JPH047067B2 - - Google Patents

Info

Publication number
JPH047067B2
JPH047067B2 JP58075643A JP7564383A JPH047067B2 JP H047067 B2 JPH047067 B2 JP H047067B2 JP 58075643 A JP58075643 A JP 58075643A JP 7564383 A JP7564383 A JP 7564383A JP H047067 B2 JPH047067 B2 JP H047067B2
Authority
JP
Japan
Prior art keywords
fibers
polypropylene
separator
polyamide
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58075643A
Other languages
Japanese (ja)
Other versions
JPS59201366A (en
Inventor
Hisayuki Takigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58075643A priority Critical patent/JPS59201366A/en
Publication of JPS59201366A publication Critical patent/JPS59201366A/en
Publication of JPH047067B2 publication Critical patent/JPH047067B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は密閉型アルカリ電池、特にニツケルカ
ドミウム蓄電池に用いるアルカリ電池用セパレー
ターの構成に関するものである。 従来、アルカリ電池用セパレーターにはポリア
ミド繊維の持つ吸水性、吸液性等の特性を利用し
たポリアミド繊維のみよりなる不織布が一般に用
いられている。また、ポリアミド繊維の吸液性、
吸水性をより向上させる為に無機塩類により繊維
を溶出して繊維表面に多数の微細な孔を有する多
孔質の構造にしたものが見られる。このように繊
維を多孔性としたことにより、電解液の保液量は
均一となり、それがため放電容量が大きくなると
いう特徴がある。然るに、アルカリ電池は高温時
或は連続的に過充電が行われる様な条件下では、
電解液の温度上昇や電気化学変化が大きい為に、
上記ポリアミド製不織布セパレーターでは劣化が
著しく、長期の使用に耐え難いという欠点があ
る。 また、ポリアミド繊維に電解液に対し耐性のあ
るポリプロピレン繊維を混入した不織布よりなる
セパレーターも見られるが、ポリプロピレン繊維
の熱溶着により繊維相互を接着するため、加熱溶
着時にポリプロピレン繊維の収縮が著しく、厳密
な工程管理を必要とし、均一な製品を大量、かつ
安価に製造することが困難である等の問題点があ
る。 更に、ポリプロピレン樹脂のメルトプロー方式
による不織布、ポリプロピレン繊維の湿式法によ
る不織布をセパレーターとしたものがあるが、吸
液性、耐アルカリ性等の電池特性は満足しうるも
のの、セパレーターの機械的強度が弱い為、電池
製造工程に於てセパレーターの伸び、切断等の問
題が発生することによりラインアツプされていな
いのが現状である。 更に、ポリアミド繊維とポリプロピレン−ポリ
エチレン系複合繊維とを80〜50%:20〜50%の比
率で混合し形成したウエブを加熱、加圧してポリ
エチレン成分を溶融し、繊維相互間を一体に結合
したセパレーターも工夫されてはいる。しかし上
記ポリプロピレン−ポリエチレン系複合繊維の混
合割合が非常に限定されるという問題点がある。
即ち、上記複合繊維が20%以下では接着力不足と
なり、電池組立工程にかけられず、また強力を付
与するため複合繊維を20〜50%未満混合するとポ
リアミド繊維が50%以上含まれることになり、前
記アルカリ電池の高温時或は連続的過充電が行わ
れる様な条件下では電解液の温度上昇や電気化学
的変化が大きい為にポリアミド繊維の劣化が著し
くなり繊維が分解されてセパレーターとしての機
能が低下するので好ましくなく、又、上記複合繊
維を50%以上混入させると加熱・加圧時に該複合
繊維を形成する低融点樹脂成分(ポリエチレン)
が溶融・圧着によりフイルム化し易く、繊維間〓
の閉塞現象が発生し易くなり、セパレーターとし
ての性能に悪影響を及ぼす。この様にポリプロピ
レン−ポリエチレン系複合繊維の混入割合が非常
に限定される上に、ポリアミド繊維の存在が50%
を越えると、劣化による形態変化が著しく、大巾
な性能低下をきたすことになる。 本発明は上記諸欠点を克服し、如何なる条件下
でも十分実用に供し得るアルカリ電池用セパレー
ターを提供するものである。 以下本発明の1実施例を詳細に説明する。 本発明のアルカリ電池用セパレーターは、剥離
型複合紡糸法を利用して、放射型紡糸口金と複数
個の三角形状紡糸口金を使用し、上記放射型紡糸
口金よりポリアミド樹脂、三角形状紡糸口金より
ポリプロピレン樹脂を同時に紡糸して形成した、
放射型多層貼り合わせ構造の繊維と、ポリプロピ
レン−ポリエチレン系サイドバイサイド、又は海
島型の複合繊維との混合繊維を用いる。例えばポ
リプロピレン樹脂80%、ポリアミド樹脂20%の割
合(重量比)でもつて繊維を構成する80%のポリ
プロピレン樹脂片が略三角柱形状で軸芯より放射
状に配列し、上記三角柱形状のポリプロピレン樹
脂片部を残り20%の放射型ポリアミド樹脂で貼り
合わせた断面形状になる様に特殊形状紡糸口金よ
り同時に紡糸して得られる放射状多層貼合せ型複
合繊維を70%とポリプロピレン−ポリエチレン系
複合繊維30%との混合繊維をランドウエバー機又
はカード機にかけて、目付90g/m3のランダムウ
エブ又はクロスウエブを形成し、一対の加熱、加
圧ロールを通過させて、ポリエチレン成分の溶融
によりウエブ構成繊維間相互を一体に接着し、見
掛密度0.2〜0.5g/cm3のアルカリ電池用セパレー
ターを形成する。 尚、セパレーターの重量は40〜200g/m2の間
で使用目的に応じて適宜変えられて用いられ、ま
た見掛密度は0.20g/cm2未満になるとセパレータ
ーの強度や吸液速度が低下し、又0.5g/cm2をこ
えると目が詰まり過ぎて、電解により発生した酸
素の通過が阻害されるので好ましくなく適宜の空
隙を保つ必要があり、好ましくは0.20〜0.50g/
cm3に調整する。 本発明に用いるポリプロピレン−ポリアミド放
射状多層貼合せ型複合繊維は、第1図及び第2図
に示す様に、断面が略三角形の三角柱形状のポリ
プロピレン樹脂成分1が芯部より放射状に配列
し、その相隣り合う部分を放射型ポリアミド樹脂
成分2で線状に貼合せた構造よりなり耐アルカリ
性にすぐれた上記複合繊維のポリプロピレン樹
脂成分1と同時に用いるポリプロピレン−ポリエ
チレン複合繊維4のポリエチレン樹脂成分5との
融着によつてウエブ構成繊維相互を一体に接着し
てセパレーターを構成する。 従つて、セパレーターの主構成繊維であるポリ
プロピレン−ポリアミド放射状多層貼り合せ型複
合繊維は初期性能はポリアミド−ポリプロピレン
のサイドバイサイド型複合繊維に比べ、初期の吸
液量はポリアミド樹脂量が少ない為劣るが、ポリ
アミド成分劣化後に生成するポリアミド空〓部及
びポリプロピレン樹脂成分の分割フアインデニー
ル化によつて毛細管現象が発現しアルカリ電池用
セパレーターとしての性能低下は極力押えられる
特性を持つ。 また、上記実施例において繊維間相互の接着繊
維となるポリプロピレン−ポリエチレン複合繊維
の形態は第2図に示す如く、ポリエチレン成分が
必ず複合繊維表面の一部を形成するサイドバイサ
イド型又は全部を占める海島型であることが必要
である。 次に、上記本発明のアルカリ電池用セパレータ
ーAと比較例として従来のポリアミド繊維セパレ
ーターB、ポリプロピレン繊維セパレーターC、
ポリアミド、ポリプロピレン混合繊維セパレータ
ーDの物性を下表に示した。
