JPH0470497B2 - - Google Patents

Info

Publication number
JPH0470497B2
JPH0470497B2 JP58197890A JP19789083A JPH0470497B2 JP H0470497 B2 JPH0470497 B2 JP H0470497B2 JP 58197890 A JP58197890 A JP 58197890A JP 19789083 A JP19789083 A JP 19789083A JP H0470497 B2 JPH0470497 B2 JP H0470497B2
Authority
JP
Japan
Prior art keywords
fluid
communication
elastic body
opening
fluid chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58197890A
Other languages
Japanese (ja)
Other versions
JPS6088242A (en
Inventor
Kenichi Kikuchi
Yoshiki Funahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Toyota Motor Corp
Original Assignee
Sumitomo Riko Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd, Toyota Motor Corp filed Critical Sumitomo Riko Co Ltd
Priority to JP19789083A priority Critical patent/JPS6088242A/en
Publication of JPS6088242A publication Critical patent/JPS6088242A/en
Publication of JPH0470497B2 publication Critical patent/JPH0470497B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/14Units of the bushing type, i.e. loaded predominantly radially
    • F16F13/1427Units of the bushing type, i.e. loaded predominantly radially characterised by features of flexible walls of equilibration chambers; decoupling or self-tuning means

Description

【発明の詳細な説明】 本発明は、弾性体の弾性変形と流体の流通抵抗
とを利用して振動を減衰する機能を果たす流体入
りブツシユに係り、特に流体による減衰機能が振
動特性に応じて変化する流体入りブツシユに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluid-filled bushing that performs the function of damping vibrations by utilizing the elastic deformation of an elastic body and the flow resistance of the fluid, and in particular, the damping function of the fluid can be adjusted according to the vibration characteristics. It concerns a changing fluid-filled bush.

従来より、弾性体の弾性変形作用と流体の流通
抵抗との双方の機能を組み合わせた流体入りブツ
シユとして、内筒部材と、その内筒部材の外
側に所定距離隔てて配置された外筒部材と、そ
れら内筒部材と外筒部材との間に設けられたゴム
またはその類似物からなる弾性体と、その弾性
体に形成され、所定の非圧縮性流体が封入された
複数の流体室と、それら複数の流体室を相互に
連通せしめる連通路(オリフイス)とを含んで構
成されるものが知られている。
Conventionally, a fluid-filled bushing that combines the functions of elastic deformation of an elastic body and fluid flow resistance has been developed using an inner cylinder member and an outer cylinder member disposed at a predetermined distance outside the inner cylinder member. , an elastic body made of rubber or something similar provided between the inner cylinder member and the outer cylinder member, and a plurality of fluid chambers formed in the elastic body and filled with a predetermined incompressible fluid; Some devices are known that include a communication path (orifice) that allows the plurality of fluid chambers to communicate with each other.

しかしながら、従来のその種の流体入りブツシ
ユにおいては、オリフイスの流通断面積が実質的
に変わらない構造とされており、そのため得られ
る減衰特性に限界があつた。一般に、オリフイス
断面積を小さく選ぶと、低周波振動域での減衰係
数が大となり、低周波振動の抑制には効果的とな
るのであるが、高周波域での振動に対する動ばね
定数が上がつて、高風波域で低動ばね定数を得る
ことが困難となる。一方、オリフイス断面積を大
きく選ぶと、減衰効果が最大となる振動周波数が
高周波域に移行し、その周波数前後の動ばね定数
が低くなつて高周波振動に対する柔かいばね特性
が得られるのであるが、低周波域での減衰機能が
十分に果たされ得ないのである。このような二律
背反の関係から、オリフイス断面積をどのように
選んでも、低周波域での高減衰特性と高周波域で
の低動ばね定数との双方を共に満足させることは
困難だつたからである。それ故、従来において
は、高周波域での防振機能が犠性にされ易い面が
あつた。
However, in conventional fluid-filled bushes of this type, the flow cross-sectional area of the orifice remains substantially unchanged, and as a result, there is a limit to the damping characteristics that can be obtained. Generally, when the cross-sectional area of the orifice is selected to be small, the damping coefficient in the low-frequency vibration range becomes large, which is effective in suppressing low-frequency vibration, but the dynamic spring constant against vibration in the high-frequency range increases. , it becomes difficult to obtain a low dynamic spring constant in high wind and wave regions. On the other hand, if the cross-sectional area of the orifice is chosen to be large, the vibration frequency at which the damping effect is maximum shifts to a high frequency range, and the dynamic spring constant around that frequency becomes low, resulting in soft spring characteristics against high-frequency vibrations. The attenuation function in the frequency range cannot be fully fulfilled. Because of this antinomic relationship, no matter how the cross-sectional area of the orifice was chosen, it was difficult to satisfy both high attenuation characteristics in the low frequency range and low dynamic spring constant in the high frequency range. . Therefore, in the past, the anti-vibration function in the high frequency range was often sacrificed.

ここにおいて、本発明はこのような事情に基づ
いてなされたものであり、その目的とするところ
は、低周波域で高減衰性能を発揮しながら、高周
波域では低い動ばね定数を確保することができる
流体入りブツシユを簡単な構造において実現する
ことにある。
The present invention was made based on these circumstances, and its purpose is to ensure a low dynamic spring constant in the high frequency range while exhibiting high attenuation performance in the low frequency range. The object of the present invention is to realize a fluid-filled bush with a simple structure.

