JPH0470187A - Chrominance signal transmission device - Google Patents

Chrominance signal transmission device

Info

Publication number
JPH0470187A
JPH0470187A JP18339490A JP18339490A JPH0470187A JP H0470187 A JPH0470187 A JP H0470187A JP 18339490 A JP18339490 A JP 18339490A JP 18339490 A JP18339490 A JP 18339490A JP H0470187 A JPH0470187 A JP H0470187A
Authority
JP
Japan
Prior art keywords
band
frequency
frequency component
signal
color difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18339490A
Other languages
Japanese (ja)
Inventor
Shigenori Shibue
重教 渋江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18339490A priority Critical patent/JPH0470187A/en
Publication of JPH0470187A publication Critical patent/JPH0470187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Color Television Systems (AREA)

Abstract

PURPOSE:To improve a horizontal resolution without enlarging an occupied band by providing a line sequentiality means, a band means, a frequency conversion means and an orthogonal modulation means. CONSTITUTION:The band division means 100 divides the color difference of a wide band into a low frequency component and a high frequency component and the frequency modulation means 200 frequency-shifts the high frequency component of the color difference signal so that a band becomes the same as that of the low frequency component. The orthogonal modulation means 300 orthogonally modulates a carrier by two phases by the low frequency component and the high frequency component of the color difference signal. Namely, the color difference signal is made into line-sequentiality 32 and it is resolved into two high and low bands. Then, the high frequency component is frequency- shifted to a low band-side and two frequency components are orthogonally modulated 300 and transmitted. Thus, the chrominance signal of the high band can be transmitted without enlarging the width of the occupied frequency band and the interference of the low component and the high component by orthogonal modulation hardly exist. Thus, a picture quality can be greatly improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は色信号を伝送する色信号伝送装置に関し、特
に水平解像度の向上を図ったものに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a color signal transmission device for transmitting color signals, and particularly to one that aims to improve horizontal resolution.

[従来の技術] テレビジョン信号を効率的に伝送する方法として1.輝
度信号の高域に色信号を周波数インターリーブして多重
するNTSC方式や、色差信号を作りこの色差信号の搬
送並波の位相を1ラインごとに反転して送り出すPAL
方式が現在テレビジョン放送の主流となっている。第5
図は、例えばコロナ社刊「改定電子応用技術」69ペー
ジに記載されてたNTSC方式による色信号伝送方式に
よる色信号伝送装置のブロック図であり、図において、
1.2は色差信号入力端子、3は第1の平衡変調器、4
は第2の平衡変調器、5は搬送波発生装置、6は第1の
遅相回路、7は第2の遅相回路、8は加算器、9はバー
スト発生回路、10は出力端子である。
[Prior Art] As a method for efficiently transmitting television signals, 1. NTSC method, which frequency-interleaves and multiplexes the color signal in the high frequency range of the luminance signal, and PAL method, which creates a color difference signal and inverts the phase of the carrier parallel wave of this color difference signal for each line and sends it out.
This method is currently the mainstream for television broadcasting. Fifth
The figure is a block diagram of a color signal transmission device using the NTSC color signal transmission method described in, for example, page 69 of "Revised Electronic Application Technology" published by Corona Publishing.
1.2 is a color difference signal input terminal, 3 is a first balanced modulator, 4
is a second balanced modulator, 5 is a carrier wave generator, 6 is a first phase delay circuit, 7 is a second phase delay circuit, 8 is an adder, 9 is a burst generation circuit, and 10 is an output terminal.

以下動作について説明する。尚、実際にはテレビジョン
における色信号の伝送では、■信号及びQ信号が伝送さ
れるが、こては説明を簡単にするため色差信号すなわち
R−Y及びB−Y信号による説明を行う。
The operation will be explained below. Incidentally, in actual transmission of color signals in a television, the (1) signal and the Q signal are transmitted, but for the sake of simplicity, the explanation will be based on the color difference signals, that is, the R-Y and B-Y signals.

端子1及び端子2に、第6図(a)、 (b)に示すよ
うな色差信号R−Y、B−¥信号がそれぞれ人力され、
R−Y信号は第1の平衡変調器3へ、B−Y信号は第2
の平衡変調器4−1それぞれ供給される。
Color difference signals R-Y and B-¥ signals as shown in FIGS. 6(a) and (b) are input to terminal 1 and terminal 2, respectively, and
The R-Y signal is sent to the first balanced modulator 3, and the B-Y signal is sent to the second balanced modulator 3.
balanced modulators 4-1 are supplied, respectively.

