JPS63257396A - Video signal recording system - Google Patents

Video signal recording system

Info

Publication number
JPS63257396A
JPS63257396A JP62091386A JP9138687A JPS63257396A JP S63257396 A JPS63257396 A JP S63257396A JP 62091386 A JP62091386 A JP 62091386A JP 9138687 A JP9138687 A JP 9138687A JP S63257396 A JPS63257396 A JP S63257396A
Authority
JP
Japan
Prior art keywords
signal
frequency
band
luminance signal
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62091386A
Other languages
Japanese (ja)
Inventor
Katsuji Yoshimura
克二 吉村
Susumu Kozuki
上月 進
Koji Takahashi
宏爾 高橋
Takashi Ishikawa
尚 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62091386A priority Critical patent/JPS63257396A/en
Publication of JPS63257396A publication Critical patent/JPS63257396A/en
Priority to US07/581,418 priority patent/US5063457A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain recording with broad band also a chrominance carrier signal by using effectively a band arranged with a high frequency luminance signal in a recording signal in recording a broad band video signal. CONSTITUTION:The base band width of a high frequency luminance signal YH is 4.2-6.3MHz, that is, 2.1MHz and it is subject to frequency interleaving multiplex with a chrominance carrier signal to treat the result as a single signal, then the band width of the chrominance carrier signal is extended up to 2.1MHz. Thus, as to the lower side band of the chrominance carrier signal relating to a color difference signal (2R-G), no band limit is required. Thus, a multiplex signal between a chrominance carrier signal C and a high frequency luminance signal YH' outputted from a mixer 121 is fed to a frequency converter 122 and the result is frequency-converted so that the carrier frequency fLSC is nearly 700kHz. Thus, the band of the chrominance carrier signal is also widened.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はビデオ信号記録システム、特に広(iF城のビ
デオ信号を撮像し、記録媒体上に記録するシステムに関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a video signal recording system, and particularly to a system for capturing a video signal of a wide area and recording it on a recording medium.

〈従来の技術〉 近年、現行のNTSC方式等によるテレビジョン信号に
比し、広帯域で、かつ現行のテレビジョン信号に対して
互換性を有する広帯域のテレビジョン信号、所謂 Ex
tended  Difinition方式(以下単に
ED方式と称し、ED方式によるテレビジョン信号をH
DTV信号と称す)か提案されている。例えばこれは1
983年7月電気通信学会技研報告、C583−61の
吹抜・平野氏による[完全交信性を有する高精細TV方
式の提案」等にて発表されている。
<Prior art> In recent years, a wideband television signal, so-called Ex, which has a wider band and is compatible with the current television signal than the television signal based on the current NTSC system, has been developed.
Tended Definition method (hereinafter simply referred to as ED method, television signal based on ED method is
DTV signals) have been proposed. For example, this is 1
This was published in the July 19983 Technical Report of the Institute of Electrical Communication Engineers, C583-61, by Mr. Hirano, Fukinuki, ``Proposal of a high-definition TV system with complete communication capability.''

また、その具体的な伝送方式については、昭和59年度
電気通信学会総合全国大会、514−11,514−1
2の平野氏等による[完全交信性を有する高精細TV方
式の3次元信号処理」等で発表されている。
Regarding the specific transmission method, please refer to the 1981 National Conference of the Institute of Electrical Communication Engineers, 514-11, 514-1
This has been published in ``Three-dimensional signal processing for high-definition TV system with perfect communication'' by Mr. Hirano et al.

〈発明か解決しようとする問題点〉 ところで、上記のEDTV信号を記録再生するVTRを
想定した場合、シングルチャンネル記録を実現しようと
すれば記録信号の帯域はできるたけ小さく抑える必要か
ある。
<Problems to be Solved by the Invention> By the way, assuming a VTR that records and reproduces the above-mentioned EDTV signal, if single channel recording is to be achieved, the band of the recording signal must be kept as small as possible.

本発明は上述の背景下に於て帯域を有効に利用し、広帯
域ビデオ信号の記録に際し、輝度信号のみならず色信号
についてもてきる限り広帯域化して記録てきるビデオ信
号記録システムを提供することを目的とする。
In view of the above-mentioned background, it is an object of the present invention to provide a video signal recording system that effectively utilizes the band and records not only the luminance signal but also the color signal as wide as possible when recording a wideband video signal. With the goal.