The present invention relates to the structure of an alkaline battery separator used in sealed alkaline batteries, particularly nickel-cadmium storage batteries. Conventionally, nonwoven fabrics made only of polyamide fibers have been generally used for separators for alkaline batteries, taking advantage of the properties of polyamide fibers such as water absorption and liquid absorption. In addition, the liquid absorption properties of polyamide fibers,
In order to further improve water absorption, fibers are eluted with inorganic salts to create a porous structure with many fine pores on the fiber surface. By making the fibers porous in this manner, the amount of electrolyte solution retained is uniform, and as a result, the discharge capacity is increased. However, under high temperature conditions or conditions where alkaline batteries are continuously overcharged,
Due to the large temperature rise and electrochemical changes in the electrolyte,
The polyamide nonwoven fabric separator described above has the disadvantage that it deteriorates significantly and cannot withstand long-term use. In addition, there are separators made of nonwoven fabric made of polyamide fibers mixed with polypropylene fibers that are resistant to electrolyte solutions, but since the fibers are bonded together by heat welding, the polypropylene fibers shrink significantly during heat welding, making it difficult to There are problems such as the need for detailed process control and the difficulty of manufacturing uniform products in large quantities at low cost. Furthermore, there are separators made of non-woven fabric made of polypropylene resin made by the melt-blown process, and non-woven fabric made of polypropylene fiber made by the wet process, but although they can satisfy battery properties such as liquid absorption and alkali resistance, the mechanical strength of the separator is weak. Currently, this product is not available in the lineup due to problems such as elongation and cutting of the separator during the battery manufacturing process. Furthermore, a web formed by mixing polyamide fibers and polypropylene-polyethylene composite fibers at a ratio of 80 to 50%: 20 to 50% was heated and pressurized to melt the polyethylene component and bond the fibers together. The separator has also been devised. However, there is a problem in that the mixing ratio of the polypropylene-polyethylene composite fibers is very limited.
That is, if the composite fiber is less than 20%, the adhesion will be insufficient and it cannot be used in the battery assembly process, and if less than 20 to 50% of the composite fiber is mixed to impart strength, it will contain more than 50% polyamide fiber. When the alkaline battery is at high temperature or under conditions where continuous overcharging is performed, the temperature rise and electrochemical changes in the electrolyte are large, resulting in significant deterioration of the polyamide fibers, causing the fibers to decompose and fail to function as a separator. This is not preferable because the conjugate fibers decrease, and if 50% or more of the above conjugate fibers are mixed, the low melting point resin component (polyethylene) that forms the conjugate fibers when heated and pressurized.
is easily formed into a film by melting and crimping, and the inter-fiber
The phenomenon of clogging becomes more likely to occur, which adversely affects the performance as a separator. In this way, the proportion of polypropylene-polyethylene composite fibers is extremely limited, and the presence of polyamide fibers is 50%.