また、搬送波発生回路5は約3.58MHzの連続信号
を発生し、その出力信号は第1の遅相回路6へ供給され
て90度遅相される。次に、第1の遅相回路6出力信号
は、第2の遅相回路7への供給されさらに90度遅相さ
れる。上記搬送波発生回路5出力信号、第1の遅相回路
6出力信号および第2の遅相回路7出力信号の位相関係
は第7図(a)に示すようになっている。次に第1の遅
相回路6出力信号は第1の平衡変調器3へ、同様に第2
の遅相回路7出力信号は第2の平衡変調器4に搬送波と
して供給される。
Further, the carrier wave generation circuit 5 generates a continuous signal of approximately 3.58 MHz, and the output signal thereof is supplied to the first phase delay circuit 6 and delayed in phase by 90 degrees. Next, the output signal of the first phase delay circuit 6 is supplied to the second phase delay circuit 7 and further delayed by 90 degrees. The phase relationship among the output signal of the carrier wave generating circuit 5, the output signal of the first phase delay circuit 6, and the output signal of the second phase delay circuit 7 is as shown in FIG. 7(a). Next, the output signal of the first phase delay circuit 6 is sent to the first balanced modulator 3, and similarly to the second phase delay circuit 6.
The output signal of the phase delay circuit 7 is supplied to the second balanced modulator 4 as a carrier wave.

上記第1および第2の平衡変調器3.4は搬送波抑圧の
振幅変調器であって、それぞれの位相の搬送波を色差信
号B−Y、B−Y信号で振幅変調する。
The first and second balanced modulators 3.4 are carrier wave suppression amplitude modulators, and amplitude modulate the carrier waves of the respective phases with the color difference signals B-Y and B-Y signals.

次に、第1の平衡変調回路3出力信号と、第2の平衡変
調回路4出力信号は加算器8に供給されて合成される。
Next, the output signal of the first balanced modulation circuit 3 and the output signal of the second balanced modulation circuit 4 are supplied to the adder 8 and combined.

この梯子を第7図(b)に示す。図かられかるように、
2つの色差信号の振幅によって加算器8出力信号の位相
および振幅が変化する。
This ladder is shown in FIG. 7(b). As you can see from the diagram,
The phase and amplitude of the adder 8 output signal change depending on the amplitudes of the two color difference signals.

ここで位相変化は色相の変化に対応し、また振幅の変化
は彩度(飽和度)の変化に対応している。
Here, a change in phase corresponds to a change in hue, and a change in amplitude corresponds to a change in saturation.

また、搬送波を抑圧して伝送しているため、復調過程に
おいて、搬送波を再生する必要がある。
Furthermore, since the carrier wave is suppressed and transmitted, it is necessary to regenerate the carrier wave in the demodulation process.

このため、搬送波発生回路5出力信号をハース[・発生
回路9へ供給して約10サイクルのカラーバースト信号
をつくる。このカラーバースト信号は加算器8に供給さ
れて映像信号の水平帰線期間に多重して伝送される。カ
ラーバースト信号の位相は第7図0))に示すようにB
−Y軸と一致するようにされている。加算器8出力信号
は出力端子10へ供給されて搬送色信号として出力され
る。第8図はその出力波形を示す。
For this purpose, the output signal of the carrier wave generation circuit 5 is supplied to the Haas generation circuit 9 to generate a color burst signal of about 10 cycles. This color burst signal is supplied to an adder 8, and is multiplexed and transmitted during the horizontal retrace period of the video signal. The phase of the color burst signal is B as shown in Figure 7 0)).
- It is aligned with the Y axis. The adder 8 output signal is supplied to an output terminal 10 and output as a carrier color signal. FIG. 8 shows the output waveform.

