JPS61206838A - Bush assembling body with fluid - Google Patents
Bush assembling body with fluidInfo
- Publication number
- JPS61206838A JPS61206838A JP60045171A JP4517185A JPS61206838A JP S61206838 A JPS61206838 A JP S61206838A JP 60045171 A JP60045171 A JP 60045171A JP 4517185 A JP4517185 A JP 4517185A JP S61206838 A JPS61206838 A JP S61206838A
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- movable plate
- rubber elastic
- bushing assembly
- elastic body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 124
- 238000004891 communication Methods 0.000 claims abstract description 43
- 239000002184 metal Substances 0.000 claims abstract description 35
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 238000000465 moulding Methods 0.000 claims description 6
- 238000004073 vulcanization Methods 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 abstract description 10
- 238000013016 damping Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 230000005284 excitation Effects 0.000 description 5
- 230000005489 elastic deformation Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- -1 alkylene glycol Chemical compound 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010058 rubber compounding Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F13/00—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
- F16F13/04—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
- F16F13/06—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
- F16F13/08—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
- F16F13/14—Units of the bushing type, i.e. loaded predominantly radially
- F16F13/1427—Units of the bushing type, i.e. loaded predominantly radially characterised by features of flexible walls of equilibration chambers; decoupling or self-tuning means
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combined Devices Of Dampers And Springs (AREA)
- Body Structure For Vehicles (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明は、ゴム弾性体の弾性変形と流体の流通抵抗とに
基づいて防振作用を果たす流体入りブツシュ組立体に係
り、特に流体による減衰機能を振動特性に応じて変化さ
せることのできる、ブツシュタイプの流体封入式防振支
持体に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a fluid-filled bushing assembly that achieves a vibration damping effect based on the elastic deformation of a rubber elastic body and fluid flow resistance, and particularly relates to a fluid-filled bushing assembly that achieves a vibration damping effect based on the elastic deformation of a rubber elastic body and the flow resistance of a fluid. This invention relates to a bush-type fluid-filled vibration damping support that can be changed according to its characteristics.
(従来技術)
自動車などの車両のサスペンションに用いられる防振支
持体の一種に、所定の取付軸に取り付けられて、主とし
てその軸方向の振動を減衰乃至は遮断するようにした防
振組立体がある。例えば、自動車のボディマウント乃至
はキャブマウント或いはメンバーマウントやストラット
バー・クッション等に用いられる防振支持体がそれであ
る。近年、そのような防振支持体の一つとして、ゴムの
弾性変形に基づく振動絶縁作用と流体の流通抵抗に基づ
く振動減衰作用との双方を組み合わせた流体入りブツシ
ュが明らかにされ、例えば特公昭48−36151号公
報や特公昭52−16554号公報等には、内筒部材と
外筒部材との間に円筒状のゴム弾性体が介装せしめられ
ると共に、そのゴム弾性体に、所定の非圧縮性流体がそ
れぞれ封入された第一の流体室及び第二の流体室が形成
され、且つそれら流体室間を、非圧縮性流体が相互に流
通せしめられ得るようにされた構造のものが提案されて
いる。(Prior Art) A type of anti-vibration support used in the suspension of vehicles such as automobiles includes an anti-vibration assembly which is attached to a predetermined mounting shaft and mainly damps or blocks vibrations in the axial direction. be. For example, vibration-proof supports used in automobile body mounts, cab mounts, member mounts, strut bars, cushions, etc. are examples. In recent years, a fluid-filled bushing has been revealed as one such vibration-proofing support that combines both a vibration-insulating effect based on the elastic deformation of rubber and a vibration-damping effect based on the flow resistance of the fluid. 48-36151, Japanese Patent Publication No. 52-16554, etc., a cylindrical rubber elastic body is interposed between an inner cylindrical member and an outer cylindrical member, and the rubber elastic body is provided with a predetermined non-resistance. A structure is proposed in which a first fluid chamber and a second fluid chamber are formed, each of which is filled with a compressible fluid, and in which an incompressible fluid can mutually flow between the fluid chambers. has been done.
(問 題 点)
ところで、この種のブツシュには、それが適用される場
所に応じて、一般に、低周波数で大変位をもたらす加振
力に対しては、大きな減衰作用を発揮することが要求さ
れると共に、高周波数で小変位の加振力に対しては、低
い動バネ定数を発現することが要求されている。しかし
ながら、上剥の如き従来の流体入りブツシュにあっては
、第一の流体室と第二の流体室とを連通するオリフィス
溝断面積や長さが変わらない構造とされているために、
上記のような二つの要求を同時に満足させることは困難
であった。すなわち、低周波領域において減衰力がピー
クとなるようにオリフィスを選ぶと、高周波領域での動
バネ定数が高くなり、逆に高周波領域において動バネ定
数が低くなるようにオリフィスを選ぶと、低周波での減
衰性能が不充分となるからである。(Problem) By the way, this type of bushing is generally required to exhibit a large damping effect against excitation forces that cause large displacements at low frequencies, depending on the location where it is applied. At the same time, it is required to exhibit a low dynamic spring constant for excitation forces of high frequency and small displacement. However, in conventional fluid-filled bushings such as the upper part, the cross-sectional area and length of the orifice groove that communicates the first fluid chamber with the second fluid chamber remain unchanged.
It has been difficult to simultaneously satisfy the above two requirements. In other words, if the orifice is selected so that the damping force peaks in the low frequency range, the dynamic spring constant will be high in the high frequency range, and conversely, if the orifice is selected so that the dynamic spring constant is low in the high frequency range, the dynamic spring constant will be high in the high frequency range. This is because the damping performance will be insufficient.
一方、かかる内筒部材と外筒部材との間に円筒状のゴム
弾性体を介装せしめた構造のブツシュタイプの防振支持
体とは異なり、ブロック状のゴム体に所定の取付金具を
一体加硫成形にて固着せしめた構造のマウントタイプの
流体入り防振支持体として、特開昭53−5376号公
報や特開昭57−9340号公報等には、かかるゴムブ
ロック内に受圧室を設け、また該受圧室とは別個に平衡
室を設けると共に、それら画室をオリフィスでつないで
、所定の流通抵抗を生ぜしめるようにする一方、それら
受圧室と平衡室との間に、可動板を設けて該受圧室の圧
力上昇を回避せしめ、以てかかるゴムブロックのバネ定
数を効果的に利用するようにすることにより、低周波領
域での高減衰特性と高周波領域での低い動バネ定数とを
同時に満足し得る流体入りマウントが明らかにされてい
るが、そのような構造を、そのままブツシュタイプの防
振支持体に適用することは、構造上において極めて困難
である。On the other hand, unlike the bush type anti-vibration support, which has a structure in which a cylindrical rubber elastic body is interposed between the inner cylinder member and the outer cylinder member, the block-shaped rubber body is equipped with a predetermined mounting bracket. As a mount-type fluid-filled vibration damping support having a structure fixed by integral vulcanization molding, Japanese Patent Laid-Open No. 53-5376 and Japanese Patent Laid-Open No. 57-9340 disclose a pressure-receiving chamber in such a rubber block. In addition, an equilibrium chamber is provided separately from the pressure receiving chamber, and these compartments are connected by an orifice to produce a predetermined flow resistance, while a movable plate is provided between the pressure receiving chamber and the equilibrium chamber. By providing this to avoid pressure rise in the pressure receiving chamber and effectively utilizing the spring constant of the rubber block, high damping characteristics in the low frequency range and low dynamic spring constant in the high frequency range are achieved. Although a fluid-filled mount that satisfies the above requirements at the same time has been disclosed, it is structurally extremely difficult to apply such a structure as it is to a bush type anti-vibration support.
すなわち、ブツシュタイプの防振支持体においては、円
筒状のゴム弾性体が、内筒部材と外筒部材との間に介装
せしめられた構造となるところから、該ゴム弾性体の内
、外面が物理的に規制されることとなる、それ故上述の
マウントタイプの如き構造を採用しようとしても、スペ
ース的(構造的)に採用することは極めて困難となるの
である。That is, in the bush type vibration isolating support, since the cylindrical rubber elastic body is interposed between the inner cylinder member and the outer cylinder member, among the rubber elastic bodies, The outer surface is physically restricted, so even if a structure such as the above-mentioned mount type is to be adopted, it is extremely difficult to adopt it due to space (structural) considerations.