If this value is exceeded, morphological changes due to deterioration will be significant, resulting in a significant drop in performance. The present invention overcomes the above-mentioned drawbacks and provides a separator for alkaline batteries that can be put to practical use under any conditions. One embodiment of the present invention will be described in detail below. The alkaline battery separator of the present invention uses a radial spinneret and a plurality of triangular spinnerets using a peel-type composite spinning method. Formed by simultaneously spinning resin,
A mixed fiber of a radial multilayer laminated fiber and a polypropylene-polyethylene side-by-side or sea-island composite fiber is used. For example, if the ratio (weight ratio) is 80% polypropylene resin and 20% polyamide resin, 80% of the polypropylene resin pieces constituting the fiber are approximately triangular prism-shaped and arranged radially from the axis, and the triangular prism-shaped polypropylene resin pieces are arranged radially from the axis. The remaining 20% is a radial multi-layer laminated conjugate fiber obtained by simultaneously spinning it using a special shaped spinneret so that it has a cross-sectional shape laminated with radial polyamide resin, and 70% is a radial multi-layer laminated composite fiber, and 30% is a polypropylene-polyethylene composite fiber. The mixed fibers are passed through a Land Weber machine or a card machine to form a random web or cross web with a basis weight of 90 g/ m3 , and then passed through a pair of heating and pressure rolls to melt the polyethylene component and integrate the fibers that make up the web. to form a separator for alkaline batteries with an apparent density of 0.2 to 0.5 g/cm 3 . The weight of the separator is varied between 40 and 200 g/ m2 depending on the purpose of use, and if the apparent density is less than 0.20 g/ cm2 , the strength and liquid absorption rate of the separator will decrease. Moreover, if it exceeds 0.5 g/cm 2 , the pores become too clogged and the passage of oxygen generated by electrolysis is inhibited, so it is not preferable and it is necessary to maintain an appropriate gap, preferably 0.20 to 0.50 g/cm 2 .
Adjust to cm3 . As shown in FIGS. 1 and 2, the polypropylene-polyamide radial multilayer composite fiber used in the present invention has triangular prism-shaped polypropylene resin components 1 having a substantially triangular cross section arranged radially from the core. The polypropylene resin component 5 of the polypropylene-polyethylene composite fiber 4 used simultaneously with the polypropylene resin component 1 of the composite fiber 3 , which has a structure in which adjacent parts are bonded linearly with the radial polyamide resin component 2 and has excellent alkali resistance. The fibers constituting the web are bonded together by fusing to form a separator. Therefore, the initial performance of the polypropylene-polyamide radial multilayer composite fiber, which is the main constituent fiber of the separator, is inferior to that of the polyamide-polypropylene side-by-side composite fiber due to the small amount of polyamide resin; Capillarity occurs due to the polyamide voids formed after the polyamide component deteriorates and the polypropylene resin component is divided into fins and denier, and has the characteristic of suppressing performance deterioration as a separator for alkaline batteries as much as possible. In addition, in the above examples, the form of the polypropylene-polyethylene conjugate fibers that serve as the bonding fibers between the fibers is as shown in FIG. It is necessary that Next, the separator A for alkaline batteries of the present invention, conventional polyamide fiber separator B, polypropylene fiber separator C as comparative examples,
The physical properties of polyamide and polypropylene mixed fiber separator D are shown in the table below.