次に上述した動作を第9図を用いて周波数軸上で見てみ
ると、図(a)は、色差信号のベースバンド帯域を示し
たものである。色差信号の周波数帯域幅は輝度信号のそ
れと同様の帯域をもっているが、輝度信号への妨害等を
考慮して約500KHz程度に帯域制限されいてる。こ
のような色差信号を第1および第2の平衡変調器3.4
で変調すると、図[有])に示すようにそれぞれ搬送波
発生回路5出力信号の周波数fscを中心として両側に
500HKzO幅をもつ信号に変換される。これらの信
号を加算器8で合成した信号の帯域は図(C)で示すよ
うに図(b)と全く同じものである。
Next, when looking at the above-mentioned operation on the frequency axis using FIG. 9, FIG. 9(a) shows the baseband band of the color difference signal. The frequency bandwidth of the color difference signal is similar to that of the luminance signal, but the frequency band width is limited to about 500 KHz in consideration of interference with the luminance signal. Such color difference signals are transmitted to first and second balanced modulators 3.4.
When the signal is modulated by , the signal is converted into a signal having a width of 500 HKzO on both sides centered on the frequency fsc of the output signal of the carrier wave generation circuit 5, as shown in FIG. The band of the signal obtained by combining these signals by the adder 8 is exactly the same as that shown in FIG. 8(b), as shown in FIG.

このように、直交した2つの搬送波を異なる2つの信号
で搬送波抑圧振幅変調して合成した場合、占有帯域を増
すことなる2つの信号を同時に伝送できる。しかし、色
差信号の占有帯域は輝度信号の帯域と同じで4MHz程
度であるが、一般には輝度信号との干渉の問題を考慮し
た場合、500KHz程度の伝送しかできないのが実情
である。
In this way, when two orthogonal carrier waves are combined by carrier suppression amplitude modulation using two different signals, it is possible to simultaneously transmit two signals that increase the occupied band. However, although the occupied band of the color difference signal is the same as the band of the luminance signal, which is about 4 MHz, the reality is that it is generally possible to transmit only about 500 kHz when the problem of interference with the luminance signal is considered.

したがって、画像の垂直解像度のわりに水平解像度が著
しく低くなってバランスの悪い画像となっている。
Therefore, the horizontal resolution of the image is significantly lower than the vertical resolution, resulting in an unbalanced image.

〔発明が解決しようとする課題コ 従来の色信号伝送装置は以上のように構成されているの
で、垂直解像度は高くとれるものの、水平解像度は極め
て袂くなり水平、垂直の解像度がアンバランスとなって
、画像品質を劣化させるという問題点があった。
[Problem to be solved by the invention] Since the conventional color signal transmission device is configured as described above, it is possible to obtain a high vertical resolution, but the horizontal resolution becomes extremely low, resulting in an imbalance between the horizontal and vertical resolutions. However, there was a problem in that the image quality deteriorated.

この発明は上記のような問題点を解消するためになされ
たもので、占有帯域を広げることなく水平解像度を改善
することができる色信号伝送装置を提供することを目的
とする。
The present invention was made to solve the above-mentioned problems, and it is an object of the present invention to provide a color signal transmission device that can improve horizontal resolution without expanding the occupied band.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る色信号伝送装置は、入力色差信号を順次
化する線順次化手段と、順次化された色差信号を低周波
成分と高周波成分に分割する帯域手段と、分割された高
周波成分を低周波成分の帯域に周波数シフトする周波数
変換手段と、低周波成分と周波数シフトされた高周波成
分とを直角二相変調する直交変調手段とを具備したもの
である。
The color signal transmission device according to the present invention includes a line sequential means for sequentially inputting an input color difference signal, a band means for dividing the serialized color difference signal into a low frequency component and a high frequency component, and a band means for dividing the divided high frequency component into a low frequency component. It is equipped with a frequency conversion means for frequency shifting to a band of frequency components, and an orthogonal modulation means for performing orthogonal two-phase modulation of a low frequency component and a high frequency component whose frequency has been shifted.

C作用〕 この発明によれば、帯域分割手段で広帯域の色差信号を
低周波成分と高周波成分とに分割し、周波数変調手段で
、色差信号の高周波成分を色差信号の低周波成分と同じ
帯域となるように周波数シフトシ、直交変調手段で色差
信号の低周波成分と高周波成分とで搬送波を直交二相変
調するようにしたので、占有帯域を拡げることなく水平
帯域幅を拡げることができる。
Effect C] According to the present invention, the band division means divides a wideband color difference signal into a low frequency component and a high frequency component, and the frequency modulation means divides the high frequency component of the color difference signal into the same band as the low frequency component of the color difference signal. Since the carrier wave is orthogonally two-phase modulated by the low frequency component and the high frequency component of the color difference signal using the frequency shift and orthogonal modulation means, the horizontal bandwidth can be expanded without expanding the occupied band.

