JPH0469950A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0469950A
JPH0469950A JP18237790A JP18237790A JPH0469950A JP H0469950 A JPH0469950 A JP H0469950A JP 18237790 A JP18237790 A JP 18237790A JP 18237790 A JP18237790 A JP 18237790A JP H0469950 A JPH0469950 A JP H0469950A
Authority
JP
Japan
Prior art keywords
layer
wiring
capacitance
layers
wirings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18237790A
Other languages
Japanese (ja)
Inventor
Koichi Kumagai
浩一 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18237790A priority Critical patent/JPH0469950A/en
Publication of JPH0469950A publication Critical patent/JPH0469950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To make it possible to estimate the capacitances of wirings accurately, by providing a conductor layer having a constant potential between an n-th wiring layer from the side of a semiconductor substrate and an (n+1)-th wiring layer. CONSTITUTION:A conductive layer having a constant potential is provided between an n-th wiring layer from an m-th one of m wiring layers and an (n+1)-th one (where 2<=n<=m-1, n is an integer). The wiring layers are shielded from each other electrically by the conductor layers. For example, on a substrate 105, from the side of the substrate, a first layer wirings 101, a grounded shield layer 107, a second layer wirings 102, the grounded shield layer 107, a third layer wirings 103, etc., are formed in the described order. The respective layers are isolated electrically from each other by insulators 106, and if necessary, are connected electrically with each other by a through hole 104 between 1-2 layers, etc. Capacitances, 111, 113 between the second layer wiring and the shield layers are constant, regardless of the wiring patterns and the potential states of the upper and lower layers thereof, and come into the values proportional to the area of the second layer wiring 102. Therefore, by considering a capacitance 112 between the two adjacent second layer wirings together with the capacitances 111, 113, the capacitances of the second layer wirings 102 can be calculated from only the layout pattern of the second layer wirings 102.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に多層配線を有するゲー
トアレイ半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to a gate array semiconductor device having multilayer wiring.

〔従来の技術〕[Conventional technology]

従来この種のゲートアレイ半導体装置は、3層信号配線
を有する場合第3図に示すように、トランジスタ等の素
子が形成されている基板305上に、それぞれ絶縁体3
06で電気的に分離された第1層配線301、第2層配
線302および第3層配@ 303を有し、かつ各層間
を電気的に接続するスルーホール304を有している。
Conventionally, when this type of gate array semiconductor device has three-layer signal wiring, as shown in FIG.
It has a first layer wiring 301, a second layer wiring 302, and a third layer wiring 303 that are electrically separated by a wire 06, and has a through hole 304 that electrically connects each layer.

第3図に示すような配線構造を用いてロジックLSIを
構成する場合、配線に寄生する容量は、第2層配線を例
にとると、■第2層配線−基板間の容Ji311 、■
第2層配線間の容量310、■第2層配線−第3層配線
間の容量312の3つがあり、加えてこの寄生容量は第
2層配線の上下層にパターンがある場合と熱い場合、上
下層の電位の状態等によって変化するため、レイアウト
パターンからの正確な容量の見積りが非常に髭しい。特
に、ランダムロジックLSIの場合、配線パターンの組
合せがランダムになるので精度の良い遅延値の設計をす
るには膨大な計算量が必要となる。また、図中、307
は第1層配線−基板間の容量、308は第1N配線間の
容量、309は第1層配線−第2層配線間の容量、31
3は第3層配線間の容量、314は第3層配線−第1層
配R間の容量、315は第3層配線−基板間の容量であ
る。
When configuring a logic LSI using the wiring structure shown in FIG. 3, the capacitance parasitic to the wiring is, taking the second layer wiring as an example, ■ the capacitance between the second layer wiring and the board Ji311,
There are three types of capacitance: capacitance 310 between the second layer wiring, and capacitance 312 between the second layer wiring and the third layer wiring. Since it changes depending on the potential state of the upper and lower layers, it is extremely difficult to accurately estimate the capacitance from the layout pattern. In particular, in the case of a random logic LSI, since the combinations of wiring patterns are random, a huge amount of calculation is required to design accurate delay values. Also, in the figure, 307
is the capacitance between the first layer wiring and the board, 308 is the capacitance between the 1Nth wiring, 309 is the capacitance between the first layer wiring and the second layer wiring, 31
3 is the capacitance between the third layer wiring, 314 is the capacitance between the third layer wiring and the first layer wiring R, and 315 is the capacitance between the third layer wiring and the substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この従来の半導体装置は、配線層間が電気的にシールド
されていないため、信号配線の寄生容量を算出する場合
には上下層の配線のレイアウトパターンを考慮し、かつ
上下層の配線の電位状態をも考慮しなければならず、膨
大な計算量が必要となる。特に、ゲートアレイのような
ランダムロジックしS■の場合には、配線パターンの組
合せは特定できないので、眉間容量を正確に見積ること
は事実上不可能であった。
In this conventional semiconductor device, the wiring layers are not electrically shielded, so when calculating the parasitic capacitance of the signal wiring, the layout pattern of the wiring in the upper and lower layers must be considered, and the potential state of the wiring in the upper and lower layers must be considered. must also be taken into account, which requires a huge amount of calculation. In particular, in the case of a random logic system such as a gate array, it is virtually impossible to accurately estimate the glabella capacitance because the combination of wiring patterns cannot be specified.

