleic acid, 0.9% linolenic acid) is catalyzed with 0.1% sodium methylate to fat. and treated at 80°C for 30 minutes to obtain transesterified oil. This transesterified oil was dissolved in 5 ml of acetone per 1 g at 60°C, then cooled to 25°C with stirring, and the precipitated high melting point fraction mainly composed of trisaturated triglycerides (yield: 15% based on the transesterified oil) ) to remove. This liquid was cooled to 3 to 5° C. with stirring, and the precipitated target section (medium melting point section) was collected. After removing the solvent, this section is deodorized by a conventional method to obtain the desired product. The high melting point fraction and low melting point fraction produced as by-products in this step can be mixed with the raw material before transesterification and reused. Example 2 Methyl behenate (stearic acid 14.2%, arachidic acid 11.4%, behenic acid 72.0%, other 2.3%) 500
g, rapeseed oil (3.6% palmitic acid, 1.7% stearic acid, 57.7% oleic acid, 22.2% linoleic acid,
Mix 500 g of linolenic acid (12.7%, erucic acid 2.3%) and 110 g of triacetin, and react with 0.15% oil-to-oil sodium methylate as a catalyst at 20 mmHg and 70°C while removing by-product methyl acetate.
A transesterified fat was obtained. 2.5ml of this transesterified fat per 1g of fat
- Dissolve in hexane, cool to 17-19°C and separate the precipitated high melting point part. This liquid was cooled to 0 to 2°C, and the precipitated target intermediate melting point fraction was collected and treated in the same manner as in Example 1 to obtain the target product. Example 3 Tribehene (stearic acid 10.9%, arachidic acid
8.5%, behenic acid 80.6%) 200g, soybean oil (palmitic acid 10.6%, stearic acid 41%, oleic acid
24.4%, linoleic acid 53.7%, linolenic acid 7.2%,)
In the same manner as in Example 1, 200 g of mixed oil was transesterified and then subjected to solvent fractionation to obtain the desired classification. Example 4 High boiling point classification of highly hydrogenated fish oil fatty acids (palmitic acid 1.3%, stearic acid 18.2%, arachidic acid
38.8%, behenic acid 37.2%, other 1.7%) and safflower oil.
A 50 wt % mixed oil was transesterified in the same manner as in Example 1, and the desired fractions were obtained by solvent fractionation. Comparative Example 1 For comparison, a mixed oil of 200 g of extremely hardened soybean oil (palmitic acid 10.5%, stearic acid 89.5%) containing no behenic acid or arachidic acid and 200 g of safflower oil was transesterified according to Example 1, and a solvent was used. Fractionation was performed to collect the intermediate melting point category. Table 1 shows the analytical values of the intermediate melting point category obtained in Examples 1 to 4 and Comparative Example 1, and Table 2 shows the triglyceride composition determined by gas chromatography and the appearance after storage at 20°C for one month. In addition, 20 of each intermediate melting point category
FIG. 1 shows an X-ray diffraction pattern measured after storage at ℃ for one month. In the figure, A shows the results of Examples 1 to 4, and B shows the results of Comparative Example 1.