く問題点を解決するための手段〉 かかる目的下に於て本発明のシステムにあっては、光学
像を電気信号に変換する撮像手段と、該撮像手段より出
力された電気信号に基き広帯域輝度信号を形成する手段
と、該広帯域輝度信号を低域輝度信号と高域輝度信号と
に分離する手段と、前記電気信号に基き前記高域輝度信
号の帯域幅に従った帯域幅を有する搬送色信号を形成す
る手段と、前記高域輝度信号と前記搬送色信号とを多重
した多重信号を形成する手段と、前記低域輝度信号を周
波数変調する手段と、該被周波数変調低域輝度信号の低
域側に配される様前記多重信号を周波数変換する手段と
、前記被周波数変調低域輝度信号と前記被周波数変換多
重信号とを混合する混合手段と、該混合手段の出力信号
を記録媒体上に記録する手段とを構成としている。
Means for Solving the Problems> To achieve this purpose, the system of the present invention includes an imaging means for converting an optical image into an electrical signal, and a broadband luminance control based on the electrical signal output from the imaging means. means for forming a signal, means for separating the broadband luminance signal into a low-band luminance signal and a high-band luminance signal, and a carrier color based on the electrical signal and having a bandwidth according to the bandwidth of the high-band luminance signal. means for forming a signal, means for forming a multiplexed signal by multiplexing the high frequency luminance signal and the carrier color signal, means for frequency modulating the low frequency luminance signal, and means for frequency modulating the low frequency luminance signal; means for converting the frequency of the multiplexed signal so that it is distributed on the low frequency side; mixing means for mixing the frequency-modulated low-frequency luminance signal and the frequency-converted multiplexed signal; and a recording medium for recording the output signal of the mixing means. It consists of means for recording on the top.

く作用〉 上記構成のシステムによれば高域j11信号と搬送色信
号との多重信号の全域に亘って両信号か存在するので、
記録帯域の有効利用が図れ、とくに色信号についても広
帯域化することかてきる。また高域輝度信号と搬送色信
号とを単一の信号として扱い得るので記録信号の広帯域
化を抑えることができる。
Effects> According to the system with the above configuration, both signals exist over the entire region of the multiplexed signal of the high frequency j11 signal and the carrier color signal.
It is possible to make effective use of the recording band, and in particular, it is possible to widen the band for color signals. Furthermore, since the high-frequency luminance signal and the carrier color signal can be treated as a single signal, it is possible to suppress the widening of the recording signal.

〈実施例〉 以下本発明の一実施例としてのVTRについて説明する
<Example> A VTR as an example of the present invention will be described below.

まず本実施例のVTRが記録再生しようとするHDTV
信号について、その1つの伝送方法を例にとって説明す
る。第5図はHDTV信号の送信側の構成を示す図、第
6図は第5図の構成にて送信しようとするHDTV信号
の各コンポーネント信号の帯域について説明するための
図、第7図は実際に送信されるHDTV信号(以下エン
コープイトHDTV信号と称すンの周波数アロケーショ
ンを示す図である。尚、本実施例で取り扱うHDTV信
号の水平及び垂直走査周波数はNTSC信号と同一であ
るものとする。
First, the HDTV that the VTR of this embodiment attempts to record and reproduce
A signal will be explained by taking one transmission method as an example. Fig. 5 is a diagram showing the configuration of the transmission side of the HDTV signal, Fig. 6 is a diagram for explaining the bands of each component signal of the HDTV signal to be transmitted with the configuration of Fig. 5, and Fig. 7 is the actual configuration. 1 is a diagram showing the frequency allocation of an HDTV signal (hereinafter referred to as an encoded HDTV signal) transmitted to the HDTV signal. It is assumed that the horizontal and vertical scanning frequencies of the HDTV signal handled in this embodiment are the same as those of the NTSC signal.

令弟5図の入力端子lには第6図(a)に示す如きベー
スバンドで6.3MH,の帯域を有する輝度信号Yか入
力される。また、色差信号I及びQは第6図(b)に示
す如く夫々1.5MH2,0,5MH,の帯域をもち、
夫々入力端子2,3に入力される。
A luminance signal Y having a baseband band of 6.3 MH as shown in FIG. 6(a) is input to the input terminal 1 of the younger brother 5. Further, the color difference signals I and Q have bands of 1.5 MH2, 0, and 5 MH, respectively, as shown in FIG. 6(b).
The signals are input to input terminals 2 and 3, respectively.

このI、Qの両色差信号は直角二相変調回路5へ供給さ
れ、端子4より人力された周波数fscの色副搬送波基
準信号及びこれを90°位相シフト回路6により90°
移相された信号により周知の如く直角二相変調され、搬
送色信号(クロマ信号)Cを得る。このクロマ信号Cは
バンドパスフィルタ(BPF)7により帯域制限され、
後段の加算器15に供給される。
Both I and Q color difference signals are supplied to a quadrature two-phase modulation circuit 5, and a color subcarrier reference signal of frequency fsc input from a terminal 4 and a color subcarrier reference signal of a frequency fsc input from a terminal 4 and a 90° phase shift circuit 6 convert the color subcarrier reference signal to a 90° phase shift circuit 6.
The phase-shifted signal undergoes quadrature two-phase modulation as is well known, and a carrier color signal (chroma signal) C is obtained. This chroma signal C is band-limited by a bandpass filter (BPF) 7,
It is supplied to the adder 15 at the subsequent stage.

