JPH0470244B2 - - Google Patents

Info

Publication number
JPH0470244B2
JPH0470244B2 JP16767284A JP16767284A JPH0470244B2 JP H0470244 B2 JPH0470244 B2 JP H0470244B2 JP 16767284 A JP16767284 A JP 16767284A JP 16767284 A JP16767284 A JP 16767284A JP H0470244 B2 JPH0470244 B2 JP H0470244B2
Authority
JP
Japan
Prior art keywords
alkali
iodide
reaction
hydrazine
iodine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16767284A
Other languages
Japanese (ja)
Other versions
JPS6148403A (en
Inventor
Ichiro Kurita
Shotaro Taya
Yutaka Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP16767284A priority Critical patent/JPS6148403A/en
Publication of JPS6148403A publication Critical patent/JPS6148403A/en
Publication of JPH0470244B2 publication Critical patent/JPH0470244B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はヨウ化アルカリの製法に関する。更に
詳記すれば、水酸化アルカリ又は炭酸(重炭酸を
含む)アルカリ(以下これらを総称して、水酸化
アルカリ等、という)とヒドラジンとヨウ素とを
反応させる、ヨウ化アルカリの製法に係る。ヨウ
化アルカリは種々の化学反応又は分析等に供せら
れる試薬として、有用であるのは勿論、更にヨウ
化ナトリウムとかヨウ化カリウムは医薬品として
変質剤、去痰剤、利尿剤であり、ヨウ化カリウム
は写真用乳剤の素材であり、また近時、ヨウ化ナ
トリウムは僅量のヨウ化タリウムと混じて、シン
チレーシヨンカウンター用単結晶レンズ素材とし
て、ヨウ化セシウムは原子炉のシンチレーシヨン
カウンター用のレンズ素材としてなど、その有用
用途例は増大しつゝあり、安価で高純度なヨウ化
アルカリの工業的供給は、極めて強く希求されて
いる。 従来ヨウ化アルカリは、水酸化アルカリとヨウ
素との反応によつて製造されているが、その方法
では5モルのヨウ化アルカリと共に、必然的に1
モルのヨウ素酸アルカリが副生するので、成績体
混晶に炭素末とか亜硫酸ナトリウムとかの還元剤
を混合し、数百度に加熱するなどして、副生ヨウ
素酸アルカリをヨウ化アルカリに転ずる処理が不
可欠である。この操作は煩雑であり、且つヨウ素
が遊離して、反応器材質に悪影響を及ぼすなど、
不利な問題が避けられない。 生産性の高い、安全にして安価容易な製法によ
つて、高純度のヨウ化アルカリを得ることを目的
として、本発明者らは鋭意研究した結果、ヒドラ
ジンの還元性を巧みに且つ極めて効果的に利用し
て、その目的を達し、本発明を完成した。 本発明方法を一般的に詳記すれば次の通りであ
る。水に溶解乃至懸濁した水酸化アルカリ等を攪
拌し乍ら、ヒドラジンを添加する。攪拌を続け乍
らヨウ素を徐ゝに添加する。反応の進行につれて
窒素ガス〔炭酸(重炭酸を含む)アルカリを原料
とする場合は、炭酸ガスを含有)が放出され、反
応終了と共にその放出が止む。反応終了後の溶液
を濃縮し、目的のヨウ化アルカリを瀘取する。本
発明方法の反応は全く副生成物を伴わないので、
反応後特別な精製処理を加える必要はない。反応
液を濃縮して単離するだけで、目的の高純度のヨ
ウ化アルカリが収得できる。 ヒドラジンとヨウ素との添加順は、何れを先行
させてもよいが、水に難溶性の水酸化アルカリ等
から出発する場合は、ヒドラジンを先行する方が
操作し易い。 不純物の含有を防ぐ為に、高純度の原料を用い
ると共に、反応媒体としての水も、純水又は蒸溜
水を用いるのが好ましいのは当然である。反応液
を濃縮する前に、通常行われる如く、PH調整した
り、濾過乃至脱色濾過することも好ましい。又濃
縮の際の危険絶無の為に、反応終了後にヒドラジ
ンの残存等の無いことを、分析によつて確認する
ことも望ましい。 水酸化アルカリ等とヒドラジンとヨウ素とは、
当量を用いれば良く、殊更その何れかを過剰に用
いる必要はない。但し、ヒドラジンの還元作用を
効果的ならしめる為に、PHをアルカリ性に保持
し、同じくアルカリ性で反応を終了する程度に、
水酸化アルカリ等を、微かに過剰に使用すべきで
ある。いつたん反応終了した後に、微量の原料水
酸化アルカリ等を添加して、反応終了時のPHをア
ルカリに調整することもある。 反応媒体の水は、水酸化アルカリ等の種類によ
つて、全溶解する量を用いてもよく、一部が溶解
して大部分が懸濁する量を用いてもよい。ヨウ化
アルカリが水に易溶性であるから、後者の場合も
反応進行につれて完溶に到るので、本発明方法の
適用に支障は皆無である。水酸化アルカリ等を完
溶する程の大量の水を使用すれば、反応後の濃縮
に於いて不利であろう。反応に当つては特に加温
することも冷却することも、通常その必要はない
が、反応は稍々発熱的であつて、通常徐々に昇温
する。 ここにヨウ化アルカリのアルカリとは、アルカ
リ金属及びアルカリ土類金属をいう。ヒドラジン
としては、最も操作し易いものとして、ヒドラジ
ンヒドラートとかその水溶液が使用できる。濃厚
なものが使用しにくいときは、適宜稀釈して使用
して差支えない。 本発明方法により、工業的規模で高純度のヨウ
化アルカリが安価容易に得られるに到り、斯業へ
貢献する処多大である。以下に実施例を示し、本
発明を更に説明するが、これら実施例は本発明を
限定するものでないこと勿論である。 実施例 1 水酸化カリウム111Kgを純水200に溶解、80%
ヒドラジンヒドラート33Kgを30%水溶液に稀釈し
たものを投入、よく混合する。攪拌し乍らヨウ素
250Kgを徐々に投入する。この投入につれてガス
が放出され、反応終了と共に止む。反応後のPHが
アルカリ性(好ましくはPH9〜10)であることを
確認し、ヒドラジンをp−ジメチルアミノベンズ
アルデヒドによる525nm吸光々度法、ヨウ素酸を
硫酸々性にして420nmで検定することにより、そ
れらが検出されないことを確認、しかる後加熱濃
縮する。第一段濃縮後に乾燥結晶245Kg、第二段
濃縮後に乾燥結晶65Kgのヨウ化カリウムを収得し
た。収率94%であり、両成績体共に、試薬特級の
JISに定める規格に合格する品質を確認した。 実施例 2 炭酸セシウム501Kgを純水500に溶解し、80%
ヒドラジンヒドラート48Kgを投入、攪拌し乍らヨ
ウ素390Kgを徐々に投入、実施例1と同様にして
ヨウ化セシウム第一晶598Kgと第二晶159Kgを得
た。収率95%であり、両晶共に、ヨウ化カリウム
又はヨウ化ナトリウムの試薬特級に匹敵する品質
を示した。 実施例 3〜9 実施例1と同様にして、次表の通り実施した。