【表】 (注) *エステル交換脂に対する収率
[Table] (Note) *Yield based on transesterified fat

【表】 実施例 5 72gのグリセロールジベヘネート(グリセロー
ルジベヘネート73.1%、グリセロールベヘニルア
ラキネート15.4%、グリセロールベヘニルステア
レート8.1%、その他3.4%)と32gの不飽和脂肪
酸イソプロピルエステル(脂肪酸組成:パルミチ
ン酸1.5%、オレイン酸62.3%、リノール酸27.8
%、リノレン酸8.4%)をパラトルエンスルホン
酸(0.5%)を触媒として220℃で5分間反応させ
てヨウ素価45.1、融点43.5℃、グリセライド組成
C6272.1%、C6015.5%、C588.1%、その他2.4%の
二飽和−不飽和型トリグリセリドを得た。この油
脂の20℃1ケ月保存後の外観はパラフイン状で伸
展性があつた。 実施例 6 本発明による油脂の特徴の一つを示す例とし
て、実施例1,2の油脂を用いたコーテイング用
チヨコレート(油脂29%、チヨコレートリツカー
12%、ココアバター5%、粉糖54%)で2.2gの
立方体に切断したスポンジケーキ(水分35.0%を
含む)の全面を被覆し、このケーキと乾燥剤(シ
リカゲル)を入れたデシケーターを25℃に保存し
てて、ケーキの水分蒸発による重量の減少を測定
した。この場合の比較に用いた油脂は市販のトラ
ンス型のハードバター(融点36.5℃、ヨウ素価
69.1)である。結果を第2図に示した。尚、図
中、1は実施例1の油脂を使用した場合、2は実
施例2の油脂を使用した場合、3は市販のトラン
ス型のハードバターを用いた場合の結果である。
データーは3個づつのケーキの重量の減少の和で
示した。本発明による油脂で被覆した場合の水分
の蒸発がすくないことがわかる。 実施例 7 フライした落花生の吸湿試験 実施例3の油脂及び市販のパーム油で落花生を
フライし、その落花生を25℃湿度80%中に保存
し、落花生の吸湿状態(105℃乾燥減量により測
定)を調べた。結果を第3図に示した。尚、図
中、1は市販パーム油によりフライした場合、2
は実施例3の油脂でフライした場合の結果であ
る。本発明による油脂でフライし、表面を覆われ
た落花生の吸湿性は少ないことがわかる。
[Table] Example 5 72 g of glycerol dibehenate (73.1% glycerol dibehenate, 15.4% glycerol behenyl arachinate, 8.1% glycerol behenyl stearate, 3.4% others) and 32 g of unsaturated fatty acid isopropyl ester (fatty acid composition: Palmitic acid 1.5%, oleic acid 62.3%, linoleic acid 27.8%
%, linolenic acid (8.4%) was reacted with para-toluenesulfonic acid (0.5%) at 220℃ for 5 minutes to obtain an iodine value of 45.1, a melting point of 43.5℃, and a glyceride composition.
A disaturated-unsaturated triglyceride containing 72.1% of C62 , 15.5% of C60 , 8.1% of C58 , and 2.4% of others was obtained. The appearance of this oil and fat after storage at 20°C for one month was paraffin-like and extensible. Example 6 As an example showing one of the characteristics of the fats and oils according to the present invention, thiokolate for coating using the fats and oils of Examples 1 and 2 (fat 29%, thiokolate liquor)
12% cocoa butter, 5% cocoa butter, 54% powdered sugar) to coat the entire surface of a 2.2 g cube-cut sponge cake (containing 35.0% moisture), and place the cake and desiccator (silica gel) in a desiccator for 25 minutes. The cake was stored at ℃, and the weight loss due to water evaporation of the cake was measured. The fat and oil used for comparison in this case was commercially available trans-type hard butter (melting point 36.5°C, iodine value
69.1). The results are shown in Figure 2. In the figure, 1 is the result when the fat of Example 1 was used, 2 is the result when the fat of Example 2 was used, and 3 is the result when commercially available trans-type hard butter was used.
The data are expressed as the sum of the weight loss of three cakes. It can be seen that when coated with the oil and fat according to the present invention, water evaporates less. Example 7 Moisture absorption test of fried peanuts Peanuts were fried using the oil and fat of Example 3 and commercially available palm oil, and the peanuts were stored at 25°C with a humidity of 80% to determine the moisture absorption state of the peanuts (measured by loss on drying at 105°C). I looked into it. The results are shown in Figure 3. In addition, in the figure, 1 is when fried with commercially available palm oil, 2 is
These are the results when fried with the oil and fat of Example 3. It can be seen that the peanuts fried and covered with the oil according to the present invention have low hygroscopicity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1〜4及び比較例1で得られた
中融点区分の20℃1ケ月保存後のX線回折図、第
2図は実施例5で行なつたスポンジケーキのコー
テイングによる透湿性試験の結果を示すグラフ、
第3図は実施例6で行なつたフライした落花生の
吸湿試験の結果を示すグラフである。
Figure 1 shows the X-ray diffraction diagram of the intermediate melting point sections obtained in Examples 1 to 4 and Comparative Example 1 after storage at 20°C for one month, and Figure 2 shows the transparency obtained by coating the sponge cake in Example 5. Graph showing the results of the moisture test,
FIG. 3 is a graph showing the results of a moisture absorption test on fried peanuts conducted in Example 6.