他方輝度信号Yは4.2MH,以上の信号のみを通過さ
せるバイパスフィルタ(HPF)8に供給され、その高
域成分Y□のみを抽出して減算器9に入力する。これに
より減算器9からは輝度信号Yの低域成分YLのみが得
られる。
On the other hand, the luminance signal Y is supplied to a bypass filter (HPF) 8 that passes only signals of 4.2 MH or higher, and only its high frequency component Y□ is extracted and input to a subtracter 9. As a result, only the low frequency component YL of the luminance signal Y is obtained from the subtracter 9.

前出の色副搬送波基準信号は、係数回路10にてその振
幅を例えば016倍とされる。そしてこの信号と、該信
号を位相反転器11にて反転した信号とはスイッチSW
にて1フイ一ルド期間毎に交互に乗算器13に供給され
る。12はlフィールド期間毎に反転するlフレーム周
期の矩形波が入力される端子で、この矩形波によりスイ
ッチSWが制御される。
The amplitude of the aforementioned color subcarrier reference signal is multiplied by, for example, 016 times in the coefficient circuit 10. This signal and the signal obtained by inverting this signal by the phase inverter 11 are connected to the switch SW.
is alternately supplied to the multiplier 13 every field period. Reference numeral 12 denotes a terminal to which a rectangular wave having a cycle of l frames that is inverted every l field period is input, and the switch SW is controlled by this rectangular wave.

乗算器13ては高域輝度信号Y uを色副搬送波に対し
て1フイールド毎に位相か反転する搬送波μ。を用いて
、搬送高域輝度信号Y 、、’を形成する。この搬送高
域輝度信号Y 、、’は後述の如くクロマ信号Cに対し
て30 Hzシフトしたスペクトラムな有することにな
り、ローパスフィルタ(LPF)14により、該信号Y
、1′は4.2MH,以下の帯域に制限された後前述の
クロマ信号Cと加算器15にて混合される。
The multiplier 13 inverts the phase of the high-frequency luminance signal Yu with respect to the color subcarrier every field. are used to form carrier high-band luminance signals Y,,'. The carrier high-frequency luminance signals Y,,' have a spectrum shifted by 30 Hz with respect to the chroma signal C, as will be described later.
, 1' are limited to a band of 4.2 MH or less, and then mixed with the aforementioned chroma signal C in an adder 15.

この加算器15にて混合された信号は時空間フィルタI
I 17を介して加算器18に供給され1時空間フィル
タ116を介した低域輝度信号Y 1.と混合され、第
7図に示す周波数アロケーションのエンコープイトED
TV信号として端子19から伝送路へ出力される。
The signal mixed by this adder 15 is filtered by a spatio-temporal filter I
A low-band luminance signal Y1.1 which is supplied to an adder 18 via I17 and passed through a spatio-temporal filter 116; The encoded ED of the frequency allocation shown in FIG.
The signal is output from terminal 19 to the transmission line as a TV signal.

ここて、このエンコープイトHDTV信号のスペクトラ
ム配置について第9図(A)〜(C)、第10図(A)
〜(D)を用いて説明する。
Here, regarding the spectrum arrangement of this encoded HDTV signal, Figs. 9 (A) to (C) and Fig. 10 (A)
This will be explained using (D).

第9図(A)〜(C)はエンコープイトHDTV信号の
スペクトル分布を1次元表示した図、第8図(A)〜(
D)はこれを3次元表示した図である。
Figures 9(A) to (C) are one-dimensional representations of the spectral distribution of encoded HDTV signals;
D) is a three-dimensional representation of this.

第9図(A)に示す様にYLとC+Y11′は互いに水
平走査周波数(fH)について周波数インターリーブし
た関係となる。これは色副搬送波f’Jcの周波数かf
、に対して、fsc=’Af。
As shown in FIG. 9(A), YL and C+Y11' are frequency interleaved with each other with respect to the horizontal scanning frequency (fH). Is this the frequency of the color subcarrier f'Jc?
, fsc='Af.