[実施例] 以下、この発明の一実施例を図面に基づいて説明する。[Example] Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図はこの発明の一実施例による色信号伝送装置のブ
ロック図であり、30.31は色差信号入力端子、32
は色差信号を線順次化重合(以下順次化という)する順
次化回路、33は低域フィルタ、34は高域フィルタ、
35は周波数変換回路、36は第1の搬送波発生回路、
37は第2の低域フィルタ、38は第1の平衡変調回路
、39は第2の平衡変調回路、40は第2の搬送波発生
回路、41は第1の遅相回路、42は第2の遅相回路、
43は加算器、44はバースト発生回路、45は出力端
子であり、上記低域フィルタ33゜高域フィルタ34が
帯域分割手段100を構成し、上記周波数変換回路35
.第1の搬送波発生回路36が周波数変換手段200を
構成し、上記第1の平衡変調回路38.第2の平衡変調
回路39第2の搬送波発生回路40、第1の遅相回路4
1第2の遅相回路42.加算器43.バースト発生回路
44が直交変調手段300を構成している。
FIG. 1 is a block diagram of a color signal transmission device according to an embodiment of the present invention, in which 30.31 is a color difference signal input terminal, 32
33 is a low-pass filter, 34 is a high-pass filter,
35 is a frequency conversion circuit, 36 is a first carrier generation circuit,
37 is a second low-pass filter, 38 is a first balanced modulation circuit, 39 is a second balanced modulation circuit, 40 is a second carrier generation circuit, 41 is a first phase delay circuit, and 42 is a second balanced modulation circuit. slow phase circuit,
43 is an adder, 44 is a burst generation circuit, 45 is an output terminal, the low-pass filter 33 and the high-pass filter 34 constitute a band dividing means 100, and the frequency conversion circuit 35
.. The first carrier generation circuit 36 constitutes the frequency conversion means 200, and the first balanced modulation circuit 38. Second balanced modulation circuit 39 Second carrier generation circuit 40, First phase delay circuit 4
1 second phase delay circuit 42. Adder 43. The burst generation circuit 44 constitutes orthogonal modulation means 300.

次に動作について説明する。Next, the operation will be explained.

端子30.31に第2図(al、 (blに示すような
波形の色差信号R−Y、B−Yが入力され、順次化回路
32に供給されて、第2図(C1に示すような線順次信
号に変換される。順次化された色差信号は、第3図(a
)に示すような周波数特性となっており、その帯域幅は
約IMHz程度である。そして順次化された色差信号は
次に低域フィルタ33および高域フィルタ34に供給さ
れる。この低域フィルタ33では、順次化された色差信
号の低域成分を取り出して、第3図(blに示すCL倍
信号得る。また高域フィルタ34で、順次化された色差
信号の高周波成分を取り出してCH信号を得る0次に、
高域フィルタ34出力信号は、周波数変換回路35に供
給される0周波数変換回路35では、第1の搬送波発生
回路36からの連続波をキャリアとして、高域フィルタ
34出力である色差信号の高周波成分を低域に変換する
。このとき、低域に変換された高周波成分は、低域成分
から得たCL倍信号帯域と同程度になるように高域フィ
ルタ34のカットオフ周波数と、第1の搬送波発生回路
36の出力周波数を選定する。そして周波数変換回路3
5出力信号は不要な周波数成分を含んでいるので、第2
の低域フィルタ37によって、第3図(C1に示すよう
な必要成分CHLを取り出す。
Color difference signals R-Y, B-Y with waveforms as shown in FIG. It is converted into a line sequential signal.The sequential color difference signal is shown in Fig. 3 (a
), and its bandwidth is about IMHz. The serialized color difference signals are then supplied to a low-pass filter 33 and a high-pass filter 34. The low-pass filter 33 extracts the low-frequency components of the serialized color difference signal to obtain the CL-multiplied signal shown in FIG. The 0th order to extract and obtain the CH signal,
The high-pass filter 34 output signal is supplied to the frequency conversion circuit 35.The zero-frequency conversion circuit 35 converts the high-frequency component of the color difference signal, which is the high-pass filter 34 output, using the continuous wave from the first carrier generation circuit 36 as a carrier. Converts to low frequency. At this time, the high frequency component converted to the low frequency component is adjusted to the cutoff frequency of the high pass filter 34 and the output frequency of the first carrier generation circuit 36 so that the frequency component converted to the low frequency component is approximately the same as the CL multiplied signal band obtained from the low frequency component. Select. and frequency conversion circuit 3
5. Since the output signal contains unnecessary frequency components, the second
A necessary component CHL as shown in FIG. 3 (C1) is extracted by a low-pass filter 37.