本発明の目的は配線容量の正確な見積りを可能にした半
導体装置を提供することにある。
An object of the present invention is to provide a semiconductor device that allows accurate estimation of wiring capacitance.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するため、本発明に係る半導体装置にお
いては、m層(m≧2、mは整数)の配線層を有する半
導体装置であって、半導体基板m1から第n番目(1≦
n≦m−1.nは整数)の配線層と第n+1番目の配線
層との間に、一定電位が与えられる導電体層を有するも
のである。
In order to achieve the above object, a semiconductor device according to the present invention is a semiconductor device having m wiring layers (m≧2, m is an integer), and has an nth (1≦1) wiring layer from a semiconductor substrate m1.
n≦m−1. A conductor layer to which a constant potential is applied is provided between the wiring layer (n is an integer) and the (n+1)th wiring layer.

〔作用〕[Effect]

m層の配線層のうち下からn番目の配線層とn+1番目
の配線層の間に(2≦n≦m−1.nは整数)、一定電
位を与えられた導電層を有し、配線層間の電気的影響を
シールドする。
Between the n-th wiring layer and the n+1-th wiring layer from the bottom among the m wiring layers (2≦n≦m-1, n is an integer), there is a conductive layer given a constant potential, and the wiring Shielding electrical influences between layers.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

(実施例1) 第1図は本発明を3層配線を有する半導体チップに適用
した実施例1を示す断面図である。
(Example 1) FIG. 1 is a sectional view showing Example 1 in which the present invention is applied to a semiconductor chip having three-layer wiring.

図において、トランジスタ素子等が形成されている基板
105上に、基板側から第1層配線101、接地された
シールドN1107、第2層配線102、接地されたシ
ールド層107、第3層配線103の順に形成され、各
層間は絶縁体106で電気的に分離され、必要に応じて
1−2層スルーホール104等で電気的に接続されてい
る。
In the figure, a first layer wiring 101, a grounded shield N1107, a second layer wiring 102, a grounded shield layer 107, and a third layer wiring 103 are placed on a substrate 105 on which transistor elements and the like are formed. The layers are formed in sequence, and each layer is electrically isolated by an insulator 106, and electrically connected by a 1-2 layer through hole 104 or the like as necessary.

本実施例において、第2層配線102の寄生容量を例に
とると、第2層配線−シールド層間の容量111 、1
13は、上下層の配線パターンおよび電位状態に拘らず
一定であり、第1層配線10102の面積に比例した値
となるため、第2層配線間の容量112と合わせて、第
2層配線102だけのレイアウトパターンから配線容量
の算出が可能となる。
In this embodiment, taking the parasitic capacitance of the second layer wiring 102 as an example, the capacitance between the second layer wiring and the shield layer 111, 1
13 is constant regardless of the wiring pattern and potential state of the upper and lower layers, and has a value proportional to the area of the first layer wiring 10102. Therefore, together with the capacitance 112 between the second layer wiring, the second layer wiring 102 It becomes possible to calculate the wiring capacitance from the layout pattern.