(2n−1)なる関係(nは自然数)を有することに因
る。第9図(A)をCとYLについて拡大したものが第
9図(B)である。フレーム周波数f、(=30H2)
に対してf IIはf□=fr  (2m  l)の関
係(mは自然数)があるので、fsc=’Afr  (
2i  1)の関係(iは自然a)となり、YLとCと
は3Afrシフトした位置にスペクトラムを有し、垂直
走査周波a f v  (= 60 Hz )について
も周波数インターリーブした関係にある。ところでCは
lフィールド毎に時間方向への相関性を有するので、各
f、分の周波数領域内のスペクトラムのピークを中心に
60H2毎にスペクトラムが並ぶことになる。ここで互
いに隣接する10分の周波数領域内のCのスペクトラム
のピークを中心に並んだ60H2毎のスペクトラムが互
いの帯域内には波及しないものと仮定すれば、t59図
(B)に示す30H2毎に並んだYLのスペクトラムの
間の30Hzの周波数領域内に1つ置きにCのスペクト
ラムが配置されることになる。即ちCのスペクトラムか
配置されていない30 Hzのスペクトラム領域は従来
空いていた。即ちこの空いていた3 0 Hzのスペク
トラム領域にY、ごか配される。この様子を第9図(C
)に示している 第10図(A)は上記スペクトラム配置を3次元で表現
した場合のC及びY11′の配置のみを示す図、第10
図(B)はY u 、 Y Lも含む立体を想定した時
、これを時間軸周波数方向から観た正面図、第10図(
C)は上記想定立体の水平方向周波数がχなる平面(X
)に於る断面図、第1O図(D)は上記想定立体の水平
方向周波数がyなる平面(Y)に於る断面図である。尚
、第1θ図(A)〜(D)に於てルは画面の水平方向に
ついての周波数、νは画面の垂直方向についての周波数
、fは時間軸方向への周波数を夫々示している。
This is due to the relationship (2n-1) (n is a natural number). FIG. 9(B) is an enlarged view of FIG. 9(A) regarding C and YL. Frame frequency f, (=30H2)
Since f II has the relationship f□=fr (2m l) (m is a natural number), fsc='Afr (
2i 1) (i is natural a), YL and C have spectra at positions shifted by 3 Afr, and the vertical scanning frequency a f v (=60 Hz) is also in a frequency interleaved relationship. By the way, since C has a correlation in the time direction for each l field, the spectra are arranged every 60H2 around the peak of the spectrum in the frequency domain of each f, minute. If we assume that the spectrum of every 60H2 arranged around the peak of the spectrum of C in the adjacent 10-minute frequency region does not spread into each other's bands, then every 30H2 as shown in t59 diagram (B). In the 30 Hz frequency region between the YL spectra arranged in , every other C spectrum is arranged. That is, the 30 Hz spectrum region where the C spectrum was not placed was conventionally vacant. That is, Y and Z are arranged in this vacant 30 Hz spectrum region. This situation is shown in Figure 9 (C
) is a diagram showing only the arrangement of C and Y11' when the above spectrum arrangement is expressed in three dimensions.
Figure (B) is a front view of a solid that includes Y u and Y L, as seen from the time axis frequency direction, and Figure 10 (
C) is a plane (X
), and FIG. 1O (D) is a cross-sectional view in the plane (Y) where the horizontal frequency of the assumed solid is y. In FIGS. 1.theta.(A) to (D), "le" indicates the frequency in the horizontal direction of the screen, "v" indicates the frequency in the vertical direction of the screen, and "f" indicates the frequency in the time axis direction.

従って、第5図に於る時空間フィルタ116の吐液領域
は第8図(A)の斜線部の如くなる。第8図(A)に於
て縦軸は画面の垂直方向への周波数、横軸は時間軸方向
への周波数である。また時空間フィルタl117の濾波
領域は第8図(B)の斜線部の如くなる。これらの時空
間フィルタは周知の如くl水平走査期間遅延線や1フレ
ーム遅延器を用いて形成される。このエンコープイトH
DTV信号の1次元(水平方向)周波数はYLが0〜4
.2MHz、YIlは2.1〜4.2MH,、Cは3.
58M Hzを中心にl M Hzの帯域幅を持つ。
Therefore, the liquid discharge area of the spatio-temporal filter 116 in FIG. 5 is as shown by the hatched area in FIG. 8(A). In FIG. 8(A), the vertical axis represents the frequency in the vertical direction of the screen, and the horizontal axis represents the frequency in the time axis direction. Further, the filtering area of the spatio-temporal filter l117 is as shown by the shaded area in FIG. 8(B). These spatio-temporal filters are formed using one horizontal scanning period delay line or one frame delay device, as is well known. This encoder H
The one-dimensional (horizontal) frequency of the DTV signal is YL 0 to 4.
.. 2MHz, YIl is 2.1-4.2MH, C is 3.
It has a bandwidth of 1 MHz centered around 58 MHz.

本実施例は上述の如き伝送方式を想定したもので、ED
TV用カメラとVTRを一体化した装置に本発明を適用
したものである。第1図は本発明の一実施例としてのカ
メラ一体型VTRの概略構成を示すブロック図である。
This embodiment assumes the above-mentioned transmission method, and the ED
The present invention is applied to a device that integrates a TV camera and a VTR. FIG. 1 is a block diagram showing a schematic configuration of a camera-integrated VTR as an embodiment of the present invention.