(解決手段)
ここにおいて、本発明は、かかる事情の下に為されたも
のであって、その特徴とするところは、一体加硫成形に
て外周面に所定の金属スリーブが一体的に固着せしめら
れ且つ該金属スリーブの周方向の所定位置に形成された
複数の窓部に対応して複数のポケット部がそれぞれ独立
に設けられた円筒状のゴム弾性体を、内筒部材の外側に
同心的に配すると共に、該ゴム弾性体に固着せしめた前
記金属スリーブの外周面に所定の外筒部材を圧入せしめ
て、該ゴム弾性体に設けられた前記ポケット部の開口を
該外筒部材にて覆蓋せしめることにより、それぞれ独立
した複数の流体室を形成し、且つそれら複数の流体室内
にそれぞれ所定の非圧縮性流体を封入せしめる一方、そ
れら流体室間を該非圧縮性流体が相互に流通し得るよう
に構成した流体入りブツシュ組立体において、該ゴム弾
性体内に所定のインタスリーブを同心的に埋設する一方
、前記複数の流体室の一方から他方に延びるように、前
記非圧縮性流体に対してそれぞれ異なる流通抵抗を与え
る第一及び第二の連通路を形成する円弧状のオリフィス
部材を、前記ゴム弾性体の外周部にその周方向に配設せ
しめて、相対的に大きな流通抵抗を与える前記第一の連
通路を通じて前記流体室間の非圧縮性流体の流通が許容
されるようにすると共に、相対的に小さな流通抵抗を与
える前記第二の連通路による流体室間の連通を遮断する
ように配置され、且つ前記流体室の一方の圧力変動に従
って他方の流体室側に所定距離だけ変位可能とされた可
動板を設けたことにある。(Solution Means) Here, the present invention was made under the above circumstances, and its feature is that a predetermined metal sleeve is integrally fixed to the outer peripheral surface by integral vulcanization molding. A cylindrical rubber elastic body having a plurality of independently provided pockets corresponding to a plurality of windows formed at predetermined positions in the circumferential direction of the metal sleeve is attached concentrically to the outside of the inner cylinder member. At the same time, a predetermined outer cylindrical member is press-fitted into the outer peripheral surface of the metal sleeve fixed to the rubber elastic body, and the opening of the pocket portion provided in the rubber elastic body is opened with the outer cylindrical member. By covering, a plurality of independent fluid chambers are formed, and a predetermined incompressible fluid is sealed in each of the plurality of fluid chambers, while the incompressible fluid can mutually flow between the fluid chambers. In the fluid-filled bushing assembly configured as above, a predetermined intersleeve is embedded concentrically within the rubber elastic body, while a predetermined intersleeve is provided with respect to the incompressible fluid so as to extend from one of the plurality of fluid chambers to the other. Arc-shaped orifice members forming first and second communicating passages that provide different flow resistances are disposed in the circumferential direction on the outer periphery of the rubber elastic body, thereby providing a relatively large flow resistance. The incompressible fluid is allowed to flow between the fluid chambers through the first communication path, and the communication between the fluid chambers is blocked through the second communication path, which provides relatively small flow resistance. The movable plate is disposed in the fluid chamber and is movable by a predetermined distance toward the other fluid chamber in response to pressure fluctuations in one of the fluid chambers.
そして、このような本発明によって、低周波領域での高
減衰特性と高周波領域での低い動バネ定数とを同時に満
足し得るブツシュタイプの流体入り防振支持体が有利に
提供され得ることとなったのである。Further, the present invention can advantageously provide a bush type fluid-filled vibration damping support that can simultaneously satisfy high damping characteristics in a low frequency range and a low dynamic spring constant in a high frequency range. It has become.
なお、かかる本発明において、好適には、円弧状のオリ
フィス部材は、前記金属スリーブを切り欠き且つ前記ゴ
ム弾性体の外周部を凹溝状に形成することによって前記
ポケット部間に跨がるように設けられた嵌装溝内に嵌め
込まれるとように構成されると共に、該オリフィス部材
の外周面に断面積の小なる第一のオリフィス溝と断面積
の大なる第二のオリフィス溝とが設けられて、それら第
一及び第二のオリフィス溝が、前記圧入される外筒部材
にて覆蓋せしめられることにより、それぞれ前記第一及
び第二の連通路が形成される構造が採用されることとな
る。In the present invention, it is preferable that the arc-shaped orifice member straddles between the pocket portions by cutting out the metal sleeve and forming the outer periphery of the rubber elastic body into a groove shape. A first orifice groove having a small cross-sectional area and a second orifice groove having a large cross-sectional area are provided on the outer peripheral surface of the orifice member. and the first and second orifice grooves are covered with the press-fitted outer cylindrical member, thereby forming the first and second communication passages, respectively. Become.
また、本発明の好ましい態様によれば、かかる円弧状の
オリフィス部材は、連通せしめられる前記流体室の一方
の室内に所定長さにおいて突入せしめられ、そしてその
突入部位に位置する前記第二の連通路部分に前記可動板
が設けられる構造が採用され、更には該オリフィス部材
の前記一方の流体室内に突入する側の端部において、前
記第二の連通路が行き止まり構造とされる一方、該オリ
フィス部材の突入部位の内面側に可動板収容ポケット部
が設けられ、且つ該可動板収容ポケット部に対して、前
記第二の連通路が該オリフィス部材を厚さ方向に貫通す
る貫通孔によって連通せしめられて、そこに収容された
可動板の一方の側の面に、該第二の連通路を介して伝達
される他方の流体室の圧力が作用せしめられるようにす
ると共に、該可動板の他方の面側には、前記一方の流体
室の圧力が作用せしめられるように構成される。Further, according to a preferred aspect of the present invention, the arc-shaped orifice member is made to protrude a predetermined length into one of the fluid chambers with which it is communicated, and the second communication member located at the protrusion portion. A structure is adopted in which the movable plate is provided in the passage portion, and furthermore, at the end of the orifice member on the side protruding into the one fluid chamber, the second communication passage has a dead end structure, while the orifice member has a dead end structure. A movable plate storage pocket is provided on the inner surface of the entry portion of the member, and the second communication path communicates with the movable plate storage pocket through a through hole that penetrates the orifice member in the thickness direction. so that the pressure of the other fluid chamber transmitted through the second communication path is applied to one side surface of the movable plate housed therein, and the other side of the movable plate is The pressure of the one fluid chamber is applied to the surface side of the fluid chamber.
(作用・効果)
従って、かくの如き構成の本発明に従う流体入りブツシ
ュ組立体において、低周波数で大変位をもたらす加振力
が作用せしめられる場合には、二つの流体室をつなぐよ
うに配設されたオリフィス部材にて形成される相対的に
小さな流通抵抗を与える連通路(第二)に設けられた可
動板が、一方の流体室の圧力の増大に伴って惹起される
非圧縮性流体の押圧作用により、所定距離変位(移動)
させられるが、それ以上になると、その連通路を非圧縮
性流体が流通するのを阻止し、その結果相対的に大きな
流通抵抗を与える他の連通路、即ち第一の連通路を介し
て、非圧縮性流体の流通が前記二つの流体室間において
行なわれることとなり、それによって、低周波数で大変
位をもたらす振動を有効に減衰することができるのであ
る。(Operation/Effect) Therefore, in the fluid-filled bushing assembly according to the present invention configured as described above, when an excitation force that causes a large displacement at a low frequency is applied, the two fluid chambers are arranged so as to connect. A movable plate provided in the communication passage (second) that provides relatively small flow resistance and is formed by the orifice member formed by Displacement (movement) by a predetermined distance due to pressure action
However, if the flow exceeds that point, the incompressible fluid is prevented from flowing through that communication path, and as a result, it passes through another communication path, that is, the first communication path, which provides a relatively large flow resistance. Incompressible fluid flows between the two fluid chambers, thereby effectively damping vibrations that cause large displacements at low frequencies.
一方、高周波数で小変位の加振力が作用した場合には、
それによって惹起される流体室内の圧力の変動に従って
、相対的に小さな流通抵抗を与える連通路を介して、そ
こに設けられた可動板に作用せしめられ、そしてかかる
可動板が所定距離移動せしめられ得るようになっている
ところから、それら二つの流体室内における圧力の増大
、ひいてはブツシュ組立体(防振支持体)全体としての
動バネ定数の増大が効果的に抑制されることとなり、こ
のため高周波振動が入力せしめられても、その有効な低
動バネ特性によって、効果的に該振動を遮断することが
できるのである。On the other hand, when a high frequency and small displacement excitation force is applied,
According to the fluctuations in pressure within the fluid chamber caused by this, the movable plate provided therein can be acted upon via a communication path that provides a relatively small flow resistance, and the movable plate can be moved a predetermined distance. As a result, the increase in pressure in these two fluid chambers and, in turn, the increase in the dynamic spring constant of the bushing assembly (vibration isolating support) as a whole are effectively suppressed. Even if vibrations are input, the effective low dynamic spring characteristics can effectively block the vibrations.