かかる目的を達成するために、本発明にあつて
は、低周波振動が作用する場合と高周波振動が作
用する場合とでオリフイス断面積が変わり得るよ
うにし、双方の周波数域に最適なオリフイス断面
積を与えるようにしたことを、その要旨とするも
のである。すなわち、前述のような内筒部材と外
筒部材との間に介装されたゴムまたはその類似物
からなる弾性体を備えるとともに、その弾性体に
所定の非圧縮性流体が封入される複数の流体室が
形成され、かつ複数の流体室が連通路により相互
に連通させられた構造の流体入りブツシユにおい
て、前記複数の流体室を、ブツシユ軸線に沿つて
延びるように且つ前記弾性体の軸方向の一端部に
開口するように、それぞれ設けて、それら複数の
流体室をブツシユ軸線に対して対称的に配置せし
め、更にかかる弾性体の軸方向の一端部における
流体室の開口を接続するように、前記連通路を設
ける一方、前記流体室の少なくとも一つと前記連
通路との接続部分に、前記開口の閉塞による該流
体室と該連通路を遮断する位置と前記開口を閉塞
しないことによる該流体室と該連通路との連通を
遮断しない位置との間で、前記弾性体の軸方向に
移動可能な可動部材を設けると共に、その可動部
材に、上記連通路の流通断面積より小さな流通断
面積をもつて、その連通路と流体室とを連通させ
る連通路を形成したのである。
In order to achieve this object, the present invention allows the cross-sectional area of the orifice to change depending on whether low-frequency vibrations are applied or high-frequency vibrations, and the orifice cross-sectional area is optimized for both frequency ranges. The gist of this is to provide the following. That is, a plurality of elastic bodies made of rubber or the like are interposed between the inner cylinder member and the outer cylinder member as described above, and a predetermined incompressible fluid is sealed in the elastic body. In a fluid-filled bush having a structure in which a fluid chamber is formed and a plurality of fluid chambers are communicated with each other by a communication passage, the plurality of fluid chambers are arranged so as to extend along the bush axis and in the axial direction of the elastic body. The plurality of fluid chambers are arranged symmetrically with respect to the bush axis, and the openings of the fluid chambers at one end in the axial direction of the elastic body are connected. , the communicating path is provided, and at least one of the fluid chambers and the communicating path is provided at a connecting portion with a position where the fluid chamber and the communicating path are blocked by closing the opening, and a position where the fluid chamber and the communicating path are blocked by not closing the opening. A movable member movable in the axial direction of the elastic body is provided between the chamber and a position where communication with the communication path is not interrupted, and the movable member has a flow cross-sectional area smaller than the flow cross-sectional area of the communication path. With this, a communication passage was formed that communicated the communication passage with the fluid chamber.

このようにすれば、単に流体室と連通路の接続
部分に配された可動部材の移動によつて、低周波
振動の作用時には、可動部材が流体室と連通路と
の連通を遮断する位置に移動し、その結果、流体
の流通が連通路より小さな流通断面積を有する可
動部材の連通部を介して行われて、低周波域での
高減衰特性が発揮される。一方、高周波振動が作
用した時には、上記可動部材が連通路と流体室と
の連通を遮断しない位置に保たれて、流体の流通
は連通路の流通断面積をもつて行われるため、高
周波域において低動ばね定数が得られる。すなわ
ち、可動部材の介挿という簡単な構成の採用によ
つて、高周波振動の作用時には、低周波振動の作
用時と比べて、より大きな流通断面積を与えるこ
とができ、あたかも二種類のオリフイスを有する
のと同じこととなり、高周波域から低周波域にわ
たり、良好な減衰機能を果たさせることが可能と
なつたのであり、以てコンパクト性に優れた多機
能の流体入りブツシユが有利に実現され得たので
ある。
In this way, by simply moving the movable member disposed at the connecting portion between the fluid chamber and the communication path, the movable member is brought to a position where communication between the fluid chamber and the communication path is cut off when low frequency vibration is applied. As a result, fluid circulation is performed through the communication portion of the movable member having a smaller flow cross-sectional area than the communication path, and high attenuation characteristics in the low frequency range are exhibited. On the other hand, when high-frequency vibrations act, the movable member is kept in a position where it does not block communication between the communication path and the fluid chamber, and the fluid flows through the cross-sectional area of the communication path. A low dynamic spring constant is obtained. In other words, by adopting a simple structure of inserting a movable member, it is possible to provide a larger flow cross-sectional area when high-frequency vibration is applied compared to when low-frequency vibration is applied, and it is as if two types of orifices were used. This means that it has become possible to perform a good damping function from the high frequency range to the low frequency range, and as a result, a multi-functional fluid-filled bushing with excellent compactness can be advantageously realized. I got it.

以下、本発明の一実施例を、図面に基づいて詳
細に説明する。
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