第2層配線102が最小線幅、最小ピッチで並列してい
る場合を考える。実用レベルで第2N!配線の最小線幅
1.8μm、fi小間隔1,2μm、厚さ0.8μm、
第2層配線−シールド層間隔0,4μmで、絶縁体の誘
電率が均一とすると、単位長さ当り第2層配線−シール
ド層間容量111 、113の方が第2層配線間容量1
12よりも [(1,810,8) x (1,210,4) ] 
x 2g13倍大きいので、実用上は第2層配線間容量
112を無視して(単位長さ当りの第2層配線−シール
ド層間容量)×配線長で配線容量を見積ることができる
。このことは、第1層配線−基板間の容量108、第1
層配線間の容量109、第1層配線−シールド層間の容
量110、第3層配線−シールド層間の容量、第3層配
線間の容量115についても同様である。
Consider a case where the second layer wirings 102 are arranged in parallel with the minimum line width and minimum pitch. 2nd N in practical level! Minimum wiring width 1.8 μm, fi small spacing 1.2 μm, thickness 0.8 μm,
Assuming that the distance between the second layer wiring and the shield layer is 0.4 μm and the dielectric constant of the insulator is uniform, the capacitance between the second layer wiring and the shield layer per unit length is 111 and 113, whereas the capacitance between the second layer wiring and the shield layer is 1
than 12 [(1,810,8) x (1,210,4) ]
x2g13 times as large, so in practice, the wiring capacitance can be estimated by (capacitance between the second layer wiring and the shield layer per unit length) x wiring length, ignoring the capacitance 112 between the second layer wiring. This means that the capacitance 108 between the first layer wiring and the board,
The same applies to the capacitance 109 between layer wirings, the capacitance 110 between the first layer wiring and the shield layer, the capacitance between the third layer wiring and the shield layer, and the capacitance 115 between the third layer wiring.

(実施例2) 第2図は本発明を4層配線を有する半導体チップに適用
した実施例2を示す断面図である。
(Example 2) FIG. 2 is a sectional view showing Example 2 in which the present invention is applied to a semiconductor chip having four-layer wiring.

図において、トランジスタ素子等が形成されている基板
206上に、基板側から第1層配線201、接地された
シールド層208、第2層配線202、接地されたシー
ルド層208、第3層配線203、接地されたシールド
層208、第4層配kj!、204の順に形成され、各
層間は絶縁体207で電気的に分離され、必要に応じて
1−2層スルーホール205等で電気的に接続されてい
る。また、図中、209は第1層配線−基板間の容量、
210は第1層配線間の容量、211は第1層配線−シ
ールド層間の容量、215.217は第3層配線−シー
ルド層間の容量、216は第3層配線間の容量、218
は第4層配線−シールド層間の容量、219は第4層配
線間の容量である。
In the figure, on a substrate 206 on which transistor elements etc. are formed, from the substrate side, first layer wiring 201, grounded shield layer 208, second layer wiring 202, grounded shield layer 208, third layer wiring 203 , grounded shield layer 208, fourth layer distribution kj! , 204 are formed in this order, and each layer is electrically isolated by an insulator 207 and electrically connected by a 1-2 layer through hole 205 or the like as necessary. In addition, in the figure, 209 is the capacitance between the first layer wiring and the board;
210 is the capacitance between the first layer wiring, 211 is the capacitance between the first layer wiring and the shield layer, 215.217 is the capacitance between the third layer wiring and the shield layer, 216 is the capacitance between the third layer wiring, 218
is the capacitance between the fourth layer wiring and the shield layer, and 219 is the capacitance between the fourth layer wiring.