しかも、かくの如き本発明に従うブツシュ組立体構造に
よれば、ゴム弾性体の外周部において、その周方向に一
方の流体室から他方の流体室に延びるように、オリフィ
ス部材が配設せしめられることにより、そこに異なる流
通抵抗を与える二種の連通路を有効に形成せしめること
ができ、また高周波域での振動絶縁機能の向上に大きく
寄与し得る可動板を、そこに有利に設けることが可能と
なるのである。Moreover, according to the bushing assembly structure according to the present invention, the orifice member is disposed at the outer peripheral portion of the rubber elastic body so as to extend in the circumferential direction from one fluid chamber to the other fluid chamber. Therefore, it is possible to effectively form two types of communication paths that provide different flow resistances, and it is also possible to advantageously provide a movable plate there, which can greatly contribute to improving the vibration isolation function in the high frequency range. It becomes.
また、本発明に従うブツシュ組立体を構成するゴム弾性
体内には、インタスリーブが同心的に埋設されていると
ころから、軸方向における低いバネ特性や1.捩り方向
における低いバネ特性を保持しつつ、軸直角方向におけ
るバネ特性が効果的に高められ得、これによって車両用
サスペンションブツシュに要求される操縦安定性の向上
のための要件を悉く満たし得ることとなったのである。In addition, since the intersleeve is concentrically embedded in the rubber elastic body constituting the bushing assembly according to the present invention, it has low spring characteristics in the axial direction and 1. The spring characteristics in the direction perpendicular to the axis can be effectively increased while maintaining the low spring characteristics in the torsional direction, thereby satisfying all requirements for improving steering stability required of a suspension bushing for a vehicle. It became.
けだし、車両の操縦安定性の向上のためには、ブツシュ
の軸直角方向と軸方向のバネ定数比を大ならしめる必要
があるからである。However, in order to improve the steering stability of the vehicle, it is necessary to increase the ratio of the spring constants of the bushing in the axis-perpendicular direction and in the axial direction.
(実施例)
以下、本発明を自動車の懸架系に用いられるサスペンシ
ョンブツシュに適用した場合の実施例を図面に基づいて
詳細に説明する。(Example) Hereinafter, an example in which the present invention is applied to a suspension bushing used in a suspension system of an automobile will be described in detail based on the drawings.
まず、第1図には、その流体入りブツシュ組立体の横断
面図が示されており、また第2図にはその縦断面図、更
に第3図及び第4図にはその縦断面部分図が、それぞれ
示されている。First, Fig. 1 shows a cross-sectional view of the fluid-filled bushing assembly, Fig. 2 shows a longitudinal sectional view thereof, and Figs. 3 and 4 show partial longitudinal sectional views thereof. are shown respectively.
それらの図において、本発明に従う流体入りブツシュ組
立体は、内筒部材として機能する厚肉円筒状の内筒金具
2と、その外側に同心的に配された円筒状のゴム弾性体
たるゴムスリーブ4と、このゴムスリーブ4の外側に圧
入せしめられた、外筒゛部材として機能する円筒状の外
筒部材6.と、ゴムスリーブ4の外周部でその周方向に
配設せしめられた、外筒部材6の内周面に当接する円弧
状のオリフィス部材8とを含んで構成されている。In those figures, the fluid-filled bushing assembly according to the present invention includes a thick-walled cylindrical inner tube fitting 2 that functions as an inner tube member, and a rubber sleeve that is a cylindrical rubber elastic body disposed concentrically on the outside of the inner tube fitting 2. 4, and a cylindrical outer cylinder member 6 which is press-fitted to the outside of the rubber sleeve 4 and functions as an outer cylinder member. and an arc-shaped orifice member 8 disposed in the circumferential direction on the outer circumferential portion of the rubber sleeve 4 and abutting on the inner circumferential surface of the outer cylinder member 6.
ところで、かかる流体入りブツシュ組立体におけるゴム
スリーブ4は、第5〜7図に示されるように、一体加硫
成形によって金属製の内筒金具2の外側に位置して厚肉
筒状に一体的に形成されており、また同時に、かかるゴ
ムスリーブ4の外周面に金属スリーブ10が一体的に加
硫接着せしめられている。換言すれば、ゴムスリーブ4
は、内筒金具2と金属スリーブ10との間に一体的に加
硫成形された構造となっている。そして、かかるゴムス
リーブ4内には、第8図及び第9図に示される如き半割
形状(半円筒形状)の金属のインタスリーブ分割体12
の二つが円筒状に組み合わされて、同心的に埋設、配置
せしめられている。By the way, as shown in FIGS. 5 to 7, the rubber sleeve 4 in such a fluid-filled bushing assembly is formed into a thick-walled cylindrical shape by integrally vulcanizing and positioned outside the metal inner cylindrical fitting 2. At the same time, a metal sleeve 10 is integrally vulcanized and bonded to the outer peripheral surface of the rubber sleeve 4. In other words, rubber sleeve 4
has a structure in which the inner cylindrical fitting 2 and the metal sleeve 10 are integrally vulcanized and formed. Inside the rubber sleeve 4 is a metal intersleeve segment 12 having a half-split shape (half-cylindrical shape) as shown in FIGS. 8 and 9.
The two are combined into a cylindrical shape and buried and arranged concentrically.
また、ゴムスリーブ4には、所定深さの一対のポケット
部14.14が軸心に対称に設けられており、そしてそ
れらポケット部14.14に跨がって、前記オリフィス
部材8を嵌め込むための嵌装溝16がゴムスリーブ4の
外周部に凹溝状に形成されている一方、それらポケット
部14.14及び嵌装溝16が何れも外方に開口した状
態で設けられている。このため、ゴムスリーブ4の外周
面に固着された金属スリーブ10には、第10図及び第
11図に示されるように、対称的な二つの窓部18,1
8と、それら窓部18,18をつなぐ所定幅の周方向の
切欠部20が設けられているのである。また、ゴムスリ
ーブ4内に同心的に埋設される半割状のインタスリーブ
分割体12にも、上記ポケット部14が設けられる部位
に、該ポケット部14が入り込み得るに充分な大きさに
おいて、矩形の切欠孔22が設けられている。Further, the rubber sleeve 4 is provided with a pair of pocket portions 14.14 having a predetermined depth symmetrically with respect to the axis, and the orifice member 8 is fitted in the pocket portions 14.14. A fitting groove 16 is formed in the outer circumference of the rubber sleeve 4 in the form of a concave groove, while the pocket portions 14, 14 and the fitting groove 16 are both open to the outside. Therefore, the metal sleeve 10 fixed to the outer peripheral surface of the rubber sleeve 4 has two symmetrical windows 18 and 1, as shown in FIGS. 10 and 11.
8, and a circumferential notch 20 having a predetermined width that connects the windows 18, 18. Further, the half-shaped intersleeve divided body 12 concentrically embedded in the rubber sleeve 4 is also provided with a rectangular shape having a size sufficient to allow the pocket portion 14 to fit into the portion where the pocket portion 14 is provided. A notch hole 22 is provided.
さらに、かかるゴムスリーブ4には、そこに埋設された
一対の半割形状のインタスリーブ分割体12.12の周
方向の端部間に軸方向に延びる空間24.24が形成さ
れている。この空間24゜24は、二つのポケット部1
4.14の略中間の位置に配置せしめられており、一体
加硫成形にて形成されるゴムスリーブ4に対して金属ス
リーブ10の側から(外側から)絞り操作を加えること
によって、該インタスリーブ分割体12の外側及び内側
にそれぞれ位置するゴムスリーブ4部分に対して、同時
に予備圧縮を加えることを可能にするものであって、そ
のような絞り加工による予備圧縮により、ゴムスリーブ
4の接着面の耐久性の向上を図り得るようになっている
。なお、第5図乃至第7図から明らかなように、金属ス
リーブ10の窓部18及び切欠部20の周縁部には、ゴ
ムスリーブ4から所定高さで延び出したゴムシール部2
6及び28が連続的な形状において設けられている。Further, the rubber sleeve 4 has a space 24.24 extending in the axial direction between the circumferential ends of a pair of half-shaped intersleeve segments 12.12 embedded therein. This space 24°24 has two pocket parts 1
4.14, and by applying a squeezing operation from the metal sleeve 10 side (from the outside) to the rubber sleeve 4 formed by integral vulcanization molding, the intersleeve It is possible to simultaneously apply preliminary compression to the rubber sleeve 4 portions located on the outside and inside of the divided body 12, and the adhesive surface of the rubber sleeve 4 is The durability of the material can be improved. As is clear from FIGS. 5 to 7, a rubber seal portion 2 extending from the rubber sleeve 4 at a predetermined height is provided at the peripheral edge of the window portion 18 and the notch portion 20 of the metal sleeve 10.