Claims (1)

【特許請求の範囲】 1 構成脂肪酸の総炭素数が58以上であつて、か
つ各構成脂肪酸がそれぞれ炭素数22以上の飽和脂
肪酸、炭素数18以上の飽和脂肪酸及び炭素数16〜
22の不飽和脂肪酸であるトリグリセリドを主体と
する可塑性油脂。 2 炭素数22以上の脂肪酸残基を含有する炭素数
18以上の脂肪酸トリグリセリド30〜60重量%と飽
和脂肪酸含有量20重量%以下の植物油40〜70重量
%とをエステル交換反応し、次いで溶剤分別する
ことを特徴とする、構成脂肪酸の総炭素数が58以
上であつて、かつ各構成脂肪酸がそれぞれ炭素数
22以上の飽和脂肪酸、炭素数18以上の飽和脂肪酸
及び炭素数16〜22の不飽和脂肪酸であるトリグリ
セリドを主体とする可塑性油脂の製造法。 3 炭素数18以上の脂肪酸トリグリセリドが炭素
数18以上の脂肪酸のメチル若しくはエチルエステ
ルとトリアセチンのエステル交換反応生成物であ
る特許請求の範囲第2項記載の可塑性油脂の製造
法。 4 炭素数22以上の脂肪酸残基を必ず有する炭素
数18以上の脂肪酸ジグリセリドと炭素数16〜22の
不飽和脂肪酸の誘導体とをエステル化反応させる
ことを特徴とする、構成脂肪酸の総炭素数が58以
上であつて、かつ各構成脂肪酸がそれぞれ炭素数
22以上の飽和脂肪酸、炭素数18以上の飽和脂肪酸
及び炭素数16〜22の不飽和脂肪酸であるトリグリ
セリドを主体とする可塑性油脂の製造法。 5 構成脂肪酸の総炭素数が58以上であつて、か
つ各構成脂肪酸がそれぞれ炭素数22以上の飽和脂
肪酸、炭素数18以上の飽和脂肪酸及び炭素数16〜
22の不飽和脂肪酸であるトリグリセリドを主体と
する可塑性油脂を含有することを特徴とする被覆
剤。
[Scope of Claims] 1. The total number of carbon atoms in the constituent fatty acids is 58 or more, and each constituent fatty acid is a saturated fatty acid with a carbon number of 22 or more, a saturated fatty acid with a carbon number of 18 or more, and a saturated fatty acid with a carbon number of 16 to 16.
A plastic fat and oil mainly composed of triglycerides, which are 22 unsaturated fatty acids. 2 Number of carbon atoms containing fatty acid residues having 22 or more carbon atoms
30-60% by weight of fatty acid triglycerides of 18 or more and 40-70% by weight of vegetable oil containing 20% by weight or less of saturated fatty acids are transesterified, followed by solvent fractionation, and the total number of carbon atoms in the constituent fatty acids is 58 or more, and each constituent fatty acid has a carbon number
A method for producing plastic fats and oils mainly composed of triglycerides, which are saturated fatty acids having 22 or more carbon atoms, saturated fatty acids having 18 or more carbon atoms, and unsaturated fatty acids having 16 to 22 carbon atoms. 3. The method for producing plastic fats and oils according to claim 2, wherein the fatty acid triglyceride having 18 or more carbon atoms is a transesterification product of a methyl or ethyl ester of a fatty acid having 18 or more carbon atoms and triacetin. 4 A method characterized by carrying out an esterification reaction between a fatty acid diglyceride having 18 or more carbon atoms, which always has a fatty acid residue having 22 or more carbon atoms, and a derivative of an unsaturated fatty acid having 16 to 22 carbon atoms, in which the total number of carbon atoms of the constituent fatty acids is 58 or more, and each constituent fatty acid has a carbon number
A method for producing plastic fats and oils mainly composed of triglycerides, which are saturated fatty acids having 22 or more carbon atoms, saturated fatty acids having 18 or more carbon atoms, and unsaturated fatty acids having 16 to 22 carbon atoms. 5 The total number of carbon atoms in the constituent fatty acids is 58 or more, and each constituent fatty acid is a saturated fatty acid with a carbon number of 22 or more, a saturated fatty acid with a carbon number of 18 or more, and a saturated fatty acid with a carbon number of 16 or more.
A coating agent characterized by containing a plastic oil mainly composed of triglyceride, which is a 22-unsaturated fatty acid.
JP58161667A 1983-09-02 1983-09-02 Plastic fat, manufacture and coating agent Granted JPS6053598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58161667A JPS6053598A (en) 1983-09-02 1983-09-02 Plastic fat, manufacture and coating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58161667A JPS6053598A (en) 1983-09-02 1983-09-02 Plastic fat, manufacture and coating agent

Publications (2)

Publication Number Publication Date
JPS6053598A JPS6053598A (en) 1985-03-27
JPH0471120B2 true JPH0471120B2 (en) 1992-11-12