The present invention relates to a method for producing alkali iodide. More specifically, the present invention relates to a method for producing alkali iodide, which involves reacting alkali hydroxide or alkali carbonate (including bicarbonate) (hereinafter collectively referred to as alkali hydroxide, etc.), hydrazine, and iodine. Alkali iodide is of course useful as a reagent used in various chemical reactions or analyses, and sodium iodide and potassium iodide are used as pharmaceutical agents such as alterants, expectorants, and diuretics. is a material for photographic emulsions, and recently, sodium iodide has been mixed with a small amount of thallium iodide to be used as a material for single crystal lenses for scintillation counters, and cesium iodide has been used as a material for lenses for scintillation counters in nuclear reactors. The number of useful uses of alkali iodide, such as as a raw material, is increasing, and there is an extremely strong demand for an industrial supply of inexpensive and highly pure alkali iodide. Conventionally, alkali iodide has been produced by the reaction of alkali hydroxide and iodine, but in this method, along with 5 moles of alkali iodide, 1
Since a mole of alkali iodate is produced as a by-product, the by-product alkali iodate is converted into alkali iodide by mixing a reducing agent such as carbon powder or sodium sulfite with the resultant mixed crystal and heating it to several hundred degrees. is essential. This operation is complicated, and iodine is liberated, which adversely affects the reactor material.
Unfavorable problems are inevitable. With the aim of obtaining highly pure alkali iodide using a highly productive, safe, inexpensive and easy production method, the present inventors have conducted extensive research and have successfully improved the reducing properties of hydrazine in a skillful and extremely effective manner. The present invention was completed by utilizing the present invention. The general details of the method of the present invention are as follows. While stirring the alkali hydroxide etc. dissolved or suspended in water, hydrazine is added. Slowly add the iodine while continuing to stir. As the reaction progresses, nitrogen gas (contains carbon dioxide gas when carbonic acid (including bicarbonate) or alkali is used as the raw material) is released, and the release stops when the reaction is completed. After the reaction is completed, the solution is concentrated and the desired alkali iodide is filtered off. Since the reaction of the method of the invention does not involve any by-products,
There is no need to add any special purification treatment after the reaction. The desired high-purity alkali iodide can be obtained simply by concentrating and isolating the reaction solution. Hydrazine and iodine may be added in any order, but when starting from an alkali hydroxide or the like that is sparingly soluble in water, it is easier to add hydrazine first. Naturally, in order to prevent the inclusion of impurities, it is preferable to use highly pure raw materials and to use pure water or distilled water as the reaction medium. Before concentrating the reaction solution, it is also preferable to adjust the pH or perform filtration or decolorization filtration as usual. In order to eliminate any risks during concentration, it is also desirable to confirm by analysis that no hydrazine remains after the reaction is complete. What are alkali hydroxide, hydrazine, and iodine?