第1図に於てlotはベースバントて0〜e、3MH,
以上の帯域を有する輝度信号Yと、変調された線順次色
差信号か得られる撮像部であり、例えば第2図に一部の
構成を示す周知の色分離フィルタ(フィールドMvi色
差線順次フィルタ)を含むCCDて構成される。第2図
中G(緑) 、 Ye (lA) Cy (シアン)、
M(マゼンタ)等の色分離フィルタである。この撮像部
101はパルス発生部127からのパルス信号を入力と
する駆動回路102によって駆動される。第3図(a)
、(b)は撮像部101より線順次て出力される信号の
スペクトラム分布を示す。図中変調成分(G−2R)。
In Figure 1, lot is baseband 0~e, 3MH,
This is an imaging unit that can obtain a luminance signal Y having the above band and a modulated line-sequential color difference signal. It consists of a CCD including In Figure 2, G (green), Ye (lA) Cy (cyan),
This is a color separation filter such as M (magenta). This imaging unit 101 is driven by a drive circuit 102 that receives a pulse signal from a pulse generator 127 as input. Figure 3(a)
, (b) show the spectral distribution of signals outputted line-sequentially from the imaging unit 101. Modulation component (G-2R) in the figure.

(2B−G)の変調搬送波周波数f5は6.3MH,以
上となる。この周波数fsはCCDの画素ピッチで決定
される。
The modulated carrier frequency f5 of (2B-G) is 6.3 MH or more. This frequency fs is determined by the pixel pitch of the CCD.

ローパスフィルタ(LPF)103は撮像部lの出力か
らO〜a、3MH2の帯域内の輝度信号(第3図(C)
にYにて示す)を通過させるもので、このり、PF10
3の出力信号は更にHPF104に供給され、4.2M
H,以上の高域輝度信号Y1.か得られる。この高域輝
度信号Y uは減算器105に供給され、輝度信号Yか
ら減算され、低域輝度信号YLを得る。
A low-pass filter (LPF) 103 filters a luminance signal within a band of O to a, 3MH2 from the output of the imaging unit l (Fig. 3(C)
PF10
The output signal of 3 is further supplied to HPF104, and the output signal of 4.2M
H, or higher high-frequency luminance signal Y1. or can be obtained. This high frequency luminance signal Y u is supplied to a subtracter 105 and subtracted from the luminance signal Y to obtain a low frequency luminance signal YL.

低域輝度信号YLはFM変調器106によりFM変調さ
れ第4図にFM−YLで示す如き帯域に配された被FM
変調低域輝度信号を得る。いっぽうHPF 104て得
た高域輝度信号Yllは乗算器107に於て後述する搬
送波信号と乗算され搬送高域輝度信号Y1.′とされ、
更にLPF 108を介して混合器121に供給される
The low-band luminance signal YL is FM-modulated by the FM modulator 106 and output to the FM receiver arranged in a band as shown by FM-YL in FIG.
Obtain a modulated low-band luminance signal. On the other hand, the high-frequency luminance signal Yll obtained by the HPF 104 is multiplied by a carrier signal, which will be described later, in a multiplier 107 to produce a carrier high-frequency luminance signal Y1. ' and
Furthermore, it is supplied to the mixer 121 via the LPF 108.

BPF109は上述の変調成分(G−2R)(2B−G
)を分離し、復調回路llOに供給され、復調された線
順次色差信号が得られる。
BPF109 is the above-mentioned modulation component (G-2R) (2B-G
) is separated and supplied to the demodulation circuit llO to obtain a demodulated line-sequential color difference signal.

この線順次色差信号はIH遅延線とスイッチとで構成さ
れる周知の線間時化回路111に供給され第3図(d)
、(e)の左側に示す如き帯域幅の2種類の色差信号を
得る。これらは夫々LPFl12,113に供給され、
(2R−G)信号についてはO〜1.5MH2゜(2B
−G)についてはO〜0.5MHzに帯域制限され、第
3図(d)、(e)の右側に示す如き帯域を有する信号
となる。これら帯域制限された色差信号は直角二相変調
回路115に供給され、後述の2つの搬送波で直角二相
変調され第3図(f)の左側に示す如き帯域の搬送色信
号を得る。この搬送色信号はLPF114によりその上
側波帯の一部が除去され、f53図(f)の右側に示す
如き信号として混合器121に供給される。
This line-sequential color difference signal is supplied to a well-known line-to-line timing circuit 111 consisting of an IH delay line and a switch, as shown in FIG. 3(d).
, two types of color difference signals with bandwidths as shown on the left side of (e) are obtained. These are supplied to LPF112 and 113 respectively,
(2R-G) signal: 0~1.5MH2゜(2B
-G) is band-limited to 0 to 0.5 MHz, resulting in a signal having a band as shown on the right side of FIG. 3(d) and (e). These band-limited color difference signals are supplied to a quadrature two-phase modulation circuit 115, where they are quadrature two-phase modulated using two carrier waves, which will be described later, to obtain a band carrier color signal as shown on the left side of FIG. 3(f). This carrier color signal has part of its upper sideband removed by the LPF 114, and is supplied to the mixer 121 as a signal as shown on the right side of Fig. 53(f).