Family

ID=15739542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58161667A Granted JPS6053598A (en) 1983-09-02 1983-09-02 Plastic fat, manufacture and coating agent

Country Status (1)

Country Link
JP (1) JPS6053598A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726959A (en) * 1985-03-01 1988-02-23 Kao Corporation Fat blooming inhibitor
JPH0779620B2 (en) * 1985-04-05 1995-08-30 花王株式会社 Compounding agent for improving heat resistance of plastic oils and fats
NL8501957A (en) * 1985-07-09 1987-02-02 Unilever Nv FATS AND EDIBLE EMULSIONS, IN PARTICULAR DIET WITH HIGH CONTENT OF CIS-POLY-UNSATURATED FATTY ACIDS.
JPS63126457A (en) * 1986-11-17 1988-05-30 Kao Corp Migration inhibitor for fat and oil for roasted cake and production of complex roasted cakes using said inhibitor
JP2568632B2 (en) * 1987-06-06 1997-01-08 不二製油 株式会社 Fats for diet
GB9007497D0 (en) * 1990-04-03 1990-05-30 Unilever Plc Improvements in edible fats
US5492714A (en) * 1994-11-08 1996-02-20 The Procter & Gamble Company Reduced calorie fats which comprise reduced calorie triglycerides containing medium and long chain fatty acids and which exhibit rapid crystallization to beta phase
US5589216A (en) * 1994-11-08 1996-12-31 The Procter And Gamble Company Reduced calorie confectionery compositions which contain reduced calorie fats which exhibit rapid transformation to beta phase
JP5153040B2 (en) * 2001-08-23 2013-02-27 株式会社Adeka Oil composition for frying or spraying
JP4578099B2 (en) * 2001-11-02 2010-11-10 アールフスカールスハムン デンマーク アクティーゼルスカブ Non-laurin non-trans non-tempered fat composition
JP2003204753A (en) * 2001-11-06 2003-07-22 Kao Corp Triglyceride composition
WO2006016576A1 (en) * 2004-08-11 2006-02-16 Fuji Oil Company, Limited Fat-and-oil compositions for inhibiting the migration of water in food and foods made by using the same
JP5241284B2 (en) * 2008-03-27 2013-07-17 日清オイリオグループ株式会社 Oil composition for sand cream
JP5479700B2 (en) * 2008-09-25 2014-04-23 株式会社Adeka Plastic oil composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128609A (en) * 1977-04-14 1978-11-09 Us Agriculture Fractionation of beef tallow
JPS5515785A (en) * 1978-07-24 1980-02-04 Asahi Denka Kogyo Kk Preparation of hard butter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128609A (en) * 1977-04-14 1978-11-09 Us Agriculture Fractionation of beef tallow
JPS5515785A (en) * 1978-07-24 1980-02-04 Asahi Denka Kogyo Kk Preparation of hard butter

Also Published As

Publication number Publication date
JPS6053598A (en) 1985-03-27

Similar Documents

Publication Publication Date Title
US7157110B2 (en) Fat compositions
KR101525272B1 (en) Fat composition for chocolate coatings
RU2070806C1 (en) Fat replacer with low calorific value
US5268192A (en) Low calorie nut products and process of making
JPH0471120B2 (en)
JPH0748980B2 (en) Margarine fat mixture and method for producing the same
JP6042049B2 (en) Partially hydrogenated oil and fat, oil and fat composition containing the same, and method for producing the same
US5240726A (en) Product and process of making low calorie nuts
KR20130016231A (en) Fat and oil composition and chocolate products using same
EP0531325B1 (en) Low saturate frying oil with fried flavor
Subroto et al. The recent application of palm stearin in food industry: A review
US5169670A (en) Low saturate frying oil with fried flavor
CN111836547A (en) Cocoa butter compatibility enhancer, process for producing the same, non-tempering chocolate, and food containing the same
JP3372787B2 (en) Fried confectionery
JP7163390B2 (en) Fat composition and its use
JP3970513B2 (en) Crisps
JP2021506301A5 (en)
JP3897441B2 (en) Fried oil
JP3434725B2 (en) Oils and fried foods for frying
JP3385709B2 (en) Plastic fats and chocolates
JP5823684B2 (en) Cooking oils and fats
JPS62205738A (en) Crystal growth inhibitor for oil and fat
JPH0347820B2 (en)
JP2862997B2 (en) Oil composition for frying
JP2001031989A (en) Monoglyceride powder composition for improving physical properties of starch food, and starch food