6 and 28 are provided in a continuous configuration.
そしてまた、かかるゴムスリーブ4の嵌装溝16に嵌め
込まれるオリフィス部材8は、第1図、第2図、第4図
及び第12図から明らかなように、一方のポケット部1
4内に所定長さだけ突入せしめ得るべく、嵌装溝16の
長さよりも所定長さだけ長い円弧形状を呈しており、そ
してその外周面には、断面積の小さな第一のオリフィス
溝30と断面積の大きな第二のオリフィス溝32が、そ
れぞれ周方向に形成されている。そして、断面積の大き
な第二のオリフィス溝32は、オリフィス部材8のポケ
ット部14内に突入せしめられる側の端部において行き
止まり構造(閉鎖構造)とされると共に、その行き止ま
り部分の近くの底部に、該オリフィス部材8の厚さ方向
に貫通する貫通孔34を有している。Furthermore, as is clear from FIGS. 1, 2, 4, and 12, the orifice member 8 fitted into the fitting groove 16 of the rubber sleeve 4 is attached to one pocket portion 1.
It has an arcuate shape that is longer than the length of the fitting groove 16 by a predetermined length so that it can be inserted into the fitting groove 16 by a predetermined length. Second orifice grooves 32 each having a large cross-sectional area are formed in the circumferential direction. The second orifice groove 32 having a large cross-sectional area has a dead end structure (closed structure) at the end of the orifice member 8 on the side that is projected into the pocket portion 14, and has a dead end structure (closed structure) at the bottom near the dead end portion. , has a through hole 34 penetrating through the orifice member 8 in the thickness direction.
また、かかる貫通孔34をオリフィス部材8の内側、す
なわち内面側から覆ってそれを閉塞するように、ゴム製
の可動板36が配置され、更にこの可動板36を収容す
るポケット部が形成されるように、この可動板36より
やや大きな大きさの凹所38を有するポケット形成部材
40が、オリフィス部材8の内面に前記貫通孔34に対
応して固定せしめられている。そして、このポケット部
形成部材40の凹所38の底部には、複数の貫通孔42
が設けられて、ゴムスリーブ4のポケット部14内に連
通せしめられている。Further, a movable plate 36 made of rubber is arranged so as to cover and close the through hole 34 from the inside of the orifice member 8, that is, from the inner surface side, and a pocket portion for accommodating the movable plate 36 is formed. A pocket forming member 40 having a recess 38 slightly larger than the movable plate 36 is fixed to the inner surface of the orifice member 8 in correspondence with the through hole 34. A plurality of through holes 42 are provided at the bottom of the recess 38 of the pocket forming member 40.
is provided and communicated within the pocket portion 14 of the rubber sleeve 4.
更に、かかるゴムスリーブ4に固着された金属スリーブ
10の外周面に圧入せしめられる外筒金具6は、第13
図及び14図に示されるように、軸方向の長さにおいて
、該オリフィス溝に加硫接着せしめられた金属スリーブ
10よりも長くされている一方、その軸方向の一端部側
において、段付のフランジ部44が設けられた構造とな
っている。Furthermore, the outer cylindrical fitting 6 that is press-fitted into the outer circumferential surface of the metal sleeve 10 fixed to the rubber sleeve 4 is a thirteenth
As shown in Figures 14 and 14, the length in the axial direction is longer than the metal sleeve 10 vulcanized and bonded to the orifice groove, and one end of the sleeve 10 in the axial direction has a stepped structure. It has a structure in which a flange portion 44 is provided.
そして、かくの如き構造の各部品を用いて、本発明に従
う第1図の如き流体入りブツシュ組立体を組み立てるに
際しては、先ず一体加硫成形にて内、外周面に内筒金具
2及び金属スリーブ10を一体的に固着せしめたゴムス
リーブ4を形成せしめ、そしてその外周部に設けられた
嵌装溝16内に、所定の非圧縮性流体、例えば水、アル
キレン゛グリコール、ポリアルキレングリコール或いは
シリコーンオイル又はそれらの混合物等の流体中におい
て、オリフィス部材8を、それの可動板36を設けた側
の端部が一方のポケット部14.14内に所定長さ突入
せしめられるようにして嵌め込み、組み付ける。When assembling a fluid-filled bushing assembly as shown in FIG. 1 according to the present invention using each component having such a structure, first, the inner cylindrical fitting 2 and the metal sleeve are formed on the inner and outer peripheral surfaces by integral vulcanization molding. 10 is integrally fixed to the rubber sleeve 4, and a predetermined incompressible fluid such as water, alkylene glycol, polyalkylene glycol, or silicone oil is filled in the fitting groove 16 provided on the outer periphery of the rubber sleeve 4. Or, in a fluid such as a mixture thereof, the orifice member 8 is fitted and assembled so that the end on the side where the movable plate 36 is provided is inserted into one pocket portion 14, 14 by a predetermined length.
次いで、このオリフィス部材8を組み付けた状態下にお
いて、ゴムスリーブ4の外周面に固着せしめた金属スリ
ーブ10の外周面に対して、外筒金具6を圧入せしめ、
これによって二つのポケット部14.14内にそれぞれ
所定の非圧縮性流体を封入せしめると共に、それらポケ
ット部14の開口を、外筒金具6によて覆蓋せしめるこ
とにより、独立した二つの流体室46を形成せしめる。Next, with the orifice member 8 assembled, the outer cylindrical fitting 6 is press-fitted onto the outer circumferential surface of the metal sleeve 10 fixed to the outer circumferential surface of the rubber sleeve 4,
As a result, a predetermined incompressible fluid is sealed in each of the two pocket portions 14 and 14, and the openings of the pocket portions 14 are covered with the outer cylindrical fitting 6, thereby creating two independent fluid chambers 46. to form.
また、オリフィス部材8の第一及び第二のオリフィス溝
30.32の外側の開口が、同様にそれぞれ外筒金具6
にて覆蓋せしめられることにより、非圧縮性流体に対し
てそれぞれ異なる流通抵抗を与える第一及び第二の連通
路、換言すれば相対的に大きな流通抵抗を与える第一の
連通路48と相対的に小さな流通抵抗を与える第二の連
通路50が形成されることとなるのである。Further, the outer openings of the first and second orifice grooves 30 and 32 of the orifice member 8 are similarly connected to the outer cylinder fitting 6, respectively.
The first and second communication passages provide different flow resistances to the incompressible fluid by being covered with Thus, a second communication path 50 is formed that provides a small flow resistance.
そして0、このような外筒金具6の圧入状態において、
かかる外筒金具6の段付フランジ部44が金属スリーブ
10のフランジ部にカシメ加工されて固定せしめられた
後、この外筒金具6に対してへ方絞り加工手法にて所要
の絞り加工が施され、更にその後段付フランジ部44と
は反対側の端部をロールカシメ手法にて金属スリーブl
Oの端部に固定せしめることにより、目的とする第1図
に示される如きブツシュ組立体が完成されるのである。0, in such a press-fitted state of the outer cylinder metal fitting 6,
After the stepped flange portion 44 of the outer cylindrical fitting 6 is caulked and fixed to the flange portion of the metal sleeve 10, the outer cylindrical fitting 6 is subjected to a required drawing process using a helical drawing method. Then, the end opposite to the stepped flange portion 44 is attached to the metal sleeve l by roll caulking.
By fixing it to the end of the O, the desired bushing assembly as shown in FIG. 1 is completed.
従って、このようにして組み付けられた状態下において
は、ゴムスリーブ4に形成された二つのポケット部14
.14と外筒金具6にて画成される二つの流体室46.
46が、オリフィス部材8の両端部に開口する第一のオ
リフィス溝30にて形成される第一の連通路48によっ
て連通せしめられ、この第一の連通路48を通じて、そ
れら流体室46.46間に非圧縮性流体が相互に流通せ
しめられることによって相対的に大きな所望の流通抵抗
が発生せしめられることとなる。一方、オリフィス部材
8の第二のオリフィス溝32によって形成される第二の
連通路50は、該オリフィス部材8の一端側において開
口して、一方の流体室46に連通せしめられているが、
他方の端部側は行き止まり構造とされ、その底部を貫通
する貫通溝34を通じてポケット部形成部材40の凹所
38内に収容された可動板36が設けられているところ
から、該可動板6の一方の側の面に前記一方の流体室4
6内の圧力が作用せしめられる。Therefore, in the assembled state in this way, the two pockets 14 formed in the rubber sleeve 4
.. 14 and two fluid chambers 46 defined by the outer cylinder fitting 6.