【表】 本発明は上記の如く構成したから、接着繊維と
なるポリプロピレン−ポリエチレン複合繊維の混
入割合が接着力、即ち引張強力保持特性にのみ役
割りが限定され、セパレーターとして必要かつ十
分なる吸液速度及び吸液率を維持しながら耐久性
のある必要強度を得る最小混合割合(30〜50%)
に抑制することができる。 また電解液によるセパレーターの劣化による形
態変化がなくなり、電池寿命が大幅に延長する。
また上表に示す如く、本発明のセパレーターは表
層部に細孔を設けた複合繊維を主体とするセパレ
ーターに比べ、親水性のポリアミド樹脂が複合繊
維の長手方向に直線状に配置されるためポリアミ
ド樹脂の吸水性と毛細管現象による吸液速度が大
巾に増加し、更にポリアミド樹脂部分の劣化後も
充分に吸液性能を発揮する。 又、吸液量、短絡率、耐アルカリ性とも従来セ
パレーターに比較して全般に良好な結果を示し、
理想的なアルカリ電池用セパレーターが得られる
等の秀れた効果を有する発明である。
[Table] Since the present invention is constructed as described above, the mixing ratio of the polypropylene-polyethylene composite fibers serving as the adhesive fibers is limited to adhesive strength, that is, the tensile strength retention property, and is sufficient for liquid absorption necessary and sufficient as a separator. Minimum mixing ratio (30-50%) to obtain the required strength for durability while maintaining speed and absorption rate
can be suppressed to In addition, there is no change in shape due to deterioration of the separator due to electrolyte, significantly extending battery life.
Furthermore, as shown in the above table, the separator of the present invention has a hydrophilic polyamide resin arranged linearly in the longitudinal direction of the composite fiber, compared to a separator mainly composed of composite fibers with pores in the surface layer. The water absorbency of the resin and the liquid absorption rate due to capillary action are greatly increased, and even after the polyamide resin part has deteriorated, it exhibits sufficient liquid absorption performance. In addition, it showed generally better results in terms of liquid absorption, short circuit rate, and alkali resistance compared to conventional separators.
This invention has excellent effects such as providing an ideal separator for alkaline batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のアルカリ電池用セパレーター
に用いるポリプロピレン−ポリアミド放射状多層
貼合せ型複合繊維の要部拡大図、第2図は同ポリ
プロピレン−ポリアミド放射状多層貼合せ型複合
繊維とポリプロピレン−ポリエチレン複合繊維接
着部拡大図である。 1…三角柱形状ポリプロピレン樹脂成分、2…
ポリアミド樹脂成分、3…ポリプロピレン−ポリ
アミド放射状多層貼合せ型複合繊維、4…ポリプ
ロピレン−ポリエチレン複合繊維、5…ポリエチ
レン樹脂成分。
Figure 1 is an enlarged view of the main parts of the polypropylene-polyamide radial multilayer composite fiber used in the alkaline battery separator of the present invention, and Figure 2 is the same polypropylene-polyamide radial multilayer composite fiber and polypropylene-polyethylene composite fiber. It is an enlarged view of the bonded part. 1...Triangular prism-shaped polypropylene resin component, 2...
Polyamide resin component, 3... Polypropylene-polyamide radial multilayer laminated composite fiber, 4... Polypropylene-polyethylene composite fiber, 5... Polyethylene resin component.