本実施例において、第2層配線の容量算出には、第2層
配線−シールド層間の容量212,214と第2層配線
間の容量213を考慮すれば良く、第2層配線と基板間
、第1層配線間、第3層配線間、第4層配線間の容量お
よび電位の影響は考慮する必要がない。
In this embodiment, to calculate the capacitance of the second layer wiring, it is sufficient to consider the capacitances 212 and 214 between the second layer wiring and the shield layer, and the capacitance 213 between the second layer wiring, and the capacitance 213 between the second layer wiring and the board. There is no need to consider the effects of capacitance and potential between the first layer interconnects, between the third layer interconnects, and between the fourth layer interconnects.

このことはその層配線の容量算出についても同揉゛ζあ
る。
This also applies to the calculation of the capacitance of the wiring layer.

(発明グ)効果] 以■−説明[5、/、・よ)に本発明は、配線層間の電
;気的な影響をS・−ルドし”ζいるので、配線容置の
11確な見積りが−ii+能になるという効果、をイ」
する。
(Effects of the Invention) Hereinafter, the present invention eliminates the electrical influence between wiring layers, so The effect that the estimate becomes -ii + ability is
do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実線例1を示す断面図、第2図は本発
明の実施例2を示″つ断面図2第3図はtt来例を小(
断面図ζ、′ある。 101゜201 、301・・・第1N!!配線102
 、202 、302・・・第2層配線103 、20
3 、303・・・第3層配線204・・・第4層配線 104 、205 、304・・・1−2層スルーホー
ル105 、206 、305・・・1に板106 、
2O7、30f3・・・絶縁体107 、20B・・・
シールドM(接地)108 、209 、307・・・
第1層配線−基板間の容置109 、210 、3OS
・・・第1層配線間の容置110 、211・・・第1
層配線−シール1で層間の容量性 111.113  212  214 ・・・・第2層配線−シー・ルド層間の容重112 、
213 、310・・・第2M配線間の容置114 、
215 、217 ・・・第37t11配線−シールド層間の容1115 
、216 、313・・・第″3M配線間の容置218
・・・第4層配線−シールド層間の容重219・・・第
4M配線間の容址 309・・・第1層配線−第2層配線間の容置311・
・・第2層配線−基板間の容置312・・・第2層配線
−第3層配線204314・・・第3層配線−第1層配
線間の容置31j1・・・第3層配線−基板間の容置許
出願人   II本電気株式会社 ゛(三・ひ m1第3畳・#?縛 、−”7−−〜−−一−・、−、−、、、、、、、、、
−L−、、、、、、、、、、、、、、、、、、、−、、
、−/ 、2r − 第16図 第 図
Fig. 1 is a sectional view showing a solid line example 1 of the present invention, Fig. 2 is a sectional view showing a second embodiment of the invention.
There are cross-sectional views ζ and ′. 101°201, 301...1st N! ! Wiring 102
, 202 , 302 . . . second layer wiring 103 , 20
3, 303...Third layer wiring 204...Fourth layer wiring 104, 205, 304...1-2 layer through holes 105, 206, 305... 1 on the board 106,
2O7, 30f3... Insulator 107, 20B...
Shield M (ground) 108, 209, 307...
Container 109, 210, 3OS between first layer wiring and board
. . . Receptacles 110 and 211 between the first layer wirings . . .
Capacitance between layers between layer wiring and seal 1 111.113 212 214 . . . Capacitance between second layer wiring and shield layer 112,
213, 310... Reservoir 114 between the second M wirings,
215, 217... Capacity 1115 between the 37th t11 wiring and the shield layer
, 216, 313... Receptacle 218 between the ``3M'' wires
... Capacity between the fourth layer wiring and the shield layer 219 ... Capacity between the fourth M wiring 309 ... Capacity between the first layer wiring and the second layer wiring 311
... Receptacle 312 between second layer wiring and substrate ... Second layer wiring - third layer wiring 204314 ... Receptacle 31j1 between third layer wiring and first layer wiring ... Third layer wiring - Applicant for storage permit between boards: II Hondenki Co., Ltd. ,,
-L-,,,,,,,,,,,,,,,,,-,,,
, -/ , 2r - Figure 16

