JPH0470446B2 - - Google Patents

Info

Publication number
JPH0470446B2
JPH0470446B2 JP58065134A JP6513483A JPH0470446B2 JP H0470446 B2 JPH0470446 B2 JP H0470446B2 JP 58065134 A JP58065134 A JP 58065134A JP 6513483 A JP6513483 A JP 6513483A JP H0470446 B2 JPH0470446 B2 JP H0470446B2
Authority
JP
Japan
Prior art keywords
core material
soil cement
earth retaining
earth
retaining wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58065134A
Other languages
Japanese (ja)
Other versions
JPS59192129A (en
Inventor
Masahiro Takahashi
Tsuneo Ookubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zenitaka Corp
Original Assignee
Zenitaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zenitaka Corp filed Critical Zenitaka Corp
Priority to JP6513483A priority Critical patent/JPS59192129A/en
Publication of JPS59192129A publication Critical patent/JPS59192129A/en
Publication of JPH0470446B2 publication Critical patent/JPH0470446B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D9/00Removing sheet piles bulkheads, piles, mould-pipes or other moulds or parts thereof
    • E02D9/02Removing sheet piles bulkheads, piles, mould-pipes or other moulds or parts thereof by withdrawing

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は土留工法に関し、特に、止水性硬化材
であるソイルセメントの硬化前に建込んだ芯材を
工事完了後引抜く場合の引抜き力を軽減しうる土
留工法に関する。 〔従来の技術〕 都市部などでは、土留工法としてソイルセメン
ト山止め工法や泥水固化山止め工法などが多く実
施されており、これらの工法では山止め応力を受
持つ部材としてH形鋼あるいは鋼矢板などの芯材
を建込むことが行なわれている。すなわち、柱列
土留壁あるいは簡易連続壁を施行する場合、ソイ
ルセメントなどで形成される壁で止水性を確保す
るとともに周囲の土圧や水圧などの外力は芯材で
負担する方法が採用されている。 このような工法においては、工事完了後芯材を
引抜いて再利用することが、資材の有効活用およ
び省エネルギーの観点から実施されている。この
芯材引抜きを実施するに当つては、引抜き力を低
減させて作業の容易化および土留壁の損傷防止を
図ることが強く望まれ、そのために従来からいく
つかの工法が提案されている。 すなわち、建込み前に芯材にタールやワツクス
などの潤滑剤を塗布する方法、建込み前に芯材に
ベントナイトを半固体状に付着させる方法(例え
ば特開昭57−51329号公報参照)、予め芯材に発泡
体を吹付けて縁切りしておく方法、セメント硬化
遅延剤を使用する方法、あるいは引抜き時コンク
リート破砕薬を用いて付着力を低減させる方法
(例えば特開昭57−66230号公報参照)などが提案
されている。 〔発明が解決しようとする課題〕 しかしながら、潤滑剤、発泡体あるいはセメン
ト硬化遅延剤を使用する方法にあつては、芯材を
建込む前に付着力低減の処理を施す必要があるた
め、特別な施行工程やそのための装置を必要とす
る難点がある。また、コンクリート破砕薬を用い
る方法にあつては、施行が複雑で長時間を要する
という難点がある。 本発明の目的は、このような従来技術の問題を
解消し、きわめて簡単な手順を経るだけで芯材引
抜き力を低減させうる土留工法を提供することで
ある。 〔課題を解決するための手段〕 本発明の特徴は、芯材建込み後ソイルセメント
硬化前に芯材に通電させることにより付着力を低
減させ、もつて上記目的を達成することである。 すなわち、本発明によれば、地山を掘削して土
留壁を施工する掘削穴に、土砂、水、セメント等
からなるソイルセメントを注入し、このソイルセ
メントが硬化する前に鋼製の芯材を建込み、ソイ
ルセメントの硬化により土留壁を築造し、その後
この土留壁から前記芯材を引き抜く土留工法にお
いて、前記芯材を建込んだ後、前記ソイルセメン
トが硬化する前に、前記芯材に電流を通電して前
記ソイルセメントとの付着力を低減させることに
より、ソイルセメント硬化後の芯材引抜力を低減
させることを特徴とする土留工法が提供される。 〔作用〕 上記構成によれば、地中連続壁等の土留壁を施
工する位置に土留壁用の掘削を行い、その掘削溝
もしくは掘削穴に注入したソイルセメント中に芯
材を設置し、そのまま芯材を建込んだ時点で通電
し、その後は放置しておくだけでソイルセメント
硬化後の芯材引抜力を大巾に低減させることがで
きる。 〔実施例〕 第1図〜第6図は本発明による土留工法の一実
施例を示す図であり、第7図〜第10図は他の実
施例を示す図であり、以下これらの図面を参照し
て本発明を具体的に説明する。 本発明による土留工法においては、まず、第1
図に示すような三連のアースオーガーなどの掘削
機1により地山2を掘削し、次いで、第2図に示
すように、掘削溝内にソイルセメント3を注入す
る。このソイルセメントとしては土砂、水、セメ
ント、ベントナイトを含む止水性硬化材を撹拌混
合したものを使用する。次いで、前記ソイルセメ
ント3が硬化する前(通常ソイルセメント注入直
後)に、第3図に示すごとく鋼製の芯材4をソイ
ルセメント3内に建込む。この芯材4は第4図お
よび第5図に示すごとく所定間隔ごとに建込む。 前記芯材4としてはH型鋼、鋼管、I型鋼、あ
るいは鋼矢板などが使用されるが、土圧および水
圧などの外力に対し土留壁を補強する鋼材であれ
ば各種の鋼材を使用することもできる。 芯材4の建込みが終了した時点で、第4図およ
び第5図に示すごとく、隣接する一対の芯材4で
正極および負極を形成し、その間に電流を通電す
る。この通電は直流または交流のいずれでも実施
することができ、交流で通電する場合には隣接す
る一対の芯材で正極およびアースを形成すること
になる。 なお、芯材4の間隔が大きすぎる場合、また
は、第7図〜第10図で後述する柱列土留工法の
ように芯材4を1本ごとに施行する場合は、第1
0図に示すごとく芯材4の近傍に同程度の長さの
仮電極5を挿入し、これらの間で前述のような通
電を行なう。この仮電極5としては通常棒鋼また
は鋼管が使用され、この仮電極は通電後引抜かれ
る。 以上の操作で付着力を低減させ、ソイルセメン
トが硬化した後これを土留壁として使用し、工事
終了後第6図に示すごとくクレーン6またはジヤ
ツキなどで芯材4を引抜く。引抜いた芯材4は再
利用する。 以上説明した土留工法によれば、ソイルセメン
ト硬化前に隣接する一対の芯材4の間または芯材
と仮電極との間に電流を通電させるので、芯材周
辺のソイルセメントの成分を変化させて付着力を
低減させることができ、このためソイルセメント
硬化後の芯材4の引抜きに要する力を大巾に(例
えば4分の1〜20分の1)に低下することができ
る。 この付着力低下のメカニズムは、水の電気分解
により芯材周辺部にガスが発生すること、通電に
より芯材周辺部に水が集まること、並びに電荷を
帯びやすいベントナイト成分が通電により芯材周
辺部に引着けられることなどが要因となつて生じ
るものと判断される。 第1図〜第6図につき説明した実施例によれ
ば、前述のような従来の芯材引抜き力低減方法に
比べ、特殊な装置や工法を必要とせず、しかもき
わめて簡単な施行手順で芯材引抜力を大巾に低減
することができる。このため、信頼性が高くしか
も安価な施上費で、芯材引き力低減効果が非常に
大きい土留工法が得られる。 第7図〜第10図は柱列土留工法において本発
明を実施する場合を例示する図である。 この場合は第7図に示すような一連のアースオ
ーガーを備えた掘削機7を使用し、所定ピツチで
円柱状の掘削孔を形成していく。各掘削孔に対し
ては、第8図および第9図に示すごとく、ソイル
セメント3を注入した後鋼製の芯材4を建込んで
いく。次いで、第10図に示すごとく、芯材4と
同程度の長さの棒状の仮電極5を挿入しその間に
電流を通電させる。この通電は前述の実施例の場
合と同様ソイルセメント硬化前に行ない、通電終
了後仮電極5は引抜かれる。なお、芯材4が建込
まれた掘削孔の間の地山に対しては第9図および
第10図中鎖線で示すごとく追加掘削を行なつて
各掘削孔を連続させて各追加掘削孔にもソイルセ
メントを注入して連続した止水性の土留壁が形成
される。こうして、前述の実施例の場合と同様、
土圧および水圧などの外力に対しては主に芯材4
で強度負担する止水性の連続した土留壁が造成さ
れる。工事完了後、各芯材4は前述の場合と同様
引抜かれる。その他の細部については、第1図〜
第6図の工法と実質上同じ要領で施工される。 本実施例によつても、第1図〜第6図の場合と
実質上同じ作用効果を達成することができる。 次に本発明を実際に適用した試験結果について
説明する。 この試験では止水性硬化材として砂と水とセメ
ントとベントナイトを表1の割合で混合したソイ
ルセメントを使用した。
[Field of Industrial Application] The present invention relates to an earth retaining method, and in particular to an earth retaining method that can reduce the pulling force when pulling out a core material installed before soil cement, which is a water-stop hardening material, hardens after construction is completed. . [Conventional technology] In urban areas, earth retaining methods such as the soil cement heaping method and the muddy water solidification heaping method are often implemented. It is practiced to install core materials such as In other words, when constructing columnar earth retaining walls or simple continuous walls, a method is adopted in which the walls are made of soil cement, etc., to ensure water stoppage, and the external forces such as surrounding earth pressure and water pressure are borne by the core material. There is. In such construction methods, the core material is pulled out and reused after construction is completed, from the viewpoint of effective use of materials and energy conservation. When carrying out this core material pulling out, it is strongly desired to reduce the pulling force to facilitate the work and prevent damage to the retaining wall, and several methods have been proposed for this purpose. That is, a method of applying a lubricant such as tar or wax to the core material before erection, a method of attaching bentonite in a semi-solid state to the core material before erection (for example, see Japanese Patent Application Laid-Open No. 57-51329), A method of spraying foam on the core material and cutting the edges in advance, a method of using a cement hardening retarder, or a method of reducing the adhesion force by using a concrete crushing agent during pulling out (for example, Japanese Patent Application Laid-Open No. 57-66230) ) have been proposed. [Problem to be solved by the invention] However, in the case of methods using lubricants, foams, or cement hardening retarders, it is necessary to perform treatment to reduce adhesion before installing the core material, so special treatment is required. The disadvantage is that it requires a detailed implementation process and equipment. In addition, methods using concrete crushing chemicals have the disadvantage that they are complicated and require a long time to implement. It is an object of the present invention to provide an earth retaining method that solves the problems of the prior art and can reduce core material pull-out force through extremely simple steps. [Means for Solving the Problems] A feature of the present invention is that the adhesion force is reduced by energizing the core material after the core material is installed and before the soil cement hardens, thereby achieving the above object. That is, according to the present invention, soil cement consisting of earth and sand, water, cement, etc. is injected into an excavated hole in which the ground is excavated and a retaining wall is constructed, and before the soil cement hardens, a steel core material is injected into the hole. In the earth retaining method, in which an earth retaining wall is built by hardening the soil cement, and then the core material is pulled out from the earth retaining wall, after the core material is erected and before the soil cement hardens, the core material is Provided is an earth retaining method characterized in that the force for pulling out the core material after hardening of the soil cement is reduced by applying a current to the soil cement to reduce the adhesion force with the soil cement. [Operation] According to the above configuration, excavation for the earth retaining wall is performed at the location where the earth retaining wall such as an underground continuous wall is to be constructed, the core material is installed in the soil cement poured into the excavated groove or the excavated hole, and the core material is installed as it is. By simply turning on electricity when the core material is erected and then leaving it as it is, the force required to pull out the core material after the soil cement has hardened can be greatly reduced. [Example] Figures 1 to 6 are diagrams showing one embodiment of the earth retaining method according to the present invention, and Figures 7 to 10 are diagrams showing other embodiments. The present invention will be specifically explained with reference to the following. In the earth retaining method according to the present invention, first, the first
A ground 2 is excavated by an excavator 1 such as a triple earth auger as shown in the figure, and then soil cement 3 is injected into the excavated trench as shown in FIG. 2. The soil cement used is a mixture of earth and sand, water, cement, and a water-stop hardening agent containing bentonite. Next, before the soil cement 3 hardens (usually immediately after pouring the soil cement), a steel core material 4 is built into the soil cement 3 as shown in FIG. The core materials 4 are placed at predetermined intervals as shown in FIGS. 4 and 5. As the core material 4, H-shaped steel, steel pipes, I-shaped steel, or steel sheet piles are used, but various steel materials can also be used as long as they can reinforce the earth retaining wall against external forces such as earth pressure and water pressure. can. When the construction of the core material 4 is completed, as shown in FIGS. 4 and 5, a pair of adjacent core materials 4 form a positive electrode and a negative electrode, and a current is passed between them. This energization can be carried out using either direct current or alternating current, and when energizing with alternating current, a pair of adjacent core members forms a positive electrode and a ground. In addition, if the interval between the core materials 4 is too large, or if the core materials 4 are installed one by one as in the column-row earth retaining method described later in FIGS. 7 to 10, the first
As shown in Figure 0, a temporary electrode 5 of approximately the same length is inserted in the vicinity of the core material 4, and current is applied between them as described above. A steel bar or a steel pipe is usually used as this temporary electrode 5, and this temporary electrode is pulled out after being energized. After the adhesion force is reduced by the above operations and the soil cement hardens, it is used as a retaining wall, and after the construction is completed, the core material 4 is pulled out using a crane 6 or a jack, as shown in FIG. The core material 4 that has been pulled out is reused. According to the earth retaining method explained above, since a current is passed between a pair of adjacent core materials 4 or between a core material and a temporary electrode before the soil cement hardens, the components of the soil cement around the core materials are changed. Therefore, the force required to pull out the core material 4 after the soil cement has hardened can be greatly reduced (for example, from 1/4 to 1/20). The mechanism of this decrease in adhesion is that gas is generated around the core material due to water electrolysis, water collects around the core material when energized, and the bentonite component, which is easily charged, is transferred to the periphery of the core material due to energization. It is judged that this is caused by factors such as being attracted to people. According to the embodiment described in FIGS. 1 to 6, compared to the conventional method for reducing the core material pull-out force as described above, the core material can be removed without requiring any special equipment or construction method, and with an extremely simple implementation procedure. The pulling force can be significantly reduced. Therefore, it is possible to obtain an earth retaining method that is highly reliable, has a low installation cost, and has a very large effect of reducing core material pulling force. FIG. 7 to FIG. 10 are diagrams illustrating the case where the present invention is implemented in the column-row earth retaining method. In this case, an excavator 7 equipped with a series of earth augers as shown in FIG. 7 is used to form cylindrical excavated holes at predetermined pitches. As shown in FIGS. 8 and 9, soil cement 3 is injected into each excavation hole, and then a steel core material 4 is installed. Next, as shown in FIG. 10, a rod-shaped temporary electrode 5 having the same length as the core material 4 is inserted, and a current is passed between them. This energization is carried out before the soil cement hardens, as in the previous embodiment, and after the energization ends, the temporary electrode 5 is pulled out. In addition, for the ground between the excavated holes where the core material 4 was built, additional excavation is performed as shown by the chain lines in Figures 9 and 10, and each additional excavated hole is made consecutively. Soil cement is injected into the area to form a continuous water-tight earth retaining wall. Thus, as in the previous embodiment,
Core material 4 is mainly used for external forces such as earth pressure and water pressure.
A continuous water-tight earth retaining wall will be constructed that will provide strength and strength. After the construction is completed, each core material 4 is pulled out in the same way as in the previous case. For other details, see Figure 1~
The construction method is substantially the same as that shown in Figure 6. Also in this embodiment, substantially the same effects as in the case of FIGS. 1 to 6 can be achieved. Next, test results obtained by actually applying the present invention will be explained. In this test, soil cement, which is a mixture of sand, water, cement, and bentonite in the proportions shown in Table 1, was used as a water-stop hardening material.

【表】 芯材としては埋込み長さ150mm×巾30mmの平鋼
を使用し、ソイルセメントとの付着面積は約90cm2
であつた。この芯材を鉛直に建込み、ソイルセメ
ント硬化前に2本の芯材を1組としてこれらの間
に直流12Vで電流を通電した。通電時間は30秒間
と5分間との2種類を行なつた。芯材の電極間の
距離は7〜10cmとした。7日間放置してソイルセ
メントが硬化(固化)した後の引抜き力を通電な
しの引抜き力と比較した試験結果は表2のとおり
であつた。
[Table] A flat steel with an embedded length of 150 mm x width of 30 mm is used as the core material, and the adhesion area with soil cement is approximately 90 cm 2
It was hot. This core material was erected vertically, and before the soil cement hardened, a current of 12 V DC was passed between the two core materials as a set. Two types of current application time were used: 30 seconds and 5 minutes. The distance between the electrodes of the core material was 7 to 10 cm. Table 2 shows the test results in which the pull-out force after the soil cement had hardened (solidified) after being left for 7 days was compared with the pull-out force without energization.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなごとく、地中連続壁等
の土留壁を施工する位置に土留壁用の掘削を行
い、その掘削溝に芯材を設置し、そのまま通電
し、その後は放置しておくだけで芯材引抜力を大
巾に低減させることができる。そのため、その効
果が確実であるばかりか、他に作業用の場所を用
意する必要がなく、また作業手順が極めて簡単で
あり、工事現場作業の省力化、及び工期短縮を図
ることのできる土留工法が得られる。
As is clear from the above explanation, all you need to do is excavate the earth retaining wall at the location where the earth retaining wall such as an underground continuous wall will be constructed, install the core material in the excavated groove, turn on the electricity as it is, and then leave it as it is. The core material pulling force can be greatly reduced. Therefore, the earth retaining method not only has a certain effect, but also eliminates the need to prepare another work area and has an extremely simple work procedure, which can save labor at the construction site and shorten the construction period. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は本発明による土留工法の一実
施例の施工手順を示す説明図、第7図〜第10図
は本発明による土留工法の他の実施例の施工手順
を示す説明図である。 1……掘削機、2……地山、3……ソイルセメ
ント、4……鋼製の芯材、5……仮電極、6……
クレーン。
Figures 1 to 6 are explanatory diagrams showing the construction procedure of one embodiment of the earth retaining method according to the present invention, and Figures 7 to 10 are explanatory diagrams showing the construction procedure of another embodiment of the earth retaining method according to the present invention. It is. 1... Excavator, 2... Earth, 3... Soil cement, 4... Steel core material, 5... Temporary electrode, 6...
crane.

Claims (1)

【特許請求の範囲】 1 地山を掘削して土留壁を施工する掘削穴に、
土砂、水、セメント等からなるソイルセメントを
注入し、このソイルセメントが硬化する前に鋼製
の芯材を建込み、ソイルセメントの硬化により土
留壁を築造し、その後この土留壁から前記芯材を
引き抜く土留工法において、 前記芯材を建込んだ後、前記ソイルセメントが
硬化する前に、前記芯材に電流を通電して前記ソ
イルセメントとの付着力を低減させることによ
り、ソイルセメント硬化後の芯材引抜力を低減さ
せることを特徴とする土留工法。
[Claims] 1. In an excavated hole in which a retaining wall is constructed by excavating the ground,
Soil cement consisting of earth, sand, water, cement, etc. is injected, and before this soil cement hardens, a steel core material is built in. As the soil cement hardens, an earth retaining wall is built, and then the core material is poured from this earth retaining wall. In the earth retaining method of pulling out soil cement, after the core material is erected and before the soil cement hardens, current is applied to the core material to reduce the adhesion force with the soil cement, so that the soil cement hardens after the soil cement hardens. An earth retaining method characterized by reducing the core material pulling force.
JP6513483A 1983-04-13 1983-04-13 Sheathing work Granted JPS59192129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6513483A JPS59192129A (en) 1983-04-13 1983-04-13 Sheathing work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6513483A JPS59192129A (en) 1983-04-13 1983-04-13 Sheathing work

Publications (2)

Publication Number Publication Date
JPS59192129A JPS59192129A (en) 1984-10-31
JPH0470446B2 true JPH0470446B2 (en) 1992-11-11

Family

ID=13278098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6513483A Granted JPS59192129A (en) 1983-04-13 1983-04-13 Sheathing work

Country Status (1)

Country Link
JP (1) JPS59192129A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195927A (en) * 1983-04-19 1984-11-07 Takenaka Komuten Co Ltd Drawing work of steel tube in auger piling work
JPH04185812A (en) * 1990-11-21 1992-07-02 Ohbayashi Corp Drawing of locking pipe
JP2848100B2 (en) * 1992-04-07 1999-01-20 株式会社大林組 Underground pile driving method
JPH06322746A (en) * 1993-03-18 1994-11-22 Seiko Kogyo Kk Agitating and mixing of soil with solidification material
JP2012214979A (en) * 2011-03-31 2012-11-08 Ohbayashi Corp Extraction method for steel underground wall
JP5790091B2 (en) * 2011-03-31 2015-10-07 株式会社大林組 Construction method of underground wall and method for extracting core material of underground wall
JP6898125B2 (en) * 2016-03-29 2021-07-07 前田建設工業株式会社 How to build an underground wall
JP7108495B2 (en) * 2018-08-20 2022-07-28 株式会社技研製作所 Construction tools and equipment
JP7241495B2 (en) * 2018-09-18 2023-03-17 前田建設工業株式会社 Underground friction cut construction method, underground friction cut construction device
JP6665326B1 (en) * 2019-01-30 2020-03-13 コミヤ工事有限会社 How to bury a sheet pile
JP6847176B1 (en) * 2019-09-25 2021-03-24 藤井 健之 Pile construction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367903A (en) * 1976-11-30 1978-06-16 Ebine Gisuke Method of reducing drawwout resistance of steel driven
JPS5751329A (en) * 1980-09-11 1982-03-26 Takenaka Komuten Co Ltd Adherence of bentonite to steel member for reducing drawing resistance
JPS5766230A (en) * 1980-10-08 1982-04-22 Shozo Yoshida Drawing work for steel material of landslide protection wall

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367903A (en) * 1976-11-30 1978-06-16 Ebine Gisuke Method of reducing drawwout resistance of steel driven
JPS5751329A (en) * 1980-09-11 1982-03-26 Takenaka Komuten Co Ltd Adherence of bentonite to steel member for reducing drawing resistance
JPS5766230A (en) * 1980-10-08 1982-04-22 Shozo Yoshida Drawing work for steel material of landslide protection wall

Also Published As

Publication number Publication date
JPS59192129A (en) 1984-10-31

Similar Documents

Publication Publication Date Title
WO2020173100A1 (en) Reinforcement apparatus and construction method for local freezing reinforcement of deep foundation pit in water-rich sand gravel stratum
CN111236957B (en) Mechanical pipe jacking construction process
US3412562A (en) Structural wall and method
CN111577334B (en) Operating tunnel inverted arch repairing method
JPH0470446B2 (en)
KR20040099586A (en) Method for constructing a tunnel using front jacking construction method
JPS6354093B2 (en)
KR101879602B1 (en) Construction method for underground structure
EP0393032A4 (en) Reinforcement for continuously-cast concrete walls
CN217999598U (en) Joint stratum large-span tunnel pilot tunnel subsection step excavation supporting construction in advance
JPS6248011B2 (en)
JPH04194223A (en) Open shield construction method
KR100374061B1 (en) Soil improvement technique for foundation applied to reinforced earth theory using h-pile and belt-types armature material
JPH0931972A (en) Construction of underground continuous wall
JP3020882B2 (en) Construction method of building structure with underground space
JPH0574676B2 (en)
JPH10159074A (en) Execution method of underground structure in cut and cover tunneling method
CN115341910A (en) Tunnel construction method with complex geological condition under expressway and tunnel
KR101516745B1 (en) Column member and construction method for underground structure without temporary structure using the same
JPH0328414A (en) Execution method for joint part in continuous subterranean wall construction method
JP2556415B2 (en) Construction method of self-supporting retaining wall
JPH03244711A (en) Preventing ground sinking due to extraction of earth holding member
JPS6389733A (en) Laying work of hume pipe
JPS6192215A (en) Method and device of reducing pull-out resistance of existing pile material
JPH04216719A (en) Setting construction for reinforcement frame and underground beam