パルス発生器127はNTSC信号の色副搬送波周波数
fscの搬送波信号を発生する。直角二相変調回路11
5ではこの周波a f scの搬送波信号とこれを移相
器116て90″位相シフトした信号とを用いて直角二
相変調を行う。またこの搬送波は振幅制限器117を介
して、スイッチ119及び位相反転器118に供給され
、スイッチ119が1フイールド毎に切換えられること
により1フイールド毎に極性反転された搬送波信号を得
る。このスイッチ119より出力される搬送波信号の周
波数は前記搬送波の周波数tscに対して繕フィールド
周波数(NTSC信号の場合30H2)シフトすること
になる。従って搬送色信号Cと搬送高域輝度信号Y1.
7とのスペクトラムは垂直走査周波数について周波数イ
ンターリーブすることになる。
Pulse generator 127 generates a carrier signal at the color subcarrier frequency fsc of the NTSC signal. Quadrature two-phase modulation circuit 11
In step 5, quadrature two-phase modulation is performed using the carrier signal of this frequency a f sc and a signal whose phase is shifted by 90'' by the phase shifter 116. Also, this carrier wave is passed through the amplitude limiter 117 to the switch 119 and A carrier wave signal is supplied to a phase inverter 118, and the polarity is inverted for each field by switching a switch 119 for each field.The frequency of the carrier signal output from this switch 119 is equal to the frequency tsc of the carrier wave. The correction field frequency (30H2 in the case of an NTSC signal) is shifted relative to the carrier color signal C and the carrier high-frequency luminance signal Y1.
7 will be frequency interleaved with respect to the vertical scanning frequency.

ここでLPFl14による搬送色信号の帯域制限につい
て説明する。前述した高域輝度信号Y、のベースバンド
に於る帯域幅は4.2〜6゜3MH2,即ち2.1MH
,てあり、これと搬送色信号を周波数インターリーブ多
重して単一の信号として扱おうとすれば、搬送色信号の
帯域幅も2.1M)!、までとることかてきる。
Here, the band limitation of the carrier color signal by the LPF 14 will be explained. The baseband bandwidth of the above-mentioned high-frequency luminance signal Y is 4.2 to 6°3MH2, or 2.1MH2.
, and if this and the carrier color signal are frequency interleaved multiplexed and treated as a single signal, the bandwidth of the carrier color signal is also 2.1M)! , it is possible to take up to .

そこで本実施例では色差信号(2R−G)に係る搬送色
信号の下側波帯については帯域制限を施す必要はない。
Therefore, in this embodiment, there is no need to perform band limitation on the lower sideband of the carrier color signal related to the color difference signal (2R-G).

混合器121より出力された搬送色信号Cと搬送高域輝
度信号Y、、’との多重信号は周波数変換器122に供
給され、その搬送周波数fい。か700 K Hz程度
となる様周波数変換される。周波数変換器122に供給
される変換用信号はパルス発生器127より発生される
周波数(f sc+ f LSC)の信号を位相シフト
回路120にて隣接トラック間で周波数変換器122の
出力信号が水平走査周波数について互いに周波数インタ
ーリーブする様適宜位相シフトした信号である。
A multiplexed signal of the carrier color signal C and the carrier high-band luminance signal Y, ,' output from the mixer 121 is supplied to the frequency converter 122, and the carrier frequency f is supplied to the frequency converter 122. The frequency is converted to approximately 700 KHz. The conversion signal supplied to the frequency converter 122 is a signal of frequency (f sc + f LSC) generated by the pulse generator 127, and the output signal of the frequency converter 122 is horizontally scanned between adjacent tracks by the phase shift circuit 120. These are signals whose phases are suitably shifted so that the frequencies are mutually interleaved.

周波数変換器122の出力はLPF123にて2.2M
H2成分のみを取り出した後、混合器124にて前出の
被FM変調低域輝度信号YI、と混合され、第4図に示
す如きスペクトラム分布の記録信号を得る。第4図に於
てFC−Cは周波数変換された搬送色信号成分、F C
−Y ++’は周波数変換された搬送高域輝度信号成分
を夫々示す。尚第4図中FM−YLの変調周波数はシン
クチップが6.1MHz、ホワイトピークが7.1MH
,どなる様変調されているものとする。混合器124よ
り出力された記録信号は磁気ヘット125を介して磁気
テープ126上に記録される。
The output of the frequency converter 122 is 2.2M at the LPF 123.
After extracting only the H2 component, it is mixed with the above-mentioned FM modulated low-band luminance signal YI in a mixer 124 to obtain a recording signal having a spectrum distribution as shown in FIG. In FIG. 4, FC-C is the frequency-converted carrier color signal component, FC-C
-Y++' respectively indicate frequency-converted carrier high-band luminance signal components. In Figure 4, the modulation frequency of FM-YL is 6.1 MHz for the sync chip and 7.1 MHz for the white peak.
, is modulated to sound like a roar. The recording signal output from the mixer 124 is recorded on a magnetic tape 126 via a magnetic head 125.