第1図および第2図において、2は、円筒状の
内筒金具であり、内筒部材として機能するこの金
具2の外側には、外筒部材として機能する円筒状
の外筒金具4が所定距離隔てて同心的に配置され
ている。そして、それら内筒金具2と外筒金具4
との間には、円環状のゴムスリーブ6が公知の加
硫成形により固着、介装せしめられている。弾性
部材として機能するこのゴムスリーブ6には、第
1図から明らかなように、内筒金具2の中心線
(ブツシユ軸線)に関して互いに対称な位置に一
対の流体室8および10が形成されている。これ
ら流体室8および10は、ゴムスリーブ6の中心
線を中心とする円弧状の断面形状を有し、かつ第
2図から明らかなように、内筒金具2の軸方向に
(ブツシユ軸線に沿つて)長く沿びている。その
軸方向における流体室8および10の一方の端部
はゴムスリーブ6内において行き止まり形態とさ
れているが、他方の端部はゴムスリーブ6の一端
面に開口させられている。
In FIGS. 1 and 2, 2 is a cylindrical inner tube fitting, and a cylindrical outer tube fitting 4, which functions as an outer tube member, is provided on the outside of this metal fitting 2, which functions as an inner tube member. They are placed concentrically and spaced apart. And those inner cylinder fittings 2 and outer cylinder fittings 4
An annular rubber sleeve 6 is fixed and interposed between the two by known vulcanization molding. As is clear from FIG. 1, this rubber sleeve 6, which functions as an elastic member, has a pair of fluid chambers 8 and 10 formed at symmetrical positions with respect to the center line (bush axis) of the inner cylinder fitting 2. . These fluid chambers 8 and 10 have an arcuate cross-sectional shape centered on the center line of the rubber sleeve 6, and as is clear from FIG. long) One end of the fluid chambers 8 and 10 in the axial direction is a dead end within the rubber sleeve 6, while the other end is opened at one end surface of the rubber sleeve 6.

そして、ゴムスリーブ6の流体室8および10
が開口させられている側の端面には、扁平な有底
円筒形状の固着プレート12がそれの底部におい
て固着されている。この固着プレート12はゴム
スリーブ6とほぼ同じ径を有し、その底部に形成
された中心穴において内筒金具2の一端部に同心
的に嵌合された状態で、公知の加硫接着により、
ゴムスリーブ6と一体化されている。また、この
固着プレート12の底壁部には、流体室8および
10の開口に対応する形状の貫通孔14が対応す
る位置に形成されており、本実施例においては、
それら貫通孔14が流体室8および10の開口を
形成していて、そのためゴムスリーブ6の弾性変
形に拘らず、当該開口の開口面積が常に一定に保
たれるようになつている。
and fluid chambers 8 and 10 of the rubber sleeve 6.
A flat bottomed cylindrical fixing plate 12 is fixed at the bottom of the open end face. This fixing plate 12 has approximately the same diameter as the rubber sleeve 6, and is fitted concentrically to one end of the inner cylindrical metal fitting 2 in a center hole formed at its bottom, using known vulcanization bonding.
It is integrated with the rubber sleeve 6. Furthermore, through holes 14 having shapes corresponding to the openings of the fluid chambers 8 and 10 are formed in the bottom wall portion of the fixing plate 12 at positions corresponding to the openings of the fluid chambers 8 and 10.
These through holes 14 form the openings of the fluid chambers 8 and 10, and therefore, regardless of the elastic deformation of the rubber sleeve 6, the opening area of the openings is always kept constant.

固着プレート12の内面には、貫通孔14の部
分を除いた全体にわたつて薄いゴム層16が被着
されており、それの円筒状部の内面には、円環状
のスペーサプレート18が固着プレート12の底
壁部に密着する状態で、かつ内筒金具2の一端部
に嵌合された状態で配置されている。このスペー
サプレート18は第一部材として機能するもので
あつて、金属あるいは樹脂等の弾性変形しにくい
材料からなり、第4図から明らかなように、中心
線に関して対称な位置に、円弧状の窓部20およ
び22が板厚方向に貫通して形成されている。こ
れら窓部20および22は、第2図から明らかな
ように、固着プレート12の各貫通孔14、言い
換えれば流体室8および10の開口に対応する位
置に、それよりやや大きな相似形状で形成され、
貫通孔14の開口周縁部に内筒金具2の軸心に直
角な段付面を構成している。
A thin rubber layer 16 is adhered to the entire inner surface of the fixing plate 12 except for the portion of the through hole 14, and an annular spacer plate 18 is attached to the inner surface of the cylindrical portion of the fixing plate 12. 12 and is disposed in a state in which it is in close contact with the bottom wall portion of the inner cylinder fitting 2 and in a state in which it is fitted into one end portion of the inner cylinder fitting 2. This spacer plate 18 functions as a first member and is made of a material that does not easily deform elastically, such as metal or resin.As is clear from FIG. Portions 20 and 22 are formed to penetrate in the thickness direction. As is clear from FIG. 2, these windows 20 and 22 are formed in similar shapes that are slightly larger than the respective through holes 14 of the fixing plate 12, in other words, at positions corresponding to the openings of the fluid chambers 8 and 10. ,
A stepped surface perpendicular to the axis of the inner cylindrical fitting 2 is formed on the opening periphery of the through hole 14 .

このスペーサプレート18の外側面には、固着
プレート12の底部との間でスペーサプレート1
8を挟み付ける状態で、金属製の溝付プレート2
4が配置されている。この溝付プレート24は、
その外周縁部が固着プレート12の円筒状部の内
側に嵌め込まれる一方、中心孔部が内筒金具2の
一端部に嵌め込まれた状態で、その一端部が拡径
方向にかしめられるとともに、固着プレート12
の先端外周縁部が内向きにかしめられることによ
り、スペーサプレート18を挟んで固着プレート
12と一体化されており、それら三つのプレート
12,18および24間の液密は前記ゴム層16
によつて保たれている。
The outer surface of this spacer plate 18 has a spacer plate 1 between it and the bottom of the fixing plate 12.
8, hold the metal grooved plate 2
4 is placed. This grooved plate 24 is
Its outer peripheral edge is fitted inside the cylindrical part of the fixing plate 12, while its center hole is fitted into one end of the inner cylindrical metal fitting 2, and the one end is caulked in the direction of diameter expansion, and fixed. plate 12
By caulking the outer peripheral edge of the tip inward, it is integrated with the fixed plate 12 with the spacer plate 18 in between, and the liquid tightness between the three plates 12, 18 and 24 is maintained by the rubber layer 16.
It is maintained by.