次に直交変調動作について述べる。Next, the orthogonal modulation operation will be described.

第1の低域フィルタ33出力信号CLおよび第2の低域
フィルタ37出力信号CHLは、それぞれ第1および第
2の平衡変調回路38.39に供給される。一方、第2
の搬送波発生回路4oでは、輝度信号と周波数インター
リーブ関係を満足するような周波数を発生し、その出力
信号は、第1の遅相回路41へ供給されて90度だけ遅
相され、更に第2の遅相回路42に供給されてさらに9
゜度遅相される。第1および第2の遅相回路41゜42
出力信号の位相関係は第4図(a)のように直交してい
る。次に、第1の遅相回路41出力信号は第1の平衡変
調回路38−、、また第2の遅相回路42出力信号は、
第2の平衡変調回路39ヘキヤリアとして供給される。
The first low-pass filter 33 output signal CL and the second low-pass filter 37 output signal CHL are supplied to first and second balanced modulation circuits 38 and 39, respectively. On the other hand, the second
The carrier wave generation circuit 4o generates a frequency that satisfies the frequency interleaving relationship with the luminance signal, and its output signal is supplied to the first phase delay circuit 41 where the phase is delayed by 90 degrees, and the output signal is further delayed by 90 degrees. Further 9
The phase is delayed by degrees. First and second phase delay circuits 41゜42
The phase relationship of the output signals is orthogonal as shown in FIG. 4(a). Next, the first phase delay circuit 41 output signal is the first balanced modulation circuit 38-, and the second phase delay circuit 42 output signal is
The second balanced modulation circuit 39 is supplied as a carrier.

第1の平衡変調回路38では色差信号の低域成分から得
た信号CLで第1の遅相回路41出力信号を変調し、第
2の平衡変調回路39では色差信号の高域成分CHLで
、第2の遅相回路42出力信号を変調する。次に、それ
ぞれの平衡変調回路38.39出力信号は、加算器43
で合成される。この加算器43出力信号の周波数スペク
トルを第3図(d)で示す、加算器43出力信号は、第
4 (b)に示すような色差信号の低域成分CI−と高
域成分CHに応じてその位相及び振幅が変化する。
The first balanced modulation circuit 38 modulates the output signal of the first phase delay circuit 41 with the signal CL obtained from the low frequency component of the color difference signal, and the second balanced modulation circuit 39 modulates the output signal of the first phase delay circuit 41 with the high frequency component CHL of the color difference signal. The second phase delay circuit 42 output signal is modulated. Next, each balanced modulation circuit 38, 39 output signal is sent to an adder 43.
is synthesized with The frequency spectrum of the adder 43 output signal is shown in FIG. 3(d). its phase and amplitude change.

また、平衡変調器は搬送波抑圧の振幅変調器であるため
、復調時に搬送波を再生する必要がある。
Furthermore, since the balanced modulator is an amplitude modulator that suppresses the carrier wave, it is necessary to regenerate the carrier wave during demodulation.

このため第2の搬送波発生回路4o出力信号を入力とし
て、バースト信号発生回路44によって約10サイクル
分を取り出し、これを加算器43に供給して水平帰線期
間に多重する。加算器43出力信号は、出力端子45に
供給されて出力される。
For this purpose, with the output signal of the second carrier wave generating circuit 4o as input, about 10 cycles are extracted by the burst signal generating circuit 44, which is supplied to the adder 43 and multiplexed during the horizontal retrace period. The adder 43 output signal is supplied to an output terminal 45 and output.