上述の如き実施例の装置によれば広帯域のビデオ信号を
記録するに際し、記録帯域を有効に利用し、搬送色信号
の帯域も広くすることかできる。また直角二相変調回路
115で得た搬送色信号を一旦低域輝度信号と混合する
ことなく周波数変換等の後段の処理を行うので、信号の
劣化を小さくすることかできる。
According to the apparatus of the embodiment described above, when recording a wideband video signal, the recording band can be used effectively and the band of the carrier color signal can also be widened. Further, since the carrier color signal obtained by the quadrature two-phase modulation circuit 115 is subjected to subsequent processing such as frequency conversion without being mixed with the low-band luminance signal, signal deterioration can be reduced.

尚、上述の実施例はカメラ一体型VTRを例にとって説
明したが第7図に示した形態で伝送されたED−TV信
号を記録するVTRに本発明を適用することも可能であ
り、この場合第7図に示したED−TV信号から搬送色
信号を分離するBPFのカットオフ周波数を高域輝度信
号の帯域に応じて定めてやればよい。
Incidentally, although the above embodiment has been explained by taking a camera-integrated VTR as an example, the present invention can also be applied to a VTR that records an ED-TV signal transmitted in the form shown in FIG. The cutoff frequency of the BPF that separates the carrier color signal from the ED-TV signal shown in FIG. 7 may be determined according to the band of the high-frequency luminance signal.

〈発明の効果〉 以上説明した様に本発明のシステムによれば広帯域のビ
デオ信号を記録するに際し、記録信号中高域輝度信号か
配される帯域を有効に用いることにより、搬送色信号に
ついても広帯域化して記録することか可能となった。
<Effects of the Invention> As explained above, according to the system of the present invention, when recording a wideband video signal, by effectively using the band in which the mid-high range luminance signal of the recording signal is allocated, the carrier color signal can also be recorded in a wide band. It became possible to convert and record it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としてのカメラ一体型VTR
の構成を示すブロック図、 第2図は第1図中の撮像部に於る色分離フィルタの構成
を示す図、 第3図は第1図番部の信号のスペクトラム分布を示す図
、 第4図は第1図の装置による記録信号のスペクトラム分
布を示す図、 第5図はED−TV信号の送信部の構成を示す図、 第6図は第5図の構成にて送信しようとするEDTV信
号の各コンポーネント信号の帯域について説明するため
の図、 第7図はエンコープイトHDTV信号の周波数アロケー
ションを示す図、 第8図(A)、(B)は第5図に於る時空間フィルタの
特性を示す図。 第9図(A)〜(C)はエンコープイトHDTV信号の
スペクトラム分布を1次元表示した図、 第10図(A)〜(D)はエンコープイトHDTV信号
のスペクトラム分布を3次元表示した図である。 図中101は撮像部、103はLPF、104はHPF
、105は減算器、106はFM変調器、107は乗算
器、10BはLPF、109はBPF、114はLPF
、115は直角二相変調器、121は混合回路、122
は周波数変換器、123はLPF、124は混合器、1
25は磁気ヘッドである。
Figure 1 shows a camera-integrated VTR as an embodiment of the present invention.
2 is a block diagram showing the configuration of the color separation filter in the imaging section in FIG. 1, FIG. 3 is a diagram showing the spectrum distribution of the signal in the numbered part of FIG. The figure shows the spectral distribution of the recorded signal by the device in Figure 1, Figure 5 shows the configuration of the ED-TV signal transmitter, and Figure 6 shows the EDTV signal to be transmitted using the configuration in Figure 5. A diagram for explaining the band of each component signal of the signal, Figure 7 is a diagram showing the frequency allocation of the encoded HDTV signal, and Figures 8 (A) and (B) are the characteristics of the spatio-temporal filter in Figure 5. Diagram showing. 9A to 9C are one-dimensional representations of the spectral distribution of the encoded HDTV signal, and FIGS. 10A to 10D are three-dimensional representations of the spectral distribution of the encoded HDTV signal. In the figure, 101 is an imaging unit, 103 is an LPF, and 104 is an HPF.
, 105 is a subtracter, 106 is an FM modulator, 107 is a multiplier, 10B is an LPF, 109 is a BPF, 114 is an LPF
, 115 is a quadrature two-phase modulator, 121 is a mixing circuit, 122
is a frequency converter, 123 is an LPF, 124 is a mixer, 1
25 is a magnetic head.