46 are communicated by a first communication path 48 formed by the first orifice groove 30 that opens at both ends of the orifice member 8, and the fluid chambers 46 and 46 are communicated through the first communication path 48. By causing the incompressible fluids to flow through each other, a relatively large desired flow resistance is generated. On the other hand, the second communication path 50 formed by the second orifice groove 32 of the orifice member 8 opens at one end side of the orifice member 8 and communicates with one fluid chamber 46.
The other end side has a dead end structure, and a movable plate 36 is provided, which is accommodated in a recess 38 of the pocket forming member 40 through a through groove 34 passing through the bottom of the movable plate 6. Said one fluid chamber 4 on one side surface
6 is applied.
すなわち、かかる可動板36の他方の側の面には、ポケ
ット部形成部材40の凹所38の底部に設けられた貫通
孔42を通じて、他方の流体室46内の圧力が作用せし
められることとな、る。That is, the pressure in the other fluid chamber 46 is applied to the other side surface of the movable plate 36 through the through hole 42 provided at the bottom of the recess 38 of the pocket forming member 40. ,ru.
要するに、可動板36は、第二の連通路50を仕切って
、他方の流体室46への連通を遮断する作用をなし、そ
して二つの流体室46.46のそれぞれの圧力変動に従
って、ポケット部形成部材40の凹所38にて形成され
るポケ゛ット部内において、所定距離だけ変位(移動)
させられ得るようになっているのである。なお、この第
二の連通路50は、かかる流体室46の圧力変動に伴っ
て可動板36が変位せしめられ得るように、それぞれの
圧力変動を効果的に伝達するために、相対的に小さな流
通抵抗しか与えない通路(オリフィス構造)とされてい
る。In short, the movable plate 36 functions to partition the second communication path 50 and cut off communication to the other fluid chamber 46, and forms a pocket portion according to pressure fluctuations in each of the two fluid chambers 46, 46. Displacement (movement) by a predetermined distance within the pocket formed by the recess 38 of the member 40
It is now possible to be forced to do so. Note that this second communication path 50 has a relatively small flow rate in order to effectively transmit pressure fluctuations so that the movable plate 36 can be displaced in accordance with pressure fluctuations in the fluid chamber 46. It is said to be a passage (orifice structure) that provides only resistance.
ところで、このような構造の流体入りブツシュ組立体は
、例えば自動車の懸架系におけるサスペンションブツシ
ュとして好適に用いられ得るものである。そして、その
場合、外筒金具6が、例えばコントロールアームのボス
部の内に嵌合される一方、内筒金具2内に車体若しくは
車輪側の軸が挿入されると共に、一対の流体室46及び
46が主な振動荷重を受ける方向に対向させられた状態
で使用されることとなる。Incidentally, a fluid-filled bushing assembly having such a structure can be suitably used as a suspension bushing in a suspension system of an automobile, for example. In that case, the outer cylinder fitting 6 is fitted into, for example, the boss portion of the control arm, while the vehicle body or wheel side shaft is inserted into the inner cylinder fitting 2, and the pair of fluid chambers 46 and 46 will be used in a state where they are opposed to each other in the direction in which they receive the main vibration load.
そして、低周波数で大きな変位をもたらす加振力(振動
荷重)が作用した場合には、ゴムスリーブ4の弾性変形
に伴い、二つの流体室46.46の一方の容積が減少し
て、他方の容積が増大することにより、第一の連通路4
8及び第二の連通路50を通じて流体が流通しようとす
るが、第二の連通路50には、可動板36が設けられて
、それを仕切っているところから、かかる第二の連通路
50を通じての流体の流通が実質的に阻止され、それ故
に流体室46.46間の流体の流通は、第一の連通路4
8のみを通じて行なわれるところから、この第一の連通
路48にて惹起される大きな流通抵抗によって、大きな
減衰効果が発現されることとなるのである。When an excitation force (vibration load) that causes a large displacement at a low frequency is applied, the elastic deformation of the rubber sleeve 4 causes the volume of one of the two fluid chambers 46, 46 to decrease, and the volume of the other fluid chamber to decrease. By increasing the volume, the first communication path 4
8 and the second communication path 50, the second communication path 50 is provided with a movable plate 36 to partition it, and the fluid flows through the second communication path 50. fluid communication between the fluid chambers 46, 46 is substantially prevented, and therefore fluid communication between the fluid chambers 46, 46 is substantially prevented.
8, the large flow resistance caused in this first communication path 48 produces a large damping effect.
一方、高周波、小振幅(小変位)の振動が入力した場合
においては、前記オリフィス部材8の流通抵抗の大なる
第一の連通路48を流体が通過することは極めて困難と
なるが、そのような振動入力によって増減せしめられる
二つの流体室46゜46内の非圧縮性流体の流体圧は、
第二の連通路50、貫通孔34及びポケット部形成部材
40の貫通孔42を通じて、両側から可撓性の可動板3
6に作用せしめられるところから、そのような圧力に対
応して、該可動板36を振動せしめることによって、そ
の圧力変動を緩和せしめ、ひいては全体としての動バネ
定数の増大を防ぎ、以て高周波振動に対する効果的な遮
断を達成し得るのである。なお、このように高周波での
動バネ定数を低くすることができることによって、ゴム
スリーブ4のゴム硬度やゴム配合の自由度も高められ得
ることとなる。On the other hand, when vibrations of high frequency and small amplitude (small displacement) are input, it becomes extremely difficult for the fluid to pass through the first communicating path 48 of the orifice member 8, which has a large flow resistance. The fluid pressure of the incompressible fluid in the two fluid chambers 46 and 46, which is increased or decreased by the vibration input, is:
The flexible movable plate 3 is inserted from both sides through the second communication path 50, the through hole 34, and the through hole 42 of the pocket forming member 40.
6, by vibrating the movable plate 36 in response to such pressure, the pressure fluctuations are alleviated, and the overall dynamic spring constant is prevented from increasing, thereby reducing high-frequency vibrations. It is possible to achieve effective blocking against In addition, by being able to lower the dynamic spring constant at high frequencies in this way, the degree of freedom in the rubber hardness and rubber compounding of the rubber sleeve 4 can also be increased.
また、かかる構造の流体入りブツシュ組立体にあっては
、非圧縮性流体に対してそれぞれ異なる流通抵抗を与え
るオリフィスとしての第一及び第二の連通路48.50
がゴムスリーブ4の外周部に嵌め込まれる円弧状のオリ
フィス部材8によって巧みに形成されることとなり、し
かも第二〇連通路50を遮断する可動板36も、かかる
オリフィス部材8に対して有利に設けられ、以て上述し
た如き低周波領域での高減衰特性と高周波領域での低い
動バネ定数とを同時に満足せしめ得る流体封入式防振組
立体が、ブツシュタイプのものにおいて、効果的に実現
され得ることとなったのである。In addition, in the fluid-filled bushing assembly having such a structure, the first and second communication passages 48 and 50 serve as orifices that provide different flow resistances to the incompressible fluid.
is cleverly formed by the arc-shaped orifice member 8 that is fitted into the outer circumference of the rubber sleeve 4, and the movable plate 36 that blocks off the second communication passage 50 is also advantageously provided for the orifice member 8. Thus, a fluid-filled vibration damping assembly that can simultaneously satisfy the above-mentioned high damping characteristics in the low frequency range and low dynamic spring constant in the high frequency range has been effectively realized in the bush type. It became possible to do so.
しかも、上例の構造の流体入りブツシュ組立体において
は、それを構成するゴムスリーブ4内に一対のインタス
リーブ分割体12.12が筒状に組み合わされて、同心
的に埋設、配置されているところから、軸方向における
低いバネ特性や模り方向における低いバネ特性を保持し
つつ、軸直角方向におけるバネ特性を効果的に高め得る
こととなり、以て自動車用サスペンションブツシュに要
求される操縦安定性の向上のための要求を悉く満足せし
め得るのである。Moreover, in the fluid-filled bushing assembly having the structure described above, a pair of intersleeve segments 12 and 12 are combined into a cylindrical shape and concentrically embedded and arranged within the rubber sleeve 4 constituting the bushing assembly. Therefore, while maintaining low spring characteristics in the axial direction and low spring characteristics in the pattern direction, it is possible to effectively increase the spring characteristics in the direction perpendicular to the axis, thereby achieving the steering stability required for automobile suspension bushings. It is possible to satisfy all demands for sexual improvement.