第3図(d)に示すように本方式における占有周波数帯
域幅は従来例と全く同じであって、しかも伝送可能な周
波数帯域幅は従来の約2倍である。
As shown in FIG. 3(d), the occupied frequency bandwidth in this system is exactly the same as in the conventional example, and the transmittable frequency bandwidth is about twice that of the conventional example.

このように本実施例によれば、2つの色差信号R−Y、
B−Yを線順次化してこれを帯域分割手段100で高周
波成分と低周波成分とに分割し、周波数変換手段200
で上記分割した高周波成分を低周波成分側の帯域に周波
数シフトさせ、これら2つの周波数信号を直交変調手段
200で直角二相変調したので、従来の方式と比較して
水平帯域幅を2倍に広げることができ、しかも直交変調
を用いるので高域成分と干渉することはない。
As described above, according to this embodiment, the two color difference signals R-Y,
B-Y is line-sequentialized and divided into a high frequency component and a low frequency component by the band division means 100, and the frequency conversion means 200
The frequency of the divided high frequency component is shifted to the low frequency component side band, and these two frequency signals are quadrature two-phase modulated by the orthogonal modulation means 200, so the horizontal bandwidth is doubled compared to the conventional method. It can be expanded, and since orthogonal modulation is used, there is no interference with high frequency components.

なお、上記実施例では、第1の遅相回路41出力信号を
第1の平衡変調回路38に、また第20遅相回路42出
力信号を第2の平衡変調回路39に供給するようにした
が、それぞれの信号を入れ替えても支障はない。
In the above embodiment, the output signal of the first phase delay circuit 41 is supplied to the first balanced modulation circuit 38, and the output signal of the 20th phase delay circuit 42 is supplied to the second balanced modulation circuit 39. , there is no problem even if the respective signals are replaced.

〔発明の効果〕〔Effect of the invention〕

以上のように1、この発明に係る色信号伝送装置によれ
ば、色差信号を線順次化した後、高、低2つの帯域に分
割し、高周波成分を低域側に周波数シフトし、これら2
つの周波数成分を直交変調して伝送するようにしたので
、占有周波数帯域幅を広げることなく高帯域の色信号伝
送ができ、しかも直交変調による多重であるので低域成
分と高域成分との干渉はほとんどなく、従って画像品質
を大幅に向上できるという効果がある。
As described above, 1. According to the color signal transmission device according to the present invention, after converting the color difference signal to line sequential, it is divided into two bands, high and low, and the high frequency component is frequency shifted to the low band side.
Since two frequency components are orthogonally modulated and transmitted, it is possible to transmit high-band color signals without widening the occupied frequency bandwidth.Moreover, since multiplexing is performed by orthogonal modulation, there is no interference between low-frequency and high-frequency components. This has the effect of significantly improving image quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による色信号伝送装置の構
成を示すブロック図、第2図はこの発明の一実施例によ
る色信号伝送装置を用いて2つの色差信号を線順次化し
たときの波形図、第3図はこの発明の一実施例による色
信号伝送装置の各部での周波数特性を示す図、第4図は
この発明の一実施例による色信号伝送装置の変調動作を
示す図、第5図は従来の色信号伝送装置のブロック図、
第6図は従来の色信号伝送装置における各部の波形を示
す図、第7図は従来の色信号伝送装置における変調動作
を示す図、第8図は従来の色信号伝送装置における搬送
色信号の波形図、第9図は従来の色信号伝送装置におけ
る各部の周波数特性を示す図である。 図において、30.31は入力端子、32は順次化回路
(順次化手段)、100は帯域分割手段、200は周波
数変換手段、300は直交変調手段を表す。 なお、図中の同一符号は同一、または相当部分を示す。 第2 図 第4図 i−−’H−−−1 第3図 第5図 r 第6図 第7図 R−Y夛〃L替 −Y
FIG. 1 is a block diagram showing the configuration of a color signal transmission device according to an embodiment of the present invention, and FIG. 2 is a diagram showing the case where two color difference signals are line-sequentialized using the color signal transmission device according to an embodiment of the present invention. 3 is a diagram showing the frequency characteristics of each part of the color signal transmission device according to an embodiment of the present invention, and FIG. 4 is a diagram showing the modulation operation of the color signal transmission device according to an embodiment of the present invention. , FIG. 5 is a block diagram of a conventional color signal transmission device,
FIG. 6 is a diagram showing the waveforms of various parts in a conventional color signal transmission device, FIG. 7 is a diagram showing the modulation operation in the conventional color signal transmission device, and FIG. 8 is a diagram showing the carrier color signal in the conventional color signal transmission device. The waveform diagram in FIG. 9 is a diagram showing the frequency characteristics of each part in a conventional color signal transmission device. In the figure, 30 and 31 represent input terminals, 32 a serialization circuit (sequentialization means), 100 a band division means, 200 a frequency conversion means, and 300 an orthogonal modulation means. Note that the same reference numerals in the figures indicate the same or equivalent parts. Fig. 2 Fig. 4 i--'H--1 Fig. 3 Fig. 5 r Fig. 6 Fig. 7 R-Y-L replacement-Y