Claims (1)

【特許請求の範囲】[Claims] (1)m層(m≧2、mは整数)の配線層を有する半導
体装置であつて、半導体基板側から第n番目(1≦n≦
m−1、nは整数)の配線層と第n+1番目の配線層と
の間に、一定電位が与えられる導電体層を有することを
特徴とする半導体装置。
(1) A semiconductor device having m wiring layers (m≧2, m is an integer), the nth layer (1≦n≦) from the semiconductor substrate side.
1. A semiconductor device comprising a conductor layer to which a constant potential is applied between a wiring layer (m-1, n is an integer) and an (n+1)th wiring layer.
JP18237790A 1990-07-10 1990-07-10 Semiconductor device Pending JPH0469950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18237790A JPH0469950A (en) 1990-07-10 1990-07-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18237790A JPH0469950A (en) 1990-07-10 1990-07-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0469950A true JPH0469950A (en) 1992-03-05

Family

ID=16117248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18237790A Pending JPH0469950A (en) 1990-07-10 1990-07-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0469950A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703617A2 (en) * 1994-09-22 1996-03-27 Nippon Telegraph And Telephone Corporation High frequency monolithic integrated circuit
WO1999001939A1 (en) * 1997-07-03 1999-01-14 Seiko Epson Corporation Ladder type resistance circuit, and digital-analog converter and semiconductor device using the same
US6380567B1 (en) 1998-02-02 2002-04-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and fabrication method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703617A2 (en) * 1994-09-22 1996-03-27 Nippon Telegraph And Telephone Corporation High frequency monolithic integrated circuit
EP0703617A3 (en) * 1994-09-22 1997-02-26 Nippon Telegraph & Telephone High frequency monolithic integrated circuit
US5739560A (en) * 1994-09-22 1998-04-14 Nippon Telegraph And Telephone Corporation High frequency masterslice monolithic integrated circuit
WO1999001939A1 (en) * 1997-07-03 1999-01-14 Seiko Epson Corporation Ladder type resistance circuit, and digital-analog converter and semiconductor device using the same
US6208281B1 (en) 1997-07-03 2001-03-27 Seiko Epson Corporation Resistance ladder together with digital-analog converter and semiconductor using the same
US6380567B1 (en) 1998-02-02 2002-04-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and fabrication method thereof

Similar Documents

Publication Publication Date Title
KR100676980B1 (en) Integrated circuit power and ground routing
US5272600A (en) Electrical interconnect device with interwoven power and ground lines and capacitive vias
EP0353426B1 (en) Semiconductor integrated circuit device comprising conductive layers
JP3138383B2 (en) Multi-chip module
US7663207B2 (en) Semiconductor device
CN107121860A (en) A kind of array base palte, display panel and display device
US10191006B2 (en) Humidity sensor
EP0629107A2 (en) Multiple wiring and X section printed circuit board technique
KR940012602A (en) Semiconductor devices
KR100390667B1 (en) Integrated circuit multi-level interconnection technique
JPH0469950A (en) Semiconductor device
KR100331567B1 (en) Caculation method of parastic capacitance between interconnections of integrated circuit considering floating conductive patterns and recoding medium inwhich the calculation program recorded
KR930006832A (en) Semiconductor devices with multilayer metal interconnects
JPH0661230A (en) Semiconductor integrated circuit device
US8000106B1 (en) Circuit distribution to multiple integrated circuits
JPH06140607A (en) Semiconductor integrated circuit
JPH0590427A (en) Semiconductor ic device
JPH0430452A (en) Semiconductor integrated circuit device
JPH04113625A (en) Metal interconnection structure of semiconductor device
JPH10189593A (en) Integrated circuit electric device having reference planar metallized layer
JPS61270849A (en) Integrated circuit device
JPH07153844A (en) Semiconductor integrated circuit device
US10559532B2 (en) Layout techniques for high-speed and low-power signal paths in integrated circuits with small channel devices
JPH0251255A (en) Metallic multilayer wiring structure
JPH02105532A (en) Semiconductor integrated circuit device