なお、本実施例にあっては、ポケット部14及び嵌装溝
16の周縁部に、連続したゴムシール部26及び28が
形成され、これによって圧入される外筒金具6との間の
効果的なシールが為され得るところから、それのポケッ
ト部14(流体室46)に封入された非圧縮性流体が外
部に洩れ出すようなことも有利に阻止されるようになっ
ているのである。In this embodiment, continuous rubber seal parts 26 and 28 are formed at the peripheral edges of the pocket part 14 and the fitting groove 16, thereby effectively sealing the gap between the outer cylindrical fitting 6 and the press-fitted outer cylindrical metal fitting 6. Since the seal can be formed, the incompressible fluid sealed in the pocket portion 14 (fluid chamber 46) is advantageously prevented from leaking to the outside.
次に、本発明の別の実施例を第15図〜第19図に基づ
いて説明するが、前記実施例と同様な部分については、
同一の符号を付して、説明は省略することとする。Next, another embodiment of the present invention will be explained based on FIG. 15 to FIG.
The same reference numerals will be given and the explanation will be omitted.
この実施例においては、上例の如くゴムスリーブ4に対
してその内側に内筒金具2が一体的に加硫接着せしめら
れた構造とはされておらず、ゴムスリーブ4が金属スリ
ーブ10と共に一体加硫成形された後、内筒金具2がゴ
ムスリーブ4の内側に圧入せしめられて、同心的に位置
せしめられるように組み付けられるようになっている。In this embodiment, unlike the above example, the inner cylinder fitting 2 is not integrally vulcanized and bonded to the inside of the rubber sleeve 4, but the rubber sleeve 4 is integrated with the metal sleeve 10. After being vulcanized and molded, the inner cylindrical fitting 2 is press-fitted inside the rubber sleeve 4 and assembled so as to be positioned concentrically.
そして、この内筒金具2の圧入によって、インタスリー
ブ52の内側に位置するゴムスリーブ4部分が予備圧縮
せしめられ得ることとなる。従って、外筒金具6側から
の絞り加工操作による予備圧縮は、インタスリーブ52
の外側に位置するゴムスリーブ4部分に対して行われれ
ば良いところから、インタスリーブ52は、第18図及
び第19図に示されるように一体的な筒体とされており
、そしてそのような筒体に、ポケット部14に対応する
切欠孔22が対称的に形成された構造となっている。By press-fitting the inner cylindrical fitting 2, the portion of the rubber sleeve 4 located inside the intersleeve 52 can be pre-compressed. Therefore, preliminary compression by the drawing operation from the outer cylinder fitting 6 side is performed by the intersleeve 52.
The intersleeve 52 is an integral cylindrical body, as shown in FIGS. The cylinder body has a structure in which notch holes 22 corresponding to the pocket portions 14 are symmetrically formed.
以上、本発明の実施例について詳細に説明してきたが、
本発明が、かかる例示の実施例のみに限定して解釈され
るものでは決してなく、本発明には、その趣旨を逸脱し
ない限りにおいて、種々なる変更、修正、改良等を加え
ることが可能である。Although the embodiments of the present invention have been described in detail above,
The present invention is not to be construed as being limited to such illustrative examples, and various changes, modifications, improvements, etc. can be made to the present invention without departing from the spirit thereof. .
例えば、前例においては、一方の流体室46(ポケット
部14)内に突入するオリフィス部材8の突入部分の内
面側に、可動板36がポケット部形成部材40にて保持
されて、配置せしめられた構造となっているが、これに
代えて、第二の連通路50を行き止まり構造とすること
なく、その流体室46に対する開口部分に対して、可動
板36を配するようにした構造も採用することが可能で
あり、また可動板36を例示の如くフリーの状態に保持
せしめる場合の他、かかる可動板の周縁部を拘束して、
流体室の圧力変動に伴って、それを弾性変形せしめて所
定距離変位し得るようにした構造となすことも可能であ
る。For example, in the previous example, the movable plate 36 was held by the pocket forming member 40 and placed on the inner surface of the protruding portion of the orifice member 8 that protruded into one of the fluid chambers 46 (pocket portion 14). However, instead of this, a structure may be adopted in which the second communicating path 50 does not have a dead-end structure, and the movable plate 36 is disposed at the opening to the fluid chamber 46. In addition to holding the movable plate 36 in a free state as illustrated, it is possible to restrain the peripheral edge of the movable plate 36,
It is also possible to have a structure in which the fluid chamber can be elastically deformed and displaced by a predetermined distance in response to pressure fluctuations in the fluid chamber.
さらに、かかる可動板36は、ゴム等の弾性材料にて形
成される場合の他、剛性のあるプラスチック板や金属板
であっても何等差支えないが、その周囲を拘束するよう
にして設けられる場合にあっては、それがゴム等の弾性
材料から形成されることが望まれることは、言うまでも
ないところである。Further, the movable plate 36 may be made of an elastic material such as rubber, or may be made of a rigid plastic plate or metal plate; however, if the movable plate 36 is provided so as to restrain its surroundings, Needless to say, it is desirable that it be made of an elastic material such as rubber.
また、ゴムスリーブ4に設けられたポケット部14と外
筒金具6にて形成される流体室46は、例示の如き二つ
である場合の他、三つ或いはそれ以上の個数において設
けられていても何等差支えなく、更にオリフィス部材8
に設けられる連通路にあっても、例示の如き2本の場合
のみに限られず、三本或いはそれ以上の本数において設
けることも可能である。Furthermore, the number of fluid chambers 46 formed by the pocket portion 14 provided in the rubber sleeve 4 and the outer cylindrical metal fitting 6 may be three or more, instead of two as shown in the example. There is no problem with the orifice member 8.
The number of communicating passages provided in the first embodiment is not limited to two as shown in the example, but it is also possible to provide three or more communicating passages.
第1図は本発明の一実施例である流体入りブツシュ組立
体の横断面図であり、第2図におけるI−1断面に相当
する図であり、第2図、第3図及び第4図はそれぞれ第
1図における■−■断面、m−m断面及びrV−IV断
面を示す断面説明図である。第5図は、そのような流体
入りブツシュ組立体に用いられる内筒金具と金属スリー
ブとの間にゴムスリーブを一体加硫成形してなる加硫成
形品の正面図、第6図はその半断面右側面図、第7図は
第6図における■−■断面説明図であり、第8図はその
ゴムスリーブ内に埋設されるインタスリーブ分割体の一
つを示す正面図、第9図は第8図におけるIX−IX断
面説明図であり、第10図はゴムスリーブの外周面に加
硫成形される金属スリーブの正面図、第11図は第10
図におけるXI−XI断面説明図であり、第12図はオ
リフィス部材の分解斜視図であり、第13図は圧入せし
められる外筒金具の正面図、第14図はその右側面図で
ある。第15図は、本発明の他の実施例に用いられる金
属スリーブにゴムスリーブを一体加硫成形してなる加硫
成形品の正面図、第16図はその半断面右側面図、第1
7図は第16図におけるX■−X■断面説明図であり、
第18図はそのような加硫成形品のゴムスリーブ中に埋
設されるインタスリーブを示す正面図、第19図は第1
8図におけるXIX−XIX断面説明図である。
2:内筒金具 4:ゴムスリーブ6:外筒金
具 8ニオリフイス部材10:金属スリーブ
12:インタスリーブ分割体
14:ポケット部 16:嵌装溝18:窓部
20:切欠部22:切欠孔 24
:空間
26.28:ゴムシール部
30:第一のオリフィス溝
32:第二のオリフィス溝
34:貫通孔 36:可動板38:凹所
40:ポケソト部形成部材
42:貫通孔 46:流体室48:第一の連
通路 50:第二の連通路52:インタスリーブFIG. 1 is a cross-sectional view of a fluid-filled bushing assembly that is an embodiment of the present invention, and is a view corresponding to the I-1 cross section in FIG. 2, and FIGS. 1A and 1B are explanatory cross-sectional views showing a cross section along ■-■, a cross-section along mm, and a cross-section along rV-IV in FIG. 1, respectively. Fig. 5 is a front view of a vulcanized product made by integrally vulcanizing and molding a rubber sleeve between the inner cylindrical metal fitting and the metal sleeve used in such a fluid-filled bushing assembly, and Fig. 6 is a half of the vulcanized product. A cross-sectional right side view, FIG. 7 is an explanatory cross-sectional view taken along the line ■-■ in FIG. 6, FIG. 8 is a front view showing one of the intersleeve divided bodies embedded in the rubber sleeve, and FIG. FIG. 10 is a front view of the metal sleeve vulcanized and formed on the outer peripheral surface of the rubber sleeve, and FIG.