Claims (1)

【特許請求の範囲】[Claims] (1)2つの色差信号を入力として、該入力色差信号を
線順次化重合する順次化手段と、該順次化手段出力を低
周波成分及び高周波成分に分割する帯域分割手段と、 上記帯域分割された高周波成分を、上記帯域分割された
低周波成分の帯域とほぼ同じ帯域を占めるように周波数
シフトする周波数変換手段と、上記帯域分割手段出力の
低周波成分と上記周波数変換手段出力とを直交位相変調
する直交変調手段を具備したことを特徴とする色信号伝
送装置。
(1) A sequential means for inputting two color difference signals and line sequentially superimposing the input color difference signals; a band dividing means for dividing the output of the sequential means into a low frequency component and a high frequency component; frequency converting means for shifting the frequency of the high frequency component so that it occupies approximately the same band as the band of the band-divided low frequency component; A color signal transmission device characterized by comprising orthogonal modulation means for modulating.
JP18339490A 1990-07-10 1990-07-10 Chrominance signal transmission device Pending JPH0470187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18339490A JPH0470187A (en) 1990-07-10 1990-07-10 Chrominance signal transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18339490A JPH0470187A (en) 1990-07-10 1990-07-10 Chrominance signal transmission device

Publications (1)

Publication Number Publication Date
JPH0470187A true JPH0470187A (en) 1992-03-05

Family

ID=16135011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18339490A Pending JPH0470187A (en) 1990-07-10 1990-07-10 Chrominance signal transmission device

Country Status (1)

Country Link
JP (1) JPH0470187A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288438A (en) * 2004-03-12 2005-10-20 Yoshitoshi Maeda Filter for purifying water
US7172695B2 (en) 2003-03-27 2007-02-06 Akechi Ceramics Kabushiki Kaisha Liquid treating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172695B2 (en) 2003-03-27 2007-02-06 Akechi Ceramics Kabushiki Kaisha Liquid treating apparatus
JP2005288438A (en) * 2004-03-12 2005-10-20 Yoshitoshi Maeda Filter for purifying water

Similar Documents

Publication Publication Date Title
KR100188832B1 (en) Transmitting auxiliary information in a television signal
KR20020001728A (en) Vestigial sideband generator particularly for digital television
US5019895A (en) Cross color noise reduction and contour correction apparatus in NTSC color television image processing system
CS235051B2 (en) Method of complete colour television signal record and reproduction and device for application of this method
JPH08256354A (en) Chrominance transition correction equipment
US3952327A (en) Aperture correction circuit for television
JPH0470187A (en) Chrominance signal transmission device
KR100788175B1 (en) Apparatus for recovering secam chrominance signal and method thereof
JPS6170891A (en) High resolution signal converting device of television signal
JP3541873B2 (en) Magnetic recording device
JPH0588039B2 (en)
JPH04502995A (en) Compatible frequency multiplexed television system
JPH02114790A (en) Video chrominance signal transmission reception system and transmitter-receiver
JPS63257396A (en) Video signal recording system
JPH0230943Y2 (en)
JPH044693A (en) Video signal processing unit
JPS6053514B2 (en) comb filter
JPS6221474B2 (en)
JPH04310092A (en) Color television video signal processing unit
JPS6397085A (en) Transmitting device for high definition television signal
KR20050076942A (en) Apparatus for digital coder of secam
JPS63102591A (en) Comb-line filter circuit
JPH04373293A (en) Television signal transferring method
JPH0143509B2 (en)
JPS6214997B2 (en)