It is sufficient to use an equivalent amount, and there is no particular need to use an excess of either of them. However, in order to make the reduction effect of hydrazine effective, the pH should be kept alkaline and the reaction should be completed at the same alkaline level.
Alkali hydroxide etc. should be used in slight excess. Once the reaction is complete, a trace amount of raw material alkali hydroxide or the like may be added to adjust the pH to alkaline at the time the reaction is completed. The water used as the reaction medium may be used in an amount that will completely dissolve the alkali hydroxide, or may be used in an amount that will partially dissolve and most of the water will be suspended. Since alkali iodide is easily soluble in water, complete dissolution is achieved as the reaction progresses in the latter case as well, so there is no problem in applying the method of the present invention. If a large amount of water is used to completely dissolve the alkali hydroxide etc., it will be disadvantageous in concentration after the reaction. There is usually no need for particular heating or cooling during the reaction, but the reaction is somewhat exothermic and the temperature usually rises gradually. Here, the alkali of alkali iodide refers to alkali metals and alkaline earth metals. As the hydrazine, hydrazine hydrate or its aqueous solution can be used as it is the easiest to handle. If it is difficult to use a concentrated product, it may be diluted as appropriate. By the method of the present invention, highly pure alkali iodide can be obtained easily and inexpensively on an industrial scale, making a great contribution to this industry. The present invention will be further explained below with reference to Examples, but it goes without saying that these Examples do not limit the present invention. Example 1 Dissolve 111Kg of potassium hydroxide in 200% pure water, 80%
Add 33 kg of hydrazine hydrate diluted with a 30% aqueous solution and mix well. Iodine while stirring
Gradually introduce 250Kg. Gas is released as the mixture is added, and stops when the reaction is completed. After confirming that the pH after the reaction is alkaline (preferably PH 9 to 10), hydrazine is analyzed using p-dimethylaminobenzaldehyde at 525 nm spectrophotometry, and iodic acid is converted to sulfuric acid and analyzed at 420 nm. Confirm that it is not detected, then heat and concentrate. After the first stage concentration, 245 kg of dry crystals of potassium iodide were obtained, and after the second stage concentration, 65 kg of dry crystals of potassium iodide were obtained. The yield was 94%, and both products were of special reagent grade.
We confirmed that the quality passed the standards set by JIS. Example 2 Dissolve 501 kg of cesium carbonate in 500% pure water to 80%
48 kg of hydrazine hydrate was added, and while stirring, 390 kg of iodine was gradually added. In the same manner as in Example 1, 598 kg of first crystals of cesium iodide and 159 kg of second crystals were obtained. The yield was 95%, and both crystals showed quality comparable to special grade potassium iodide or sodium iodide reagents. Examples 3 to 9 The experiments were carried out in the same manner as in Example 1, as shown in the following table.