Claims (1)

【特許請求の範囲】[Claims] 1 断面形状が放射型であるポリアミド樹脂芯体
の放射片の間〓に、断面形状が略三角柱形状のポ
リプロピレン樹脂片が配列した状態に複合紡糸し
た放射状多層貼合せ型複合繊維とポリプロピレン
−ポリエチレンの複合接着繊維との混合繊維から
なるクロスウエブ又はランダムウエブの繊維層で
構成され、ウエブ構成繊維相互が加熱・加圧によ
るポリエチレン成分の溶融により一体に接着した
見掛密度0.20〜0.50g/cm3のアルカリ電池用セパ
レーター。
1 A radial multilayer laminated composite fiber and polypropylene-polyethylene composite spun in which polypropylene resin pieces having a substantially triangular prism cross-section are arranged between the radial pieces of a polyamide resin core having a radial cross-section. It is composed of a cross web or random web fiber layer made of mixed fibers with composite adhesive fibers, and the web constituent fibers are bonded together by melting the polyethylene component by heating and pressurizing.Apparent density 0.20 to 0.50 g/cm 3 separator for alkaline batteries.
JP58075643A 1983-04-27 1983-04-27 Separator for alkaline battery Granted JPS59201366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58075643A JPS59201366A (en) 1983-04-27 1983-04-27 Separator for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58075643A JPS59201366A (en) 1983-04-27 1983-04-27 Separator for alkaline battery

Publications (2)

Publication Number Publication Date
JPS59201366A JPS59201366A (en) 1984-11-14
JPH047067B2 true JPH047067B2 (en) 1992-02-07

Family

ID=13582132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58075643A Granted JPS59201366A (en) 1983-04-27 1983-04-27 Separator for alkaline battery

Country Status (1)

Country Link
JP (1) JPS59201366A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2764335B2 (en) * 1990-03-07 1998-06-11 大和紡績株式会社 Alkaline battery separator
JP6420141B2 (en) * 2014-12-26 2018-11-07 株式会社クラレ Conductive yarn and method for producing the same

Also Published As

Publication number Publication date
JPS59201366A (en) 1984-11-14

Similar Documents

Publication Publication Date Title
JP4699899B2 (en) Separator material for alkaline secondary battery, method for producing the same, and separator for alkaline secondary battery
JPH09213296A (en) Separator for battery and battery
JP5191091B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
JP5337599B2 (en) Battery separator, battery and split type composite fiber
JPH047067B2 (en)
JP4384391B2 (en) Separator material manufacturing method and battery incorporating the same
JPS58147956A (en) Separator for alkaline battery
JPH08138645A (en) Battery separator and manufacture thereof
JP5752462B2 (en) Separator material and battery using the same
JPH047066B2 (en)
JP2960284B2 (en) Battery separator and manufacturing method thereof
JPH09289005A (en) Alkaline battery separator and its manufacture
JPH047065B2 (en)
JPH0355938B2 (en)
JP4675574B2 (en) Organic electrolyte battery separator and method for producing the same
JP4390956B2 (en) Alkaline battery separator
JP3366426B2 (en) Easy sulfonated fiber
JP3383823B2 (en) Battery separator, method of manufacturing the same, and battery using the same
JP3002830B2 (en) Battery separator and manufacturing method thereof
JP7313163B2 (en) Separator for electrochemical device
JP2000106163A (en) Separator for alkaline battery and manufacture thereof
JPH0473261B2 (en)
JP4047412B2 (en) Alkaline battery separator
JP4601748B2 (en) Battery separator
JP3277183B2 (en) Alkaline battery separator