FIG. 12 is an exploded perspective view of the orifice member, FIG. 13 is a front view of the outer cylindrical fitting to be press-fitted, and FIG. 14 is a right side view thereof. Fig. 15 is a front view of a vulcanized molded product obtained by integrally vulcanizing a rubber sleeve with a metal sleeve used in another embodiment of the present invention, and Fig. 16 is a half-sectional right side view of the product;
Figure 7 is an explanatory diagram of the cross section taken along the line X■-X■ in Figure 16.
Fig. 18 is a front view showing the intersleeve embedded in the rubber sleeve of such a vulcanized product, and Fig. 19 is a front view of the intersleeve embedded in the rubber sleeve of such a vulcanized product.
FIG. 8 is an explanatory cross-sectional view taken along line XIX-XIX in FIG. 8; 2: Inner tube metal fitting 4: Rubber sleeve 6: Outer tube metal fitting 8 Niorifice member 10: Metal sleeve 12: Intersleeve divided body 14: Pocket portion 16: Fitting groove 18: Window portion
20: Notch portion 22: Notch hole 24
: Space 26.28: Rubber seal part 30: First orifice groove 32: Second orifice groove 34: Through hole 36: Movable plate 38: Recess 40: Pocket hole forming member 42: Through hole 46: Fluid chamber 48: First communication path 50: Second communication path 52: Intersleeve
Claims (6)
一体的に固着せしめられ且つ該金属スリーブの周方向の
所定位置に形成された複数の窓部に対応して複数のポケ
ット部がそれぞれ独立に設けられた円筒状のゴム弾性体
を、内筒部材の外側に同心的に配すると共に、該ゴム弾
性体に固着せしめた前記金属スリーブの外周面に所定の
外筒部材を圧入せしめて、該ゴム弾性体に設けられた前
記ポケット部の開口を該外筒部材にて覆蓋せしめること
により、それぞれ独立した複数の流体室を形成し、且つ
それら複数の流体室内にそれぞれ所定の非圧縮性流体を
封入せしめる一方、それら流体室間を該非圧縮性流体が
相互に流通し得るように構成した流体入りブッシュ組立
体において、 該ゴム弾性体内に所定のインタスリーブを同心的に埋設
する一方、前記複数の流体室の一方から他方に延びるよ
うに、前記非圧縮性流体に対してそれぞれ異なる流通抵
抗を与える第一及び第二の連通路を形成する円弧状のオ
リフィス部材を、前記ゴム弾性体の外周部にその周方向
に配設せしめて、相対的に大きな流通抵抗を与える前記
第一の連通路を通じて前記流体室間の非圧縮性流体の流
通が許容されるようにすると共に、相対的に小さな流通
抵抗を与える前記第二の連通路による流体室間の連通を
遮断するように配置され、且つ前記流体室の一方の圧力
変動に従って他方の流体室側に所定距離だけ変位可能と
された可動板を設けたことを特徴とする流体入りブッシ
ュ組立体。(1) A predetermined metal sleeve is integrally fixed to the outer peripheral surface by integral vulcanization molding, and a plurality of pocket portions are formed in correspondence with a plurality of windows formed at predetermined positions in the circumferential direction of the metal sleeve. Cylindrical rubber elastic bodies provided independently are arranged concentrically on the outside of the inner cylinder member, and a predetermined outer cylinder member is press-fitted onto the outer peripheral surface of the metal sleeve fixed to the rubber elastic bodies. By covering the opening of the pocket portion provided in the rubber elastic body with the outer cylinder member, a plurality of independent fluid chambers are formed, and each of the plurality of fluid chambers is filled with a predetermined incompressible fluid. In a fluid-filled bushing assembly configured to contain a compressive fluid and allow the incompressible fluid to mutually flow between the fluid chambers, a predetermined intersleeve is concentrically embedded within the rubber elastic body, An arcuate orifice member extending from one of the plurality of fluid chambers to the other and forming first and second communication passages that respectively provide different flow resistances to the incompressible fluid is attached to the rubber elastic body. is disposed in the circumferential direction on the outer periphery of the fluid chamber to allow the incompressible fluid to flow between the fluid chambers through the first communication path that provides a relatively large flow resistance. The fluid chambers are arranged so as to block communication between the fluid chambers through the second communication path, which provides a small flow resistance to the fluid chambers, and can be displaced a predetermined distance toward the other fluid chamber according to pressure fluctuations in one of the fluid chambers. A fluid-filled bushing assembly characterized by having a movable plate.
ブを切り欠き且つ前記ゴム弾性体の外周部を凹溝状に形
成することによって前記ポケット部間に跨がるように設
けられた嵌装溝内に嵌め込まれると共に、該オリフィス
部材の外周面に、断面積の小なる第一のオリフィス溝と
断面積の大なる第二のオリフィス溝がそれぞれ設けられ
て、それら第一及び第二のオリフィス溝が前記圧入され
る外筒部材にて覆蓋せしめられることにより、それぞれ
前記第一及び第二の連通路が形成されている特許請求の
範囲第1項記載の流体入りブッシュ組立体。(2) A fitting groove in which the arc-shaped orifice member is provided so as to straddle between the pocket portions by cutting out the metal sleeve and forming the outer periphery of the rubber elastic body into a concave groove shape. A first orifice groove having a small cross-sectional area and a second orifice groove having a large cross-sectional area are provided on the outer circumferential surface of the orifice member, and the first and second orifice grooves are fitted into the orifice member. 2. The fluid-filled bushing assembly according to claim 1, wherein said first and second communicating passages are formed by being covered by said outer cylinder member which is press-fitted.
る前記流体室の一方の室内に所定長さにおいて突入せし
められ、そしてその突入部位に位置する前記第二の連通
路部分に前記可動板が設けられている特許請求の範囲第
1項または第2項記載の流体入りブッシュ組立体。(3) The arc-shaped orifice member is made to protrude a predetermined length into one of the fluid chambers with which it is communicated, and the movable plate is provided in the second communication path portion located at the protrusion portion. A fluid-filled bushing assembly according to claim 1 or 2.
する側の端部において、前記第二の連通路が行止り構造
とされる一方、該オリフィス部材の突入部位の内面側に
可動板収容ポケット部が設けられ、且つ該可動板収容ポ
ケット部に対して、前記第二の連通路が該オリフィス部
材を厚さ方向に貫通する貫通孔によって連通せしめられ
て、そこに収容された可動板の一方の側の面に、該第二
の連通路を介して伝達される他方の流体室の圧力が作用
せしめられるようにすると共に、該可動板の他方の面側
には前記一方の流体室の圧力が作用せしめられるように
構成されている特許請求の範囲第3項記載の流体入りブ
ッシュ組立体。(4) At the end of the orifice member that protrudes into the one fluid chamber, the second communication path has a dead end structure, and a movable plate storage pocket is provided on the inner surface of the protrusion portion of the orifice member. The second communication path is provided with a through hole passing through the orifice member in the thickness direction and communicates with the movable plate storage pocket, and one of the movable plates accommodated therein. The pressure of the other fluid chamber transmitted through the second communication path is applied to the side surface of the movable plate, and the pressure of the one fluid chamber is applied to the other surface side of the movable plate. 4. A fluid-filled bushing assembly according to claim 3, wherein the fluid-filled bushing assembly is configured to be actuated.
分割筒体若しくは一体筒体にて構成されている特許請求
の範囲第1項乃至第4項の何れかに記載の流体入りブッ
シュ組立体。(5) An inner sleeve embedded in the rubber elastic body,
The fluid-filled bushing assembly according to any one of claims 1 to 4, which is constituted by a split cylinder or an integral cylinder.