溝付プレート24は、スペーサプレート18の
窓部20および22を固着プレート12の各貫通
孔14とは反対側から塞いでいるが、そのスペー
サプレート18の外側面に合わされた面には、双
方の窓部20および22を通る円周に沿つて環状
溝26が形成されており、この環状溝26がスペ
ーサプレート18の外側面により覆蓋されること
によつて、窓部20および22を連通させる連通
路28が形成されている。すなわち、本実施例で
は、第一部材として機能するスペーサプレート1
8と第二部材として機能する溝付プレート24と
の合わせ面に、窓部20および22を経て、前記
二つの流体室8と10とを相互に連通せしめる連
通路28が構成されているのである。
The grooved plate 24 closes the windows 20 and 22 of the spacer plate 18 from the side opposite to each through hole 14 of the fixing plate 12, but the surface that is aligned with the outer surface of the spacer plate 18 has a groove on both sides. An annular groove 26 is formed along the circumference passing through the windows 20 and 22, and this annular groove 26 is covered by the outer surface of the spacer plate 18, thereby providing communication between the windows 20 and 22. A passage 28 is formed. That is, in this embodiment, the spacer plate 1 functioning as the first member
8 and a grooved plate 24 functioning as a second member, a communication passage 28 is formed that allows the two fluid chambers 8 and 10 to communicate with each other through the windows 20 and 22. .

それら流体室8および10内には、例えば、水
あるいはポリアルキレングリコール等の非圧縮性
流体がそれぞれ封入されており、上記連通路28
を介して、両流体室8および10内の非圧縮性流
体が一方から他方へ、また他方から一方へ流通す
ることが許容されている。
The fluid chambers 8 and 10 are each filled with an incompressible fluid such as water or polyalkylene glycol.
allows the incompressible fluid in both fluid chambers 8 and 10 to flow from one to the other and from the other to one.

上記スペーサプレート18の窓部20および2
2は、連通路28と流体室8および10との接続
部分にそれぞれ相当する。そのうち、流体室8と
連通路28との接続部分となる一方の窓部20内
には、第4図に示されるような円弧板状の可動片
30が収容されている。
Windows 20 and 2 of the spacer plate 18
Reference numerals 2 correspond to connecting portions between the communication path 28 and the fluid chambers 8 and 10, respectively. A movable piece 30 in the shape of an arc plate as shown in FIG. 4 is accommodated in one of the window portions 20 that connects the fluid chamber 8 and the communication path 28. As shown in FIG.

可動部材として機能するこの可動片30は、金
属または樹脂、もしくはゴム等の弾性体から成る
ものであつて、スペーサプレート18より薄い厚
みで、かつ窓部20よりやや小さな相似形に形成
されており、流体室8の開口となる前記貫通孔1
4の開口周縁部に着座して、その貫通孔14を塞
ぎ得る大きさを有している。また、この可動片3
0は、内筒金具2の軸方向に貫通孔14の開口周
縁部と前記溝付プレート24の内側面との間で浮
動状態に保たれており、その貫通孔14を閉塞す
る位置と、それから浮き上がつて閉塞しない位置
との間で移動可能とされている。
This movable piece 30, which functions as a movable member, is made of an elastic body such as metal, resin, or rubber, and is thinner than the spacer plate 18 and has a similar shape that is slightly smaller than the window portion 20. , the through hole 1 serving as the opening of the fluid chamber 8
It has a size that allows it to sit on the peripheral edge of the opening of the hole 4 and close the through hole 14 thereof. Also, this movable piece 3
0 is maintained in a floating state in the axial direction of the inner cylinder fitting 2 between the opening periphery of the through hole 14 and the inner surface of the grooved plate 24, and is located at a position where the through hole 14 is closed and then It is said that it can be moved between a position where it floats up and does not become blocked.

可動片30が貫通孔14の開口周縁部に着座し
てそこを閉塞する状態では、流体室8と連通路2
8との連通を遮断することとなるが、この可動片
30には、貫通孔14に臨む部位に、板厚方向に
貫通する連通孔32が形成されている。この連通
孔32は、上記連通路28の流通断面積より小さ
い流通断面積をもつて流体室8と連通路28とを
連通させるものであり、可動片30が貫通孔14
の開口周縁部に着座する時には、その連通孔32
の断面積がオリフイス断面積となり、着座せずに
窓部20を経て流体室8と連通路28との連通を
許容するときには、連通路28の断面積がオリフ
イス断面積となるのである。なお、可動片30が
溝付プレート24の内側面に当接した状態におい
ても、可動片30が窓部20より小さいため、流
体室8と連通路28との連通は、窓部20の周壁
面と可動片30の外周面との間の隙間を経て許容
される。
When the movable piece 30 is seated on the peripheral edge of the opening of the through hole 14 and closes it, the fluid chamber 8 and the communication path 2 are closed.
8, this movable piece 30 is formed with a communication hole 32 that penetrates in the thickness direction at a portion facing the through hole 14. The communication hole 32 communicates the fluid chamber 8 and the communication path 28 with a flow cross-sectional area smaller than the flow cross-section area of the communication path 28, and the movable piece 30 communicates with the through-hole 14.
When sitting on the periphery of the opening, the communication hole 32
The cross-sectional area of the orifice becomes the cross-sectional area of the orifice, and when the fluid chamber 8 and the communicating passage 28 are allowed to communicate with each other through the window portion 20 without being seated, the cross-sectional area of the communicating passage 28 becomes the orifice cross-sectional area. Note that even when the movable piece 30 is in contact with the inner surface of the grooved plate 24 , since the movable piece 30 is smaller than the window portion 20 , communication between the fluid chamber 8 and the communication path 28 is limited to the peripheral wall surface of the window portion 20 . and the outer circumferential surface of the movable piece 30.