Claims (1)

【特許請求の範囲】 光学像を電気信号に変換する撮像手段と、 該撮像手段より出力された電気信号に基き広帯域輝度信
号を形成する手段と、該広帯域輝度信号を低域輝度信号
と高域輝度信号とに分離する手段と、前記電気信号に基
き前記高域輝度信号の帯域幅に従った帯域幅を有する搬
送色信号を形成する手段と、前記高域輝度信号と前記搬
送色信号とを多重した多重信号を形成する手段と、前記
低域輝度信号を周波数変調する手段と、該被周波数変調
低域輝度信号の低域側に配される様前記多重信号を周波
数変換する手段と、前記被周波数変調低域輝度信号と前
記被周波数変換多重信号とを混合する混合手段と、該混
合手段の出力信号を記録媒体上に記録する手段とを備え
るビデオ信号記録システム。
[Scope of Claims] Imaging means for converting an optical image into an electrical signal; means for forming a wideband luminance signal based on the electrical signal output from the imaging means; means for separating the high-frequency luminance signal and the carrier color signal; means for forming a carrier color signal having a bandwidth according to the bandwidth of the high-frequency luminance signal based on the electrical signal; and means for separating the high-frequency luminance signal and the carrier color signal into means for forming a multiplexed signal; means for frequency modulating the low frequency luminance signal; means for converting the frequency of the multiplexed signal so that it is placed on the lower frequency side of the frequency modulated low frequency luminance signal; A video signal recording system comprising: mixing means for mixing a frequency-modulated low-band luminance signal and the frequency-converted multiplexed signal; and means for recording an output signal of the mixing means on a recording medium.
JP62091386A 1986-11-19 1987-04-14 Video signal recording system Pending JPS63257396A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62091386A JPS63257396A (en) 1987-04-14 1987-04-14 Video signal recording system
US07/581,418 US5063457A (en) 1986-11-19 1990-09-12 Wide-band video signal recording apparatus by using frequency interleave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62091386A JPS63257396A (en) 1987-04-14 1987-04-14 Video signal recording system

Publications (1)

Publication Number Publication Date
JPS63257396A true JPS63257396A (en) 1988-10-25

Family

ID=14024936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62091386A Pending JPS63257396A (en) 1986-11-19 1987-04-14 Video signal recording system

Country Status (1)

Country Link
JP (1) JPS63257396A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263987A (en) * 1987-04-22 1988-10-31 Matsushita Electric Ind Co Ltd Color video signal transmission method
JPH04267692A (en) * 1990-11-05 1992-09-24 Samsung Electron Co Ltd Device and method for manufacturing color under chromaticity channel encoded to high-frequency luminance signal
JPH04301995A (en) * 1991-03-28 1992-10-26 Mitsubishi Electric Corp Chrominance signal processing circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263987A (en) * 1987-04-22 1988-10-31 Matsushita Electric Ind Co Ltd Color video signal transmission method
JPH04267692A (en) * 1990-11-05 1992-09-24 Samsung Electron Co Ltd Device and method for manufacturing color under chromaticity channel encoded to high-frequency luminance signal
JPH04301995A (en) * 1991-03-28 1992-10-26 Mitsubishi Electric Corp Chrominance signal processing circuit

Similar Documents

Publication Publication Date Title
US4660072A (en) Television signal transmission system
JPH05244604A (en) Technique for supplying compatibility between high definition color television and color television of conventional system
US4622578A (en) Fully compatible high definition television
US5063457A (en) Wide-band video signal recording apparatus by using frequency interleave
US4949166A (en) Apparatus for combining and separating constituent components of a video signal
JPS594287A (en) Color television transmission system
JPS63257396A (en) Video signal recording system
JPS587112B2 (en) Color television program
JPS63256088A (en) Video signal recorder
US4472746A (en) Chrominance channel bandwidth modification system
US5014122A (en) Method and apparatus for encoding and transmission of video signals
KR950005068B1 (en) Television signal processing methods and apparatus for employing a narrow bandwidth having a color-under spectral format for high quality video recording system
JP2506078B2 (en) Television signal multiplex system
JPS63128892A (en) Video signal recording method
JPS5918784Y2 (en) Contour correction circuit for video signals
JP2626719B2 (en) Television signal transmission system and playback device
JPS5846912B2 (en) color television set
JPS63131684A (en) Video signal recorder
JPS63269696A (en) Video signal recorder
JPS6221474B2 (en)
JPS647555B2 (en)
JPS6242682A (en) Video signal reproducing device
JPH04373293A (en) Television signal transferring method
JPH0137078B2 (en)
JPH02170789A (en) Video signal recorder