一対の略半円筒状の分割体にて構成され、且つ該一対の
分割体が該ゴム弾性体内に円筒状に配置せしめられると
共に、それら一対の分割体の周方向の端部間に所定の空
間が形成されている特許請求の範囲第1項乃至第4項の
何れかに記載の流体入りブッシュ組立体。(6) An inner sleeve embedded in the rubber elastic body,
It is composed of a pair of substantially semi-cylindrical divided bodies, and the pair of divided bodies are arranged in a cylindrical shape within the rubber elastic body, and a predetermined space is provided between the ends of the pair of divided bodies in the circumferential direction. A fluid-filled bushing assembly according to any one of claims 1 to 4, wherein the fluid-filled bushing assembly is formed with:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60045171A JPS61206838A (en) | 1985-03-07 | 1985-03-07 | Bush assembling body with fluid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60045171A JPS61206838A (en) | 1985-03-07 | 1985-03-07 | Bush assembling body with fluid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61206838A true JPS61206838A (en) | 1986-09-13 |
JPH025937B2 JPH025937B2 (en) | 1990-02-06 |
Family
ID=12711816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60045171A Granted JPS61206838A (en) | 1985-03-07 | 1985-03-07 | Bush assembling body with fluid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61206838A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62132049A (en) * | 1985-12-03 | 1987-06-15 | Honda Motor Co Ltd | Torque stopper of fluid sealed type |
JPS63158335A (en) * | 1986-12-23 | 1988-07-01 | Nissan Motor Co Ltd | Inner and outer cylinder fluid charge type power unit mount |
US4756514A (en) * | 1986-06-30 | 1988-07-12 | Tokai Rubber Industries, Ltd. | Fluid-filled resilient bushing having excellent axial vibration damping characteristic |
JPS63293341A (en) * | 1987-05-21 | 1988-11-30 | カール・フロイデンベルク | Sleeve rubber shock absorber |
US4840359A (en) * | 1987-07-23 | 1989-06-20 | Firma Carl Freudenberg | Encapsulated rubber cushion |
JPH01164831A (en) * | 1987-12-18 | 1989-06-28 | Tokai Rubber Ind Ltd | Fluid-filled type cylinder type mount |
FR2633359A1 (en) * | 1988-06-28 | 1989-12-29 | Pullman Co | ELASTOMER SHOCK ABSORBER WITH FLUID FILLING |
US4896868A (en) * | 1988-01-28 | 1990-01-30 | Jean Thelamon | Hydraulic antivibratory support sleeve |
JPH0265681U (en) * | 1988-11-09 | 1990-05-17 | ||
US4971299A (en) * | 1988-07-29 | 1990-11-20 | Nissan Motor Co., Ltd. | Engine mounting device utilizing electrorheopectic fluid |
US5044813A (en) * | 1988-01-26 | 1991-09-03 | The Goodyear Tire & Rubber Company | Bush type hydraulically damped engine or transmission mount |
FR2662773A1 (en) * | 1990-06-04 | 1991-12-06 | Tokai Rubber Ind Ltd | Mount (support) filled with fluid and including a groove with an orifice formed in an elastic body along a cutout formed in an intermediate sleeve tube of the mount |
US5096166A (en) * | 1988-11-26 | 1992-03-17 | Firma Carl Freudenberg | Elastomeric sleeve spring |
US5139241A (en) * | 1990-05-15 | 1992-08-18 | Firma Carl Freudenberg | Resilient mount for a piston engine |
US5172894A (en) * | 1991-12-05 | 1992-12-22 | Gencorp Inc. | Dual elastomeric/fluid engine mount |
JPH05240293A (en) * | 1992-02-25 | 1993-09-17 | Tokai Rubber Ind Ltd | Liquid enclosed cylindrical mount |
US5280885A (en) * | 1988-04-07 | 1994-01-25 | Bridgestone Corporation | Vibration isolating apparatus |
JPH07158686A (en) * | 1993-09-24 | 1995-06-20 | Boge Ag | Rubber support section damped by hydraulic pressure |
EP1677027A1 (en) | 2004-12-31 | 2006-07-05 | The Goodyear Tire & Rubber Company | Elastomeric/hydraulic vibration isolator with adjustable damping |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7343585B2 (en) * | 2019-07-17 | 2023-09-12 | 富士フイルム富山化学株式会社 | Identification support system, identification support client, identification support server, and identification support method |
-
1985
- 1985-03-07 JP JP60045171A patent/JPS61206838A/en active Granted
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62132049A (en) * | 1985-12-03 | 1987-06-15 | Honda Motor Co Ltd | Torque stopper of fluid sealed type |
US4756514A (en) * | 1986-06-30 | 1988-07-12 | Tokai Rubber Industries, Ltd. | Fluid-filled resilient bushing having excellent axial vibration damping characteristic |
JPS63158335A (en) * | 1986-12-23 | 1988-07-01 | Nissan Motor Co Ltd | Inner and outer cylinder fluid charge type power unit mount |
US5054752A (en) * | 1986-12-23 | 1991-10-08 | Nissan Motor Co., Ltd. | Fluid-filled power unit mount |
JPS63293341A (en) * | 1987-05-21 | 1988-11-30 | カール・フロイデンベルク | Sleeve rubber shock absorber |
US4840359A (en) * | 1987-07-23 | 1989-06-20 | Firma Carl Freudenberg | Encapsulated rubber cushion |
JPH01164831A (en) * | 1987-12-18 | 1989-06-28 | Tokai Rubber Ind Ltd | Fluid-filled type cylinder type mount |
US5044813A (en) * | 1988-01-26 | 1991-09-03 | The Goodyear Tire & Rubber Company | Bush type hydraulically damped engine or transmission mount |
US4896868A (en) * | 1988-01-28 | 1990-01-30 | Jean Thelamon | Hydraulic antivibratory support sleeve |
US5280885A (en) * | 1988-04-07 | 1994-01-25 | Bridgestone Corporation | Vibration isolating apparatus |
FR2633359A1 (en) * | 1988-06-28 | 1989-12-29 | Pullman Co | ELASTOMER SHOCK ABSORBER WITH FLUID FILLING |
US4971299A (en) * | 1988-07-29 | 1990-11-20 | Nissan Motor Co., Ltd. | Engine mounting device utilizing electrorheopectic fluid |
JPH0265681U (en) * | 1988-11-09 | 1990-05-17 | ||
US5096166A (en) * | 1988-11-26 | 1992-03-17 | Firma Carl Freudenberg | Elastomeric sleeve spring |
US5139241A (en) * | 1990-05-15 | 1992-08-18 | Firma Carl Freudenberg | Resilient mount for a piston engine |
JPH0417535U (en) * | 1990-06-04 | 1992-02-13 | ||
FR2662773A1 (en) * | 1990-06-04 | 1991-12-06 | Tokai Rubber Ind Ltd | Mount (support) filled with fluid and including a groove with an orifice formed in an elastic body along a cutout formed in an intermediate sleeve tube of the mount |
US5172894A (en) * | 1991-12-05 | 1992-12-22 | Gencorp Inc. | Dual elastomeric/fluid engine mount |
JPH05240293A (en) * | 1992-02-25 | 1993-09-17 | Tokai Rubber Ind Ltd | Liquid enclosed cylindrical mount |
JPH07158686A (en) * | 1993-09-24 | 1995-06-20 | Boge Ag | Rubber support section damped by hydraulic pressure |
EP1677027A1 (en) | 2004-12-31 | 2006-07-05 | The Goodyear Tire & Rubber Company | Elastomeric/hydraulic vibration isolator with adjustable damping |
Also Published As
Publication number | Publication date |
---|---|
JPH025937B2 (en) | 1990-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61206838A (en) | Bush assembling body with fluid | |
US5690320A (en) | Fluid-filled damping device having a large spring stiffness values in two mutually perpendicular diametric directions | |
US4895353A (en) | Fluid filled elastomeric damping device | |
EP1870613B1 (en) | Vibration isolator | |
US4822010A (en) | Fluid filled resilient bushing | |
US4971456A (en) | Fluid-filled elastic center bearing mount | |
JPH0229898B2 (en) | ||
JPS62167949A (en) | Vibration isolator | |
US4893798A (en) | Fluid-filled elastic bushing having means for limiting elastic deformation of axial end portions of elastic member defining pressure-receiving chamber | |
JPH0330736B2 (en) | ||
JPH08177945A (en) | Fluid sealing type cylindrical vibration proof device | |
US4923178A (en) | Fluid-filled cylindrical elastic mount | |
JPH05141473A (en) | Fluid-sealed cylindrical mount device | |
JPH01116329A (en) | Vibration damper | |
JPS62261731A (en) | Cylindrical fluid containing type vibration damper support body | |
JPH0660664B2 (en) | Fluid-filled mount | |
JPH0617864A (en) | Vibration proof bush and manufacture thereof | |
JP3427593B2 (en) | Fluid-filled cylindrical mount | |
JP3736155B2 (en) | Fluid-filled cylindrical vibration isolator and manufacturing method thereof | |
JP2000337426A (en) | Fluid sealing type cylindrical mount | |
JPH0266335A (en) | Cylinder-formed liquid sealing vibrationproofing mount | |
JPH0369015B2 (en) | ||
JP4368453B2 (en) | Liquid seal vibration isolator | |
JPH0645073Y2 (en) | Fluid filled tubular mount assembly | |
JP3846328B2 (en) | Fluid filled vibration isolator |