このような流体入りブツシユ34は、例えば次
のような工程に従つて製作されることとなる。
Such a fluid-filled bush 34 is manufactured, for example, according to the following steps.

先ず、内筒金具2と外筒金具4とを所定の金型
内に同心的に配置する。なお、内筒金具2の一端
部には、固着プレート16をかしめない状態で嵌
合しておく。そのような内筒金具2と外筒金具4
と固着プレート12との間にゴム材料を充填し
て、流体室8および10を備えたゴムスリーブ6
を加硫成形し、同時に、それら内筒金具2,外筒
金具4および固着プレート12に加硫接着する。
また、固着プレート12の内側面にシール用のゴ
ム層16を加硫成形する。
First, the inner cylindrical metal fitting 2 and the outer cylindrical metal fitting 4 are placed concentrically in a predetermined mold. Note that the fixing plate 16 is fitted into one end of the inner cylinder fitting 2 without being caulked. Such an inner tube fitting 2 and an outer tube fitting 4
A rubber sleeve 6 having fluid chambers 8 and 10 is filled with a rubber material between the fixing plate 12 and the fixing plate 12.
is vulcanized and bonded to the inner cylindrical fitting 2, outer cylindrical fitting 4, and fixing plate 12 at the same time.
Further, a rubber layer 16 for sealing is vulcanized and molded on the inner surface of the fixing plate 12.

次いで、そのようにして得られた、第3図に示
されるようなブツシユアツセンブリ36を、前述
のような非圧縮性流体が収容された液槽内に浸漬
した状態で、そのブツシユアツセンブリ36に、
スペーサプレート18,可動片30および溝付プ
レート24を順次組み付け、かつ内筒金具2と固
着プレート12とをかしめ加工する。それによつ
て流体室8および10に前記非圧縮性流体が封入
されるとともに、固着プレート12とスペーサプ
レート18および溝付プレート24とが一体化さ
れ、かつ窓部20内に可動片30が収容されて、
第1図および第2図に示されるような流体入りブ
ツシユ34が完成するのである。なお、例えば外
筒金具4を縮径加工して、ゴムスリーブ6に予備
圧縮を加えることが、それの耐久性を高める上で
有効である。
Next, the thus obtained bushing assembly 36 as shown in FIG. 3 is immersed in a liquid tank containing the above-mentioned incompressible fluid. Assembly 36,
The spacer plate 18, movable piece 30, and grooved plate 24 are assembled in sequence, and the inner cylindrical metal fitting 2 and fixed plate 12 are caulked. As a result, the incompressible fluid is sealed in the fluid chambers 8 and 10, the fixed plate 12, the spacer plate 18, and the grooved plate 24 are integrated, and the movable piece 30 is accommodated within the window portion 20. hand,
The result is a fluid-filled bush 34 as shown in FIGS. 1 and 2. Note that, for example, reducing the diameter of the outer cylindrical fitting 4 and applying preliminary compression to the rubber sleeve 6 is effective in increasing its durability.

このような流体入りブツシユ34は、例えば、
自動車の懸架装置におけるサスペンシヨンブツシ
ユとして好適に用いることができる。その場合、
外筒金具4がコントロールアームのアーム・アイ
(ボス部)内に嵌合される一方、内筒金具2内に、
車体もしくは車輪側の軸が挿入されるとともに、
一対の流体室8および10が、主な振動荷重を受
ける方向に対向をさせられた状態で使用されるこ
ととなる。
Such a fluid-filled bush 34 is, for example,
It can be suitably used as a suspension bush in an automobile suspension system. In that case,
The outer cylindrical metal fitting 4 is fitted into the arm eye (boss part) of the control arm, while the inner cylindrical metal fitting 2 has a
As the axle for the vehicle body or wheel side is inserted,
The pair of fluid chambers 8 and 10 are used in a state where they face each other in the direction in which they receive the main vibration load.

そして、低周波で大きな振幅の振動荷重が作用
した場合には、ゴムスリーブ6の弾性変形に伴
い、両流体室8および10の一方の容積が減少し
て他方の容積が増大することにより、例えば、容
積が減少した流体室8から非圧縮性流体が流出
し、連通路28を経て容積が増大した流体室10
に流入する方向に流通する。また容積の減少側と
増大側が入れ換われば、上記とは逆向きに流体が
流通して、以後そのような挙動が繰り返されるこ
ととなる。その際、流体室8の側に設けられてい
る可動片30は、流体室8から流体が流出すると
きには溝付きプレート24の側に押しやられる
が、流体室8に流体が流入するときには貫通孔1
4の開口周縁部に着座してそこを閉塞し、その結
果、可動片30の連通孔32を通じて流体の流入
が行われる。それ故、大きな変位をもたらす低周
波振動の作用時には、連通路28より流通断面積
の小さな連通孔32を流体が流通する際の流通抵
抗により、低周波振動に対する大きな減衰機能が
得られて、そのような振動を効果的に減衰するこ
とができるのである。
When a vibration load of low frequency and large amplitude is applied, the elastic deformation of the rubber sleeve 6 causes the volume of one of the fluid chambers 8 and 10 to decrease and the volume of the other to increase, for example. , the incompressible fluid flows out from the fluid chamber 8 whose volume has decreased, and flows through the communication path 28 to the fluid chamber 10 whose volume has increased.
It flows in the direction of the flow. Furthermore, if the volume decreasing side and volume increasing side are switched, the fluid will flow in the opposite direction to the above, and such behavior will be repeated thereafter. At this time, the movable piece 30 provided on the fluid chamber 8 side is pushed toward the grooved plate 24 side when the fluid flows out from the fluid chamber 8, but when the fluid flows into the fluid chamber 8, the movable piece 30 is pushed toward the grooved plate 24 side.
4 and closes the opening periphery of the movable piece 30. As a result, fluid flows in through the communication hole 32 of the movable piece 30. Therefore, when low-frequency vibrations that cause large displacements act, the flow resistance when the fluid flows through the communication holes 32, which have a smaller flow cross-sectional area than the communication passages 28, provides a large damping function against the low-frequency vibrations. Such vibrations can be effectively damped.

一方、高周波域の振動が作用した場合には、ゴ
ムスリーブ6の弾性変形量ならびに非圧縮性流体
の流通量が少なく、可動片30に加えられる力も
小さいため、可動片30は窓部20内において浮
動状態に保たれ、貫通孔14の開口周縁部を塞ぐ
には至らない。したがつて、高周波振動の入力時
には、低周波振動の入力時と比較して非圧縮性流
体の有効流通断面積が、連通孔32より大きな断
面積の連通路28の断面積に変換されることとな
り、そのため、高周波領域において、低い動ばね
定数、言い換えれば高周波振動を吸収するのに好
ましいばね特性が得られるのである。
On the other hand, when vibrations in the high frequency range act, the amount of elastic deformation of the rubber sleeve 6 and the amount of flow of incompressible fluid are small, and the force applied to the movable piece 30 is also small, so the movable piece 30 does not move inside the window part 20. It is kept in a floating state and does not close the opening periphery of the through hole 14. Therefore, when high-frequency vibrations are input, the effective flow cross-sectional area of the incompressible fluid is converted to the cross-sectional area of the communication passage 28, which has a larger cross-sectional area than the communication hole 32, compared to when low-frequency vibration is input. Therefore, in the high frequency range, a low dynamic spring constant, in other words, a spring characteristic suitable for absorbing high frequency vibrations can be obtained.

このように、流体室8と10とを連通させるオ
リフイス断面積が、低周波域では小さく、また高
周波域では大きくなるため、従来では困難とされ
ていた低周波域での高減衰特性と高周波域での低
動ばね定数とを両立させることが可能となつたの
である。
In this way, the cross-sectional area of the orifice that communicates the fluid chambers 8 and 10 is small in the low frequency range and large in the high frequency range, so it is possible to achieve high attenuation characteristics in the low frequency range and high frequency range, which were previously considered difficult. This made it possible to achieve both a low dynamic spring constant and a low dynamic spring constant.

ところで、以上説明した実施例においては、ス
ペーサプレート18の窓部20,22のうち、窓
部20の側にのみ可動片30が収容されていた
が、窓部20および22の双方にそれぞれ可動片
30を配設するようにすることも可能である。そ
のようにすれば、低周波振動域において、振幅の
山部と谷部との双方に対して、可動片30の連通
孔32がオリフイス作用を果たすこととなるた
め、より効果的な高減衰特性が得られる。
Incidentally, in the embodiment described above, the movable piece 30 was housed only on the side of the window 20 among the windows 20 and 22 of the spacer plate 18, but the movable piece 30 was housed in both the windows 20 and 22, respectively. It is also possible to arrange 30. In this way, in the low frequency vibration range, the communication hole 32 of the movable piece 30 will act as an orifice for both the peaks and troughs of the amplitude, resulting in more effective high damping characteristics. is obtained.

もつとも、可動片30が流体室8に流入する非
圧縮性流体によつて流体室8の開口を塞ぐ位置に
移動させられるのみならず、流体室8から流出す
る非圧縮性流体によつて反対側に移動させられた
とき、流体室8と連通路28とを連通孔32のみ
を介して連通させられる構成とすれば、1個の可
動片30を設けるだけでも、双方の窓部20,2
2にそれぞれ可動片30を設けたのと実質的に同
様な効果が得られる。その場合、可動片30の中
立の位置が非遮断位置であり、それを中間として
上記両側に移動した位置がそれぞれ遮断位置とな
る。
However, the movable piece 30 is not only moved to a position where it closes the opening of the fluid chamber 8 by the incompressible fluid flowing into the fluid chamber 8, but also moved by the incompressible fluid flowing out from the fluid chamber 8 to the opposite side. If the configuration is such that the fluid chamber 8 and the communication path 28 are communicated only through the communication hole 32 when the fluid chamber 8 is moved to the position shown in FIG.
Substantially the same effect as when the movable pieces 30 are provided in each of the two parts can be obtained. In that case, the neutral position of the movable piece 30 is the non-blocking position, and the positions moved to both sides of the neutral position are respectively blocking positions.

また上記実施例では、可動片30を収容する空
所がスペーサプレート18によつて形成され、ま
た可動片30が着座する段付面が、固着プレート
12によつて形成されていたが、ゴムスリーブ6
の流体室8が開口する側の端部に、そのような段
付面ならびに可動片30を収容する空間を構成
し、その空間の開口部を外側から適宜の板部材に
よつて塞ぐように構成することも可能である。
Further, in the above embodiment, the space for accommodating the movable piece 30 is formed by the spacer plate 18, and the stepped surface on which the movable piece 30 is seated is formed by the fixed plate 12, but the rubber 6
A space for accommodating such a stepped surface and the movable piece 30 is formed at the end of the side where the fluid chamber 8 opens, and the opening of the space is closed from the outside with a suitable plate member. It is also possible to do so.

また、可動片30に、複数の連通孔32を、そ
れらの断面積の総和が連通路28の断面積より小
さい範囲で形成することも可能であるし、あるい
は連通孔32ではなく、可動片30の外周縁から
内部に入り込む切欠またはスリツト等を形成し
て、連通部として機能させるようにすることもで
きる。なお、可動部材としては、板状の小片に限
らず、例えば、孔付の球状体などの採用も可能で
ある。
Furthermore, it is also possible to form a plurality of communication holes 32 in the movable piece 30 in a range where the sum of their cross-sectional areas is smaller than the cross-sectional area of the communication path 28, or alternatively, instead of the communication holes 32, a plurality of communication holes 32 can be formed in the movable piece 30. It is also possible to form a notch or slit that enters the inside from the outer peripheral edge of the tube to function as a communication section. Note that the movable member is not limited to a small plate-like piece, and for example, a spherical body with a hole can also be employed.

さらに、流体室は2個を対称位置に設ける以外
に、その数を増やすこともできる。また、本発明
は、サスペンシヨンブツシユ以外に、他の防振支
持体としての流体入りブツシユに適用することも
可能であり、その他にも、本発明の趣旨を逸脱し
ない限りにおいて、当業者の知識に基づき種々な
る変更、改良、組合せ等を施した態様で、本発明
を実施し得ることは、改めて言うまでもないとこ
ろである。
Furthermore, instead of providing two fluid chambers at symmetrical positions, the number of fluid chambers can be increased. In addition to suspension bushes, the present invention can also be applied to fluid-filled bushes as other anti-vibration supports. It goes without saying that the present invention can be practiced with various changes, improvements, combinations, etc. based on knowledge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である流体入りブツ
シユの一部を切り欠いて示す正面図であり、第2
図は第1図における−断面図である。第3図
は第1図および第2図に示される流体入りブツシ
ユの製造工程で得られるブツシユアツセンブリの
断面図である。第4図は第3図に示すブツシユア
ツセンブリに主要構成部材を組み付ける状態を示
す分解斜視図である。 2……内筒金具(内筒部材)、4……外筒金具
(外筒部材)、6……ゴムスリーブ(弾性体)、8,
10……流体室、12……固着プレート、14…
…貫通孔、18……スペーサプレート(第1部
材)、20,22……窓部、24……溝付プレー
ト(第2部材)、26……環状溝、28……連通
路、30……可動片(可動部材)、32……連通
孔(連通部)、34……流体入りブツシユ。
FIG. 1 is a partially cutaway front view of a fluid-filled bushing according to an embodiment of the present invention;
The figure is a - sectional view in FIG. 1. FIG. 3 is a sectional view of a bush assembly obtained in the process of manufacturing the fluid-filled bush shown in FIGS. 1 and 2. FIG. FIG. 4 is an exploded perspective view showing how the main components are assembled to the bush assembly shown in FIG. 3. FIG. 2... Inner tube fitting (inner tube member), 4... Outer tube fitting (outer tube member), 6... Rubber sleeve (elastic body), 8,
10...Fluid chamber, 12...Fixing plate, 14...
...Through hole, 18... Spacer plate (first member), 20, 22... Window portion, 24... Grooved plate (second member), 26... Annular groove, 28... Communication path, 30... Movable piece (movable member), 32... communicating hole (communicating part), 34... fluid filled bush.

Claims (1)

【特許請求の範囲】 1 内筒部材と外筒部材との間に介装されたゴム
またはその類似物からなる弾性体を備えるととも
に、該弾性体に所定の非圧縮流体が封入される複
数の流体室が形成され、かつ該複数の流体室が連
通路により相互に連通させられた構造の流体入り
ブツシユにおいて、 前記複数の流体室を、ブツシユ軸線に沿つて延
びるように且つ前記弾性体の軸方向の一端部に開
口するように、それぞれ設けて、それら複数の流
体室をブツシユ軸線に対して対称的に配置せし
め、更にかかる弾性体の軸方向の一端部における
流体室の開口を接続するように、前記連通路を設
ける一方、 前記流体室の少なくとも一つと前記連通路との
接続部分に、前記開口の閉塞による該流体室と該
連通路との連通を遮断する位置と前記開口を閉塞
しないことによる該流体室と該連通路との連通を
遮断しない位置との間で、前記弾性体の軸方向に
移動可能な可動部材を設けるとともに、該可動部
材に、前記連通路の流通断面積より小さな流通断
面積をもつて該連通路と前記流体室とを連通させ
る連通部を形成したことを特徴とする流体入りブ
ツシユ。 2 前記流体室が、前記弾性体の軸方向の一端部
に開口を備える一方、該開口に対応してそれより
大きい窓部を有する第一部材が該弾性体の該開口
側の端部に液密に配置されるとともに、該窓部内
に前記可動部材が前記流体室の開口周縁部に着座
し得る状態で収容され、かつ前記第一部材の外側
に第二部材が液密に配置されて、それら第一部材
と第二部材との合わせ面に前記連通路が形成され
ている特許請求の範囲第1項記載の流体入りブツ
シユ。 3 前記可動部材が板状の部材であつて、前記連
通路が該板状の可動部材を板厚方向に貫通する連
通孔である特許請求の範囲第1項又は第2項に記
載の流体入りブツシユ。
[Scope of Claims] 1. An elastic body made of rubber or its analog is interposed between an inner cylinder member and an outer cylinder member, and a plurality of elastic bodies in which a predetermined incompressible fluid is sealed. In a fluid-filled bush having a structure in which a fluid chamber is formed and the plurality of fluid chambers are communicated with each other by a communication passage, the plurality of fluid chambers are arranged so as to extend along the axis of the bush and along the axis of the elastic body. The plurality of fluid chambers are arranged symmetrically with respect to the bush axis by opening at one end in the axial direction, and further, the openings of the fluid chambers at one end in the axial direction of the elastic body are connected. , the communication passage is provided, and at a connecting portion between at least one of the fluid chambers and the communication passage, there is a position where communication between the fluid chamber and the communication passage is cut off by closing the opening, and a position where the opening is not blocked. A movable member movable in the axial direction of the elastic body is provided between a position where communication between the fluid chamber and the communication path is not interrupted, and the movable member is provided with a movable member that is movable in the axial direction of the elastic body. A fluid-filled bushing characterized in that a communication portion having a small flow cross-sectional area for communicating the communication path and the fluid chamber is formed. 2. The fluid chamber has an opening at one end in the axial direction of the elastic body, and a first member having a larger window corresponding to the opening is configured to inject liquid into the end of the elastic body on the opening side. the movable member is housed in the window in a state where it can be seated on the periphery of the opening of the fluid chamber, and the second member is disposed liquid-tightly outside the first member; 2. The fluid-filled bushing according to claim 1, wherein the communication passage is formed in the mating surfaces of the first member and the second member. 3. The fluid-filled fluid according to claim 1 or 2, wherein the movable member is a plate-shaped member, and the communication path is a communication hole passing through the plate-shaped movable member in the thickness direction. Butsuyuu.
JP19789083A 1983-10-21 1983-10-21 Fluid-filled bush Granted JPS6088242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19789083A JPS6088242A (en) 1983-10-21 1983-10-21 Fluid-filled bush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19789083A JPS6088242A (en) 1983-10-21 1983-10-21 Fluid-filled bush

Publications (2)

Publication Number Publication Date
JPS6088242A JPS6088242A (en) 1985-05-18
JPH0470497B2 true JPH0470497B2 (en) 1992-11-11

Family

ID=16381990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19789083A Granted JPS6088242A (en) 1983-10-21 1983-10-21 Fluid-filled bush

Country Status (1)

Country Link
JP (1) JPS6088242A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2599450B1 (en) * 1986-06-03 1990-08-10 Hutchinson IMPROVEMENTS ON HYDRAULIC ANTI-VIBRATION SUPPORT SLEEVES
DE3639190A1 (en) * 1986-11-15 1988-05-26 Freudenberg Carl Fa TURN VIBRATION DAMPER
FR2616868B1 (en) * 1987-06-19 1989-10-27 Hutchinson IMPROVEMENTS ON HYDRAULIC ANTI-VIBRATION SUPPORT SLEEVES
FR2697603B1 (en) * 1992-10-30 1995-01-06 Hutchinson Improvements to hydraulic anti-vibration supports.
GB2342977A (en) * 1998-10-23 2000-04-26 Draftex Ind Ltd Hydroelastic engine mount
FR2926865A1 (en) * 2008-01-29 2009-07-31 Michelin Soc Tech Cylindrical hydro-elastic articulation for e.g. assembling parts of effort transmission structure of motor vehicle, has armature/cage and sleeve formed as single piece, and two axial openings communicated with chambers via channel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143830A (en) * 1980-04-10 1981-11-09 Bridgestone Corp Vibration proofing bush and manufacture thereof
JPS56160220A (en) * 1980-05-16 1981-12-09 Nissan Motor Co Ltd Engine mount arrangement with damper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143830A (en) * 1980-04-10 1981-11-09 Bridgestone Corp Vibration proofing bush and manufacture thereof
JPS56160220A (en) * 1980-05-16 1981-12-09 Nissan Motor Co Ltd Engine mount arrangement with damper

Also Published As

Publication number Publication date
JPS6088242A (en) 1985-05-18

Similar Documents

Publication Publication Date Title
US7334783B2 (en) Fluid filled vibration damping device
US5145156A (en) Fluid-filled elastic mount having two differently tuned orifices selectively utilized for damping or isolating vibrations in different frequency ranges
JPH0430442Y2 (en)
JPH0229898B2 (en)
JPH0689806B2 (en) Anti-vibration device
JP2006064119A (en) Fluid sealed-type vibration control device
JPS61206838A (en) Bush assembling body with fluid
JPS60179542A (en) Liquid containing bushing
JPH08177945A (en) Fluid sealing type cylindrical vibration proof device
JPH028173B2 (en)
JPH024817B2 (en)
JPH0470497B2 (en)
JP3039102B2 (en) Fluid-filled mounting device
JPS60245849A (en) Fluid-sealed type vibrationproof assembly body
JPS60113836A (en) Mount filled with fluid
US5547173A (en) Fluid-filled cylindrical elastic mount having three fluid chambers and three orifices, with one valve means provided in one orifice
JPS60168932A (en) Mount encapsulated with fluid
JPH0143854B2 (en)
JP3570278B2 (en) Fluid-filled vibration isolator
JP3603653B2 (en) Fluid-filled anti-vibration device
JPH0266335A (en) Cylinder-formed liquid sealing vibrationproofing mount
JP3846328B2 (en) Fluid filled vibration isolator
JPH02240430A (en) Fluid sealed type tubular mount device
JPH0645073Y2 (en) Fluid filled tubular mount assembly
JPH02209646A (en) Mount having fluid therein