【表】【table】

【表】 なお、実施例6及び7に於いては、ヨウ素を添
加した後、ヒドラジンを添加した。全実施例共、
収得乾燥結晶は、ヨウ化カリウム又はヨウ化ナト
リウムの試薬特級に匹敵する品質を示した。
[Table] In Examples 6 and 7, hydrazine was added after iodine was added. All examples,
The dried crystals obtained showed a quality comparable to reagent grade potassium or sodium iodide.

Claims (1)

【特許請求の範囲】 1 水酸化アルカリ又は炭酸(重炭酸を含む)ア
ルカリに、ヒドラジン及びヨウ素を反応させるこ
とを特徴とする、ヨウ化アルカリの製法。 2 反応媒体が水である、特許請求の範囲第1項
記載のヨウ化アルカリの製法。 3 反応をアルカリ性で行い且つアルカリ性で完
了する、特許請求の範囲第1項又は第2項記載の
ヨウ化アルカリの製法。
[Claims] 1. A method for producing alkali iodide, which comprises reacting an alkali hydroxide or an alkali carbonate (including bicarbonate) with hydrazine and iodine. 2. The method for producing alkali iodide according to claim 1, wherein the reaction medium is water. 3. The method for producing alkali iodide according to claim 1 or 2, wherein the reaction is carried out under alkalinity and completed under alkalinity.
JP16767284A 1984-08-10 1984-08-10 Manufacture of alkali iodide Granted JPS6148403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16767284A JPS6148403A (en) 1984-08-10 1984-08-10 Manufacture of alkali iodide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16767284A JPS6148403A (en) 1984-08-10 1984-08-10 Manufacture of alkali iodide

Publications (2)

Publication Number Publication Date
JPS6148403A JPS6148403A (en) 1986-03-10
JPH0470244B2 true JPH0470244B2 (en) 1992-11-10

Family

ID=15854076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16767284A Granted JPS6148403A (en) 1984-08-10 1984-08-10 Manufacture of alkali iodide

Country Status (1)

Country Link
JP (1) JPS6148403A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1048002C (en) * 1995-10-20 2000-01-05 中国核工业总公司北京核仪器厂 Method for synthesizing high-purity sodium iodide by using iodine and sodium carbonate
JP4976660B2 (en) * 2005-05-12 2012-07-18 合同資源産業株式会社 Method for producing alkali iodide
JP5437082B2 (en) 2008-01-31 2014-03-12 日宝化学株式会社 Iodine compound production system and production method
WO2009096447A1 (en) 2008-01-31 2009-08-06 Nippoh Chemicals Co., Ltd. Inorganic iodide, production method thereof, and production system thereof
JP2013103851A (en) * 2011-11-11 2013-05-30 Nippon Chem Ind Co Ltd Lithium iodide anhydrate, method for producing lithium iodide anhydrate, solid electrolyte and lithium ion battery
JP6180717B2 (en) * 2012-09-26 2017-08-16 日宝化学株式会社 Method for producing lithium iodide aqueous solution and use thereof
JP6180718B2 (en) * 2012-09-26 2017-08-16 日宝化学株式会社 Method for producing lithium iodide aqueous solution and use thereof
CN113023752A (en) * 2021-03-11 2021-06-25 合肥市未来药物开发有限公司 Potassium iodide and preparation method and application thereof

Also Published As

Publication number Publication date
JPS6148403A (en) 1986-03-10

Similar Documents

Publication Publication Date Title
JPH0470244B2 (en)
JPH07242414A (en) Production of alkali metal iodic salt
US4232175A (en) Nitrosation of aromatic compounds
US3887695A (en) Production of sodium hydrosulfite from formates
US3917719A (en) Process for the preparation of 4-nitro-m-cresol
US3897544A (en) Method for producing anhydrous sodium dithionite
JP3394981B2 (en) Method for producing free hydroxylamine aqueous solution
JPS61282355A (en) Manufacture of 4,4'-dinitrostilbene-2,2'-disulfonate
US3576598A (en) Production of sodium hydrosulfite from formates
WO1992012124A1 (en) Novel process for producing semicarbazide
JPS589767B2 (en) Potassium recovery method
CA2040109A1 (en) Process for producing potassium sulfate and hydrochloric acid
JP2915515B2 (en) Process for producing O-methylisourea sulfate
JPS59206335A (en) Manufacture of 6-chloro-2,4-dinitrophenol
JPH04261189A (en) Production of tin trifluoromethanesulfonate
JP2590228B2 (en) Method for producing diiodomethyl-p-tolylsulfone
JP3169680B2 (en) Process for producing 3,5-dichlorosalicylic acid and derivatives thereof
JP4491662B2 (en) Method for producing tetrabromobisphenol A
JPH04352758A (en) Production of 1,3-dialkylurea
JP2698429B2 (en) Method for producing secondary gold cyanide salt
SU1130528A1 (en) Composition for selective recovery of lead sulfide from products of metallurgical processes
US576494A (en) Adolf glaus
JP4383969B2 (en) Method for producing aqueous lithium nitrite solution
JPS5845425B2 (en) Method for producing naphthostyrills
PL112050B1 (en) Method of producing of